1
|
Aldakheel FM. Discovering potential asthma therapeutics targeting hematopoietic prostaglandin D2 synthase: An integrated computational approach. Arch Biochem Biophys 2024; 761:110157. [PMID: 39307263 DOI: 10.1016/j.abb.2024.110157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
Allergic asthma, a chronic inflammatory illness that affects millions worldwide, has serious economic and health consequences. Despite advances in therapy, contemporary treatments have poor efficacy and negative effects. This study investigates hematopoietic prostaglandin D2 synthase (HPGDS) as a potential target for novel asthma therapies. Targeting HPGDS may provide innovative treatment methods. A library of phytochemicals was used to find putative HPGDS inhibitors by structure-based and ligand-based virtual screening. Among the 2295 compounds screened, four compounds (ZINC208828240, ZINC95627530, ZINC14727536, and ZINC14711790) demonstrated strong binding affinities of -10.4, -10.3, -9.2, -9.1 kcal/mol respectively with key residues, suggesting their potential as a highly effective HPGDS inhibitor. Molecular dynamics (MD) simulations and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) computations were further performed to evaluate the stability and binding affinity of the complexes. MD simulations and MMPBSA confirmed that compound ZINC14711790 showed high stability and binding affinity (binding energy -31.52 kcal/mol) than other compounds, including HQL-79, suggesting that this compound might be used as promising inhibitors to treat asthma. RMSD and RMSF analysis also revealed that ZINC14711790 exhibited strong dynamic stability. The findings of this study show the efficacy of ZINC14711790 as HPGDS inhibitors with high binding affinity, dynamic stability, and appropriate ADMET profile.
Collapse
Affiliation(s)
- Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia.
| |
Collapse
|
2
|
Filipić B, Ušjak D, Rambaher MH, Oljacic S, Milenković MT. Evaluation of novel compounds as anti-bacterial or anti-virulence agents. Front Cell Infect Microbiol 2024; 14:1370062. [PMID: 38510964 PMCID: PMC10951914 DOI: 10.3389/fcimb.2024.1370062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Antimicrobial resistance is a global threat, leading to an alarming increase in the prevalence of bacterial infections that can no longer be treated with available antibiotics. The World Health Organization estimates that by 2050 up to 10 million deaths per year could be associated with antimicrobial resistance, which would equal the annual number of cancer deaths worldwide. To overcome this emerging crisis, novel anti-bacterial compounds are urgently needed. There are two possible approaches in the fight against bacterial infections: a) targeting structures within bacterial cells, similar to existing antibiotics; and/or b) targeting virulence factors rather than bacterial growth. Here, for the first time, we provide a comprehensive overview of the key steps in the evaluation of potential new anti-bacterial and/or anti-virulence compounds. The methods described in this review include: a) in silico methods for the evaluation of novel compounds; b) anti-bacterial assays (MIC, MBC, Time-kill); b) anti-virulence assays (anti-biofilm, anti-quorum sensing, anti-adhesion); and c) evaluation of safety aspects (cytotoxicity assay and Ames test). Overall, we provide a detailed description of the methods that are an essential tool for chemists, computational chemists, microbiologists, and toxicologists in the evaluation of potential novel antimicrobial compounds. These methods are cost-effective and have high predictive value. They are widely used in preclinical studies to identify new molecular candidates, for further investigation in animal and human trials.
Collapse
Affiliation(s)
- Brankica Filipić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Dušan Ušjak
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Martina Hrast Rambaher
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Slavica Oljacic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Marina T. Milenković
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Sharma D, Gautam S, Srivastava N, Bisht D. In silico Screening of Food and Drug Administration-approved Compounds against Trehalose 2-sulfotransferase (Rv0295c) in Mycobacterium tuberculosis: Insights from Molecular Docking and Dynamics Simulations. Int J Mycobacteriol 2024; 13:73-82. [PMID: 38771283 DOI: 10.4103/ijmy.ijmy_20_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/25/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) remains a prominent global health challenge, distinguished by substantial occurrences of infection and death. The upsurge of drug-resistant TB strains underscores the urgency to identify novel therapeutic targets and repurpose existing compounds. Rv0295c is a potentially druggable enzyme involved in cell wall biosynthesis and virulence. We evaluated the inhibitory activity of Food and Drug Administration (FDA)-approved compounds against Rv0295c of Mycobacterium tuberculosis, employing molecular docking, ADME evaluation, and dynamics simulations. METHODS The study screened 1800 FDA-approved compounds and selected the top five compounds with the highest docking scores. Following this, we subjected the initially screened ligands to ADME analysis based on their dock scores. In addition, the compound exhibited the highest binding affinity chosen for molecular dynamics (MD) simulation to investigate the dynamic behavior of the ligand-receptor complex. RESULTS Dihydroergotamine (CHEMBL1732) exhibited the highest binding affinity (-12.8 kcal/mol) for Rv0295c within this set of compounds. We evaluated the stability and binding modes of the complex over extended simulation trajectories. CONCLUSION Our in silico analysis demonstrates that FDA-approved drugs can serve as potential Rv0295c inhibitors through repurposing. The combination of molecular docking and MD simulation offers a comprehensive understanding of the interactions between ligands and the protein target, providing valuable guidance for further experimental validation. Identifying Rv0295c inhibitors may contribute to new anti-TB drugs.
Collapse
Affiliation(s)
- Devesh Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
- School of Studies in Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Sakshi Gautam
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Nalini Srivastava
- School of Studies in Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| |
Collapse
|
4
|
Vadakkan K, Ngangbam AK, Sathishkumar K, Rumjit NP, Cheruvathur MK. A review of chemical signaling pathways in the quorum sensing circuit of Pseudomonas aeruginosa. Int J Biol Macromol 2024; 254:127861. [PMID: 37939761 DOI: 10.1016/j.ijbiomac.2023.127861] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Pseudomonas aeruginosa, an increasingly common competitive and biofilm organism in healthcare infection with sophisticated, interlinked and hierarchic quorum systems (Las, Rhl, PQS, and IQS), creates the greatest threats to the medical industry and has rendered prevailing chemotherapy medications ineffective. The rise of multidrug resistance has evolved into a concerning and potentially fatal occurrence for human life. P. aeruginosa biofilm development is assisted by exopolysaccharides, extracellular DNA, proteins, macromolecules, cellular signaling and interaction. Quorum sensing is a communication process between cells that involves autonomous inducers and regulators. Quorum-induced infectious agent biofilms and the synthesis of virulence factors have increased disease transmission, medication resistance, infection episodes, hospitalizations and mortality. Hence, quorum sensing may be a potential therapeutical target for bacterial illness, and developing quorum inhibitors as an anti-virulent tool could be a promising treatment strategy for existing antibiotics. Quorum quenching is a prevalent technique for treating infections caused by microbes because it diminishes microbial pathogenesis and increases microbe biofilm sensitivity to antibiotics, making it a potential candidate for drug development. This paper examines P. aeruginosa quorum sensing, the hierarchy of quorum sensing mechanism, quorum sensing inhibition and quorum sensing inhibitory agents as a drug development strategy to supplement traditional antibiotic strategies.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biology, St. Mary's College, Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | | | - Kuppusamy Sathishkumar
- Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | | | | |
Collapse
|
5
|
Farha AK, Li Z, Xu Y, Bordiga M, Sui Z, Corke H. Anti-quorum sensing effects of batatasin III: in vitro and in silico studies. J Biomol Struct Dyn 2023; 41:11341-11352. [PMID: 36871957 DOI: 10.1080/07391102.2023.2187226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/07/2022] [Indexed: 03/07/2023]
Abstract
The spread of multidrug resistant bacteria has fueled the development of new antibiotics to combat bacterial infections. Disrupting the quorum sensing (QS) mechanism with biomolecules is a promising approach against bacterial infections. Plants used in Traditional Chinese Medicine (TCM) represent a valuable resource for the identification of QS inhibitors. In this study, the in vitro anti-QS activity of 50 TCM-derived phytochemicals against the biosensor Chromobacterium violaceum CV026 was tested. Among the 50 phytochemicals, 7-methoxycoumarin, flavone, batatasin III, resveratrol, psoralen, isopsoralen, and rhein inhibited violacein production and showed good QS inhibitory effects. Batatasin III was selected as the best QS inhibitor based on drug-likeness, physicochemical properties, toxicity, and bioactivity score prediction analyses using SwissADME, PreADMET, ProtoxII, and Molinspiration. At 30 μg/ mL, Batatasin III inhibited violacein production and biofilm formation in C. violaceum CV026 by more than 69% and 54% respectively without affecting bacterial growth. The in vitro cytotoxicity evaluation by MTT assay demonstrated that batatasin III reduced the viability of 3T3 mouse fibroblast cells to 60% at 100 μg/mL. Furthermore, molecular docking studies showed that batatasin III has strong binding interactions with the QS-associated proteins CViR, LasR, RhlR, PqsE, and PqsR. Molecular dynamic simulation studies showed that batatasin III has strong binding interactions with 3QP1, a structural variant of CViR protein. The binding free energy value of batatasin III-3QP1 complex was -146.295 ± 10.800 KJ/mol. Overall results suggested that batatasin III could serve as a lead molecule that could be developed into a potent QS inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Arakkaveettil Kabeer Farha
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, China
| | - Zijun Li
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yijuan Xu
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Matteo Bordiga
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Zhongquan Sui
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, China
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
6
|
Ghosh M, Raghav S, Ghosh P, Maity S, Mohela K, Jain D. Structural analysis of novel drug targets for mitigation of Pseudomonas aeruginosa biofilms. FEMS Microbiol Rev 2023; 47:fuad054. [PMID: 37771093 DOI: 10.1093/femsre/fuad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen responsible for acute and chronic, hard to treat infections. Persistence of P. aeruginosa is due to its ability to develop into biofilms, which are sessile bacterial communities adhered to substratum and encapsulated in layers of self-produced exopolysaccharides. These biofilms provide enhanced protection from the host immune system and resilience towards antibiotics, which poses a challenge for treatment. Various strategies have been expended for combating biofilms, which involve inhibiting biofilm formation or promoting their dispersal. The current remediation approaches offer some hope for clinical usage, however, treatment and eradication of preformed biofilms is still a challenge. Thus, identifying novel targets and understanding the detailed mechanism of biofilm regulation becomes imperative. Structure-based drug discovery (SBDD) provides a powerful tool that exploits the knowledge of atomic resolution details of the targets to search for high affinity ligands. This review describes the available structural information on the putative target protein structures that can be utilized for high throughput in silico drug discovery against P. aeruginosa biofilms. Integrating available structural information on the target proteins in readily accessible format will accelerate the process of drug discovery.
Collapse
Affiliation(s)
- Moumita Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Shikha Raghav
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Puja Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Swagatam Maity
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Kavery Mohela
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, Haryana-121001, India
| |
Collapse
|
7
|
Giallonardi G, Letizia M, Mellini M, Frangipani E, Halliday N, Heeb S, Cámara M, Visca P, Imperi F, Leoni L, Williams P, Rampioni G. Alkyl-quinolone-dependent quorum sensing controls prophage-mediated autolysis in Pseudomonas aeruginosa colony biofilms. Front Cell Infect Microbiol 2023; 13:1183681. [PMID: 37305419 PMCID: PMC10250642 DOI: 10.3389/fcimb.2023.1183681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Pseudomonas aeruginosa is a model quorum sensing (QS) pathogen with three interconnected QS circuits that control the production of virulence factors and antibiotic tolerant biofilms. The pqs QS system of P. aeruginosa is responsible for the biosynthesis of diverse 2-alkyl-4-quinolones (AQs), of which 2-heptyl-4-hydroxyquinoline (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) function as QS signal molecules. Transcriptomic analyses revealed that HHQ and PQS influenced the expression of multiple genes via PqsR-dependent and -independent pathways whereas 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) had no effect on P. aeruginosa transcriptome. HQNO is a cytochrome bc 1 inhibitor that causes P. aeruginosa programmed cell death and autolysis. However, P. aeruginosa pqsL mutants unable to synthesize HQNO undergo autolysis when grown as colony biofilms. The mechanism by which such autolysis occurs is not understood. Through the generation and phenotypic characterization of multiple P. aeruginosa PAO1 mutants producing altered levels of AQs in different combinations, we demonstrate that mutation of pqsL results in the accumulation of HHQ which in turn leads to Pf4 prophage activation and consequently autolysis. Notably, the effect of HHQ on Pf4 activation is not mediated via its cognate receptor PqsR. These data indicate that the synthesis of HQNO in PAO1 limits HHQ-induced autolysis mediated by Pf4 in colony biofilms. A similar phenomenon is shown to occur in P. aeruginosa cystic fibrosis (CF) isolates, in which the autolytic phenotype can be abrogated by ectopic expression of pqsL.
Collapse
Affiliation(s)
| | | | - Marta Mellini
- Department of Science, University Roma Tre, Rome, Italy
| | | | - Nigel Halliday
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Stephan Heeb
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Miguel Cámara
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Francesco Imperi
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
8
|
Sabino YNV, Cotter PD, Mantovani HC. Anti-virulence compounds against Staphylococcus aureus associated with bovine mastitis: A new therapeutic option? Microbiol Res 2023; 271:127345. [PMID: 36889204 DOI: 10.1016/j.micres.2023.127345] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
Bovine mastitis represents a major economic burden faced by the dairy industry. S. aureus is an important and prevalent bovine mastitis-associated pathogen in dairy farms worldwide. The pathogenicity and persistence of S. aureus in the bovine mammary gland are associated with the expression of a range of virulence factors involved in biofilm formation and the production of several toxins. The traditional therapeutic approach to treating bovine mastitis includes the use of antibiotics, but the emergence of antibiotic-resistant strains has caused therapeutic failure. New therapeutic approaches targeting virulence factors of S. aureus rather than cell viability can have several advantages including lower selective pressure towards the development of resistance and little impact on the host commensal microbiota. This review summarizes the potential of anti-virulence therapies to control S. aureus associated with bovine mastitis focusing on anti-toxin, anti-biofilm, and anti-quorum sensing compounds. It also points to potential sources of new anti-virulence inhibitors and presents screening strategies for identifying these compounds.
Collapse
Affiliation(s)
| | | | - Hilario C Mantovani
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Fernandes S, Borges A, Gomes IB, Sousa SF, Simões M. Curcumin and 10-undecenoic acid as natural quorum sensing inhibitors of LuxS/AI-2 of Bacillus subtilis and LasI/LasR of Pseudomonas aeruginosa. Food Res Int 2023; 165:112519. [PMID: 36869520 DOI: 10.1016/j.foodres.2023.112519] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/06/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The quorum sensing (QS) system is related to cell-to-cell communication as a function of population density, which regulates several physiological functions including biofilm formation and virulence gene expression. QS inhibitors have emerged as a promising strategy to tackle virulence and biofilm development. Among a wide variety of phytochemicals, many of them have been described as QS inhibitors. Driven by their promising clues, this study aimed to identify active phytochemicals against LuxS/autoinducer-2 (AI-2) (as the universal QS system) from Bacillus subtilis and LasI/LasR (as a specific QS system) of Pseudomonas aeruginosa, through in silico analysis followed by in vitro validation. The optimized virtual screening protocols were applied to screen a phytochemical database containing 3479 drug-like compounds. The most promising phytochemicals were curcumin, pioglitazone hydrochloride, and 10-undecenoic acid. In vitro analysis corroborated the QS inhibitory activity of curcumin and 10-undecenoic acid, however, pioglitazone hydrochloride showed no relevant effect. Inhibitory effects on LuxS/AI-2 QS system triggered reduction of 33-77% by curcumin (at 1.25-5 µg/mL) and 36-64% by 10-undecenoic acid (at 12.5-50 µg/mL). Inhibition of LasI/LasR QS system was 21% by curcumin (at 200 µg/mL) and 10-54% by 10-undecenoic acid (at 15.625-250 µg/mL). In conclusion, in silico analysis allowed the identification of curcumin and, for the first time, 10-undecenoic acid (showing low cost, high availability, and low toxicity) as alternatives to counteract bacterial pathogenicity and virulence, avoiding the imposition of selective pressure usually related to classic industrial disinfection and antibiotics therapy.
Collapse
Affiliation(s)
- Susana Fernandes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sérgio F Sousa
- UCIBIO/REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
10
|
Alkatheri AH, Yap PSX, Abushelaibi A, Lai KS, Cheng WH, Erin Lim SH. Microbial Genomics: Innovative Targets and Mechanisms. Antibiotics (Basel) 2023; 12:190. [PMID: 36830101 PMCID: PMC9951906 DOI: 10.3390/antibiotics12020190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Multidrug resistance (MDR) has become an increasing threat to global health because bacteria can develop resistance to antibiotics over time. Scientists worldwide are searching for new approaches that go beyond traditional antibiotic discovery and development pipelines. Advances in genomics, however, opened up an unexplored therapeutic opportunity for the discovery of new antibacterial agents. Genomic approaches have been used to discover several novel antibiotics that target critical processes for bacterial growth and survival, including histidine kinases (HKs), LpxC, FabI, peptide deformylase (PDF), and aminoacyl-tRNA synthetases (AaRS). In this review, we will discuss the use of microbial genomics in the search for innovative and promising drug targets as well as the mechanisms of action for novel antimicrobial agents. We will also discuss future directions on how the utilization of the microbial genomics approach could improve the odds of antibiotic development having a more successful outcome.
Collapse
Affiliation(s)
- Asma Hussain Alkatheri
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Polly Soo-Xi Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Aisha Abushelaibi
- Office of Campus Director, Abu Dhabi Colleges, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Nilai 71800, Malaysia
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| |
Collapse
|
11
|
Lyagin I, Stepanov N, Presnov D, Trifonov A, Efremenko E. Self-Assembling Enzymatic Nanocomplexes with Polypeptides and Low-Weight Organic Compounds: Preparation, Characterization, and Application of New Antibacterials. Int J Mol Sci 2023; 24:ijms24031831. [PMID: 36768158 PMCID: PMC9915939 DOI: 10.3390/ijms24031831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
The self-assembling of nanosized materials is a promising field for research and development. Multiple approaches are applied to obtain inorganic, organic and composite nanomaterials with different functionality. In the present work, self-assembling nanocomplexes (NCs) were prepared on the basis of enzymes and polypeptides followed by the investigation of the influence of low-molecular weight biologically active compounds on the properties of the NCs. For that, the initially possible formation of catalytically active self-assembling NCs of four hydrolytic enzymes with nine effectors was screened via molecular modeling. It allowed the selection of two enzymes (hexahistidine-tagged organophosphorus hydrolase and penicillin acylase) and two compounds (emodin and naringenin) having biological activity. Further, such NCs based on surface-modified enzymes were characterized by a batch of physical and biochemical methods. At least three NCs containing emodin and enzyme (His6-OPH and/or penicillin acylase) have been shown to significantly improve the antibacterial activity of colistin and, to a lesser extent, polymyxin B towards both Gram-positive bacteria (Bacillus subtilis) and Gram-negative bacteria (Escherichia coli).
Collapse
Affiliation(s)
- Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Denis Presnov
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Artem Trifonov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-495-939-3170; Fax: +7-495-939-5417
| |
Collapse
|
12
|
Rather MA, Saha D, Bhuyan S, Jha AN, Mandal M. Quorum Quenching: A Drug Discovery Approach Against Pseudomonas aeruginosa. Microbiol Res 2022; 264:127173. [PMID: 36037563 DOI: 10.1016/j.micres.2022.127173] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/06/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022]
Abstract
Pseudomonas aeruginosa, a ubiquitous opportunistic and nosocomial biofilm-forming pathogen with complex, interconnected and hierarchical nature of QS systems (Las, Rhl, PQS, and IQS), is posing the biggest challenge to the healthcare sector and have made current chemotherapies incapable. Conventional antibiotics designed to intercept the biochemical or physiological processes precisely of planktonic microorganisms exert extreme selective pressure and develop resistance against them thereby emphasizing the development of alternative therapeutic approaches. Additionally, quorum sensing induced pathogenic microbial biofilms and production of virulence factors have intensified the pathogenicity, drug resistance, recurrence of infections, hospital visits, morbidity, and mortality many-folds. In this regard, QS could be a potential druggable target and the discovery of QS inhibiting agents as an anti-virulent measure could serve as an alternative therapeutic approach to conventional antibiotics. Quorum quenching (QQ) is a preferred strategy to combat microbial infections since it attenuates the pathogenicity of microbes and enhances the microbial biofilm susceptibility to antibiotics, thus qualifying as a suitable target for drug discovery. This review discusses the QS-induced pathogenicity of P. aeruginosa, the hierarchical QS systems, and QS inhibition as a drug discovery approach to complement classical antibiotic strategy.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Debanjan Saha
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Shuvam Bhuyan
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Anupam Nath Jha
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India.
| |
Collapse
|
13
|
Kaur H, Kalia M, Chaudhary N, Singh V, Yadav VK, Modgil V, Kant V, Mohan B, Bhatia A, Taneja N. Repurposing of FDA approved drugs against uropathogenic Escherichia coli: In silico, in vitro, and in vivo analysis. Microb Pathog 2022; 169:105665. [PMID: 35781005 DOI: 10.1016/j.micpath.2022.105665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Urinary tract infections (UTIs) are a serious health concern worldwide. Treatment of UTIs is becoming a challenge as uropathogenic Escherichia coli (UPEC), which is the most common etiological agent, has developed resistance to the main classes of antibiotics. Small molecules that interfere with metabolic processes rather than growth are attractive alternatives to conventional antibiotics. Repurposing of already known drugs for treating infectious diseases could be an attractive avenue for finding novel therapeutics against infections caused by UPEC. Virtual screenings enable the rapid and economical identification of target ligands from large libraries of compounds, reducing the cost and time of traditional drug discovery. Moreover, the drugs that have been approved by the FDA have low cytotoxicity and good pharmacological characteristics. In this work, we targeted the HisC enzyme of the histidine biosynthetic pathway as enzymes of this pathway are absent in humans. We screened the library of FDA-approved drugs against HisC via molecular docking, and four hits (Docetaxel, Suramin, Digitoxin, and Nystatin) showing the highest binding energy were selected. These were further tested for antibacterial activity, which was observed only for Docetaxel (MIC value of 640 μg/ml); therefore, Docetaxel was further tested for its efficacy in vivo in murine catheter UTI model and antibiofilm activity using crystal violet staining and scanning electron microscopy. Docetaxel inhibited biofilm formation and reduced the bacterial load in urine, kidney, and bladder. Docking studies revealed that Docetaxel acts by blocking the binding site of HisC to the native substrate by competitive inhibition. Docetaxel may be a potential new inhibitor for UPEC with antibacterial and antibiofilm capability.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manmohit Kalia
- Department of Biology, State University of Newyork, Binghamton, NY, USA
| | - Naveen Chaudhary
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vikram Singh
- Center of Computational Biology and Bioinformatics, Central University of Himachal Pradesh, India
| | - Vivek Kumar Yadav
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vinay Modgil
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vishal Kant
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Balvinder Mohan
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
14
|
Collalto D, Giallonardi G, Fortuna A, Meneghini C, Fiscarelli E, Visca P, Imperi F, Rampioni G, Leoni L. In vitro Activity of Antivirulence Drugs Targeting the las or pqs Quorum Sensing Against Cystic Fibrosis Pseudomonas aeruginosa Isolates. Front Microbiol 2022; 13:845231. [PMID: 35547141 PMCID: PMC9083110 DOI: 10.3389/fmicb.2022.845231] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 01/24/2023] Open
Abstract
The chronic lung infection caused by Pseudomonas aeruginosa is a major cause of morbidity and mortality in cystic fibrosis (CF) patients. Antivirulence drugs targeting P. aeruginosa quorum sensing (QS) systems are intensively studied as antibiotics substitutes or adjuvants. Previous studies, carried out in non-CF P. aeruginosa reference strains, showed that the old drugs niclosamide and clofoctol could be successfully repurposed as antivirulence drugs targeting the las and pqs QS systems, respectively. However, frequent emergence of QS-defective mutants in the CF lung undermines the use of QS inhibitors in CF therapy. Here, QS signal production and susceptibility to niclosamide and clofoctol have been investigated in 100 P. aeruginosa CF isolates, with the aim of broadening current knowledge on the potential of anti-QS compounds in CF therapy. Results showed that 85, 78, and 69% of the CF isolates from our collection were proficient for the pqs, rhl, and las QS systems, respectively. The ability of both niclosamide and clofoctol to inhibit QS and virulence in vitro was highly variable and strain-dependent. Niclosamide showed an overall low range of activity and its negative effect on las signal production did not correlate with a decreased production of virulence factors. On the other hand, clofoctol displayed a broader QS inhibitory effect in CF isolates, with consequent reduction of the pqs-controlled virulence factor pyocyanin. Overall, this study highlights the importance of testing new antivirulence drugs against large panels of P. aeruginosa CF clinical isolates before proceeding to further pre-clinical studies and corroborates previous evidence that strains naturally resistant to QS inhibitors occur among CF isolates. However, it is also shown that resistance to pqs inhibitors is less frequent than resistance to las inhibitors, thus supporting the development of pqs inhibitors for antivirulence therapy in CF.
Collapse
Affiliation(s)
| | - Giulia Giallonardi
- Department of Science, Roma Tre University, Rome, Italy.,Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Ersilia Fiscarelli
- Laboratory of Cystic Fibrosis Microbiology, Diagnostic Medicine and Laboratory, Bambino Gesú Hospital, Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy.,Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy.,Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Giordano Rampioni
- Department of Science, Roma Tre University, Rome, Italy.,Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Livia Leoni
- Department of Science, Roma Tre University, Rome, Italy
| |
Collapse
|
15
|
Escobar-Muciño E, Arenas-Hernández MMP, Luna-Guevara ML. Mechanisms of Inhibition of Quorum Sensing as an Alternative for the Control of E. coli and Salmonella. Microorganisms 2022; 10:884. [PMID: 35630329 PMCID: PMC9143355 DOI: 10.3390/microorganisms10050884] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 02/05/2023] Open
Abstract
Quorum sensing (QS) is a process of cell-cell communication for bacteria such as E. coli and Salmonella that cause foodborne diseases, with the production, release, and detection of autoinducer (AI) molecules that participate in the regulation of virulence genes. All of these proteins are useful in coordinating collective behavior, the expression of virulence factors, and the pathogenicity of Gram-negative bacteria. In this work, we review the natural or synthetic inhibitor molecules of QS that inactivate the autoinducer and block QS regulatory proteins in E. coli and Salmonella. Furthermore, we describe mechanisms of QS inhibitors (QSIs) that act as competitive inhibitors, being a useful tool for preventing virulence gene expression through the downregulation of AI-2 production pathways and the disruption of signal uptake. In addition, we showed that QSIs have negative regulatory activity of genes related to bacterial biofilm formation on clinical artifacts, which confirms the therapeutic potential of QSIs in the control of infectious pathogens. Finally, we discuss resistance to QSIs, the design of next-generation QSIs, and how these molecules can be leveraged to provide a new antivirulence therapy to combat diseases caused by E. coli or Salmonella.
Collapse
Affiliation(s)
- Esmeralda Escobar-Muciño
- Posgrado en Microbiología, Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla C.P. 72570, Pue, Mexico;
| | - Margarita M. P. Arenas-Hernández
- Posgrado en Microbiología, Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla C.P. 72570, Pue, Mexico;
| | - M. Lorena Luna-Guevara
- Colegío de Ingeniería en Alimentos, Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla C.P. 72570, Pue, Mexico
| |
Collapse
|
16
|
Investigation of Direct and Retro Chromone-2-Carboxamides Based Analogs of Pseudomonas aeruginosa Quorum Sensing Signal as New Anti-Biofilm Agents. Pharmaceuticals (Basel) 2022; 15:ph15040417. [PMID: 35455414 PMCID: PMC9026348 DOI: 10.3390/ph15040417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Biofilm formation is considered a major cause of therapeutic failure because bacteria in biofilms have higher protection against antimicrobials. Thus, biofilm-related infections are extremely challenging to treat and pose major concerns for public health, along with huge economic impacts. Pseudomonas aeruginosa, in particular, is a “critical priority” pathogen, responsible for severe infections, especially in cystic fibrosis patients because of its capacity to form resistant biofilms. Therefore, new therapeutic approaches are needed to complete the pipeline of molecules offering new targets and modes of action. Biofilm formation is mainly controlled by Quorum Sensing (QS), a communication system based on signaling molecules. In the present study, we employed a molecular docking approach (Autodock Vina) to assess two series of chromones-based compounds as possible ligands for PqsR, a LuxR-type receptor. Most compounds showed good predicted affinities for PqsR, higher than the PQS native ligand. Encouraged by these docking results, we synthesized a library of 34 direct and 25 retro chromone carboxamides using two optimized routes from 2-chromone carboxylic acid as starting material for both series. We evaluated the synthesized carboxamides for their ability to inhibit the biofilm formation of P. aeruginosa in vitro. Overall, results showed several chromone 2-carboxamides of the retro series are potent inhibitors of the formation of P. aeruginosa biofilms (16/25 compound with % inhibition ≥ 50% at 50 μM), without cytotoxicity on Vero cells (IC50 > 1.0 mM). The 2,4-dinitro-N-(4-oxo-4H-chromen-2-yl) benzamide (6n) was the most promising antibiofilm compound, with potential for hit to lead optimization.
Collapse
|
17
|
Vieira TF, Magalhães RP, Simões M, Sousa SF. Drug Repurposing Targeting Pseudomonas aeruginosa MvfR Using Docking, Virtual Screening, Molecular Dynamics, and Free-Energy Calculations. Antibiotics (Basel) 2022; 11:185. [PMID: 35203788 PMCID: PMC8868191 DOI: 10.3390/antibiotics11020185] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium responsible for acute and chronic infections in planktonic state or in biofilms. The sessile structures are known to confer physical stability, increase virulence, and work as a protective armor against antimicrobial compounds. P. aeruginosa can control the expression of genes, population density, and biofilm formation through a process called quorum sensing (QS), a rather complex and hierarchical system of communication. A recent strategy to try and overcome bacterial resistance is to target QS proteins. In this study, a combined multi-level computational approach was applied to find possible inhibitors against P. aeruginosa QS regulator protein MvfR, also known as PqsR, using a database of approved FDA drugs, as a repurposing strategy. Fifteen compounds were identified as highly promising putative MvfR inhibitors. On those 15 MvfR ligand complexes, molecular dynamic simulations and MM/GBSA free-energy calculations were performed to confirm the docking predictions and elucidate on the mode of interaction. Ultimately, the five compounds that presented better binding free energies of association than the reference molecules (a known antagonist, M64 and a natural inducer, 2-nonyl-4-hydroxyquinoline) were highlighted as very promising MvfR inhibitors.
Collapse
Affiliation(s)
- Tatiana F. Vieira
- UCIBIO/REQUIMTE, BioSIM, Departamento de Medicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (T.F.V.); (R.P.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Rita P. Magalhães
- UCIBIO/REQUIMTE, BioSIM, Departamento de Medicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (T.F.V.); (R.P.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Manuel Simões
- LEPABE Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE, BioSIM, Departamento de Medicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (T.F.V.); (R.P.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
18
|
Repurposing α-Adrenoreceptor Blockers as Promising Anti-Virulence Agents in Gram-Negative Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11020178. [PMID: 35203781 PMCID: PMC8868568 DOI: 10.3390/antibiotics11020178] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance is among the world’s most urgent public health problems. Diminishing of the virulence of bacteria is a promising approach to decrease the development of bacterial resistance. Quorum sensing (QS) systems orchestrate the bacterial virulence in inducer–receptors manner. Bacteria can spy on the cells of the host by sensing adrenergic hormones and other neurotransmitters, and in turn, these neurotransmitters can induce bacterial pathogenesis. In this direction, α-adrenergic blockers were proposed as an anti-virulence agents through inhibiting the bacterial espionage. The current study aimed to explore the α-blockers’ anti-QS activities. Within comprehensive in silico investigation, the binding affinities of seven α-adrenoreceptor blockers were evaluated towards structurally different QS receptors. From the best docked α-blockers into QS receptors, terazosin was nominated to be subjected for further in vivo and in vitro anti-QS and anti-virulence activities against Chromobacterium violaceum and Pseudomonas aeruginosa. Terazosin showed a significant ability to diminish the QS-controlled pigment production in C. violaceum. Moreover, Terazosin decreased the P. aeruginosa biofilm formation and down-regulated its QS-encoding genes. Terazosin protected mice from the P. aeruginosa pathogenesis. In conclusion, α-adrenergic blockers are proposed as promising anti-virulence agents as they hinder QS receptors and inhibit bacterial espionage.
Collapse
|
19
|
Computational and Biological Evaluation of β-Adrenoreceptor Blockers as Promising Bacterial Anti-Virulence Agents. Pharmaceuticals (Basel) 2022; 15:ph15020110. [PMID: 35215223 PMCID: PMC8877484 DOI: 10.3390/ph15020110] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Bacterial resistance to antibiotics is an increasing public health threat as it has the potential to affect people at any stage of life, as well as veterinary. Various approaches have been proposed to counteract the bacterial resistance development. Tackling bacterial virulence is one of the most promising approaches that confer several merits. The bacterial virulence is mainly regulated by a communication system known as quorum sensing (QS) system. Meanwhile, bacteria can sense the adrenergic hormones and eavesdrops on the host cells to establish their infection, adrenergic hormones were shown to enhance the bacterial virulence. In this study, β-adrenoreceptor blockers were proposed not only to stop bacterial espionage on our cells but also as inhibitors to the bacterial QS systems. In this context, a detailed in silico study has been conducted to evaluate the affinities of twenty-two β-blockers to compete on different structural QS receptors. Among the best docked and thermodynamically stable β-blockers; atenolol, esmolol, and metoprolol were subjected to further in vitro and in vivo investigation to evaluate their anti-QS activities against Chromobacterium violaceum, Pseudomonas aeruginosa and Salmonella typhimurium. The three tested β-blockers decreased the production of QS-controlled C. violaceum, and the formation of biofilm by P. aeruginosa and S. typhimurium. Additionally, the tested β-blockers down-regulated the P. aeruginosa QS-encoding genes and S. typhimurium sensor kinase encoding genes. Furthermore, metoprolol protected mice against P. aeruginosa and S. typhimurium. Conclusively, these investigated β-blockers are promising anti-virulence agents antagonizing adrenergic hormones induced virulence, preventing bacterial espionage, and blocking bacterial QS systems.
Collapse
|
20
|
Transcriptional Profiling of Pseudomonas aeruginosa Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:303-323. [DOI: 10.1007/978-3-031-08491-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Abstract
Microbes are hardly seen as planktonic species and are most commonly found as biofilm communities in cases of chronic infections. Biofilms are regarded as a biological condition, where a large group of microorganisms gets adhered to a biotic or abiotic surface. In this context, Pseudomonas aeruginosa, a Gram-negative nosocomial pathogen is the main causative organism responsible for life-threatening and persistent infections in individuals affected with cystic fibrosis and other lung ailments. The bacteria can form a strong biofilm structure when it adheres to a surface suitable for the development of a biofilm matrix. These bacterial biofilms pose higher natural resistance to conventional antibiotic therapy due to their multiple tolerance mechanisms. This prevailing condition has led to an increasing rate of treatment failures associated with P. aeruginosa biofilm infections. A better understanding of the effect of a diverse group of antibiotics on established biofilms would be necessary to avoid inappropriate treatment strategies. Hence, the search for other alternative strategies as effective biofilm treatment options has become a growing area of research. The current review aims to give an overview of the mechanisms governing biofilm formation and the different strategies employed so far in the control of biofilm infections caused by P. aeruginosa. Moreover, this review can also help researchers to search for new antibiofilm agents to tackle the effect of biofilm infections that are currently imprudent to conventional antibiotics.
Collapse
|
22
|
Tocopherol and phytol possess anti-quorum sensing mediated anti-infective behavior against Vibrio campbellii in aquaculture: An in vitro and in vivo study. Microb Pathog 2021; 161:105221. [PMID: 34627940 DOI: 10.1016/j.micpath.2021.105221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 01/21/2023]
Abstract
Phytocompounds have long been well recognized in medicine and pharmacy. The natural compounds are frequently utilized as the fundamental resource in the development of novel therapeutic agents to treat bacterial infections. The rapid emergence of bacterial infections, particularly caused by Vibrio species, is seen as a serious concern for the development of aquaculture industries, resulting in substantial economic losses throughout the world. Notably, the presence of Vibrio campbellii in aquatic environments will be extremely problematic, leading to significant mortality in aquatic organisms. As a result, novel therapeutic agents are desperately needed to treat such diseases. This is the first research to demonstrate that plant-derived active compounds, tocopherol and phytol, are effective against V. campbellii infection in tomato clownfish. The findings showed that tocopherol and phytol significantly decreased the production of biofilm and virulence factors such as hemolysin, protease, lipase, hydrophobic index, and swimming motility in V. campbellii, without influencing the bacterial growth. In vivo experiments with tomato clownfish also proved that these phytocompound treatments significantly increased the survival rates of infected fishes by hindering the intestinal colonization of V. campbellii in tomato clownfish. Further, the disease protection efficacy against the pathognomonic sign of V. campbellii-infection was verified by histopathological investigation of the gills, gut, and kidney. Altogether, the results suggest that tocopherol and phytol could be promising therapeutic agents for the treatment of V. campbellii infections in aquaculture.
Collapse
|
23
|
Quorum Sensing Inhibitory Potential and Molecular Docking Studies of Phyllanthus emblica Phytochemicals Against Pseudomonas aeruginosa. Appl Biochem Biotechnol 2021; 194:434-444. [PMID: 34611855 DOI: 10.1007/s12010-021-03683-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Phyllanthus emblica is a traditional medicinal plant that is endowed with curative properties including anti-bacterial, anti-fungal, anti-viral, and analgesic properties. Bacteria make use of cell-cell signaling system known as quorum sensing (QS) and respond to their own population. In most gram-negative bacteria, the transcriptional regulators belonging to the Lux R protein play a crucial role in the QS mechanism by detecting the presence of signaling molecules known as N-acyl homoserine lactones (AHLs). In this present work, the anti-quorum sensing activity of Phyllanthus emblica was evaluated against Pseudomonas aeruginosa. Anti-quorum sensing efficacy of Phyllanthus emblica was estimated with reference to QS bio-monitoring strain Chromobacterium violaceum. The binding efficacy of the phytochemicals of Phyllanthus emblica against CviR protein from Chromobacterium violaceum and LasR protein from Phyllanthus emblica were studied.
Collapse
|
24
|
Singh S, Bhatia S. Quorum Sensing Inhibitors: Curbing Pathogenic Infections through Inhibition of Bacterial Communication. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:486-514. [PMID: 34567177 PMCID: PMC8457738 DOI: 10.22037/ijpr.2020.113470.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Currently, most of the developed and developing countries are facing the problem of infectious diseases. The genius way of an exaggerated application of antibiotics led the infectious agents to respond by bringing a regime of persisters to resist antibiotics attacks prolonging their survival. Persisters have the dexterity to communicate among themself using signal molecules via the process of Quorum Sensing (QS), which regulates virulence gene expression and biofilms formation, making them more vulnerable to antibiotic attack. Our review aims at the different approaches applied in the ordeal to solve the riddle for QS inhibitors. QS inhibitors, their origin, structures and key interactions for QS inhibitory activity have been summarized. Solicitation of a potent QS inhibitor molecule would be beneficial, giving new life to the simplest antibiotics in adjuvant therapy.
Collapse
Affiliation(s)
- Shaminder Singh
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3 Milestone, Faridabad-Gurugram Expressway, Faridabad - 121 001, Haryana, India
| | - Sonam Bhatia
- Department of Pharmaceutical Science, SHALOM Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Naini-211007, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
25
|
Sedlmayer F, Woischnig AK, Unterreiner V, Fuchs F, Baeschlin D, Khanna N, Fussenegger M. 5-Fluorouracil blocks quorum-sensing of biofilm-embedded methicillin-resistant Staphylococcus aureus in mice. Nucleic Acids Res 2021; 49:e73. [PMID: 33856484 PMCID: PMC8287944 DOI: 10.1093/nar/gkab251] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 02/05/2023] Open
Abstract
Antibiotic-resistant pathogens often escape antimicrobial treatment by forming protective biofilms in response to quorum-sensing communication via diffusible autoinducers. Biofilm formation by the nosocomial pathogen methicillin-resistant Staphylococcus aureus (MRSA) is triggered by the quorum-sensor autoinducer-2 (AI-2), whose biosynthesis is mediated by methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) and S-ribosylhomocysteine lyase (LuxS). Here, we present a high-throughput screening platform for small-molecular inhibitors of either enzyme. This platform employs a cell-based assay to report non-toxic, bioavailable and cell-penetrating inhibitors of AI-2 production, utilizing engineered human cells programmed to constitutively secrete AI-2 by tapping into the endogenous methylation cycle via ectopic expression of codon-optimized MTAN and LuxS. Screening of a library of over 5000 commercial compounds yielded 66 hits, including the FDA-licensed cytostatic anti-cancer drug 5-fluorouracil (5-FU). Secondary screening and validation studies showed that 5-FU is a potent quorum-quencher, inhibiting AI-2 production and release by MRSA, Staphylococcus epidermidis, Escherichia coli and Vibrio harveyi. 5-FU efficiently reduced adherence and blocked biofilm formation of MRSA in vitro at an order-of-magnitude-lower concentration than that clinically relevant for anti-cancer therapy. Furthermore, 5-FU reestablished antibiotic susceptibility and enabled daptomycin-mediated prevention and clearance of MRSA infection in a mouse model of human implant-associated infection.
Collapse
Affiliation(s)
- Ferdinand Sedlmayer
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Anne-Kathrin Woischnig
- Laboratory of Infection Biology, Department of Biomedicine, University and University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Vincent Unterreiner
- Novartis Institutes for BioMedical Research (NIBR), Chemical Biology and Therapeutics (CBT), CH-4033, Basel, Switzerland
| | - Florian Fuchs
- Novartis Institutes for BioMedical Research (NIBR), Chemical Biology and Therapeutics (CBT), CH-4033, Basel, Switzerland
| | - Daniel Baeschlin
- Novartis Institutes for BioMedical Research (NIBR), Chemical Biology and Therapeutics (CBT), CH-4033, Basel, Switzerland
| | - Nina Khanna
- Laboratory of Infection Biology, Department of Biomedicine, University and University Hospital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
26
|
New Insight into Vitamins E and K 1 as Anti-Quorum-Sensing Agents against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2021; 65:AAC.01342-20. [PMID: 33820770 DOI: 10.1128/aac.01342-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/16/2021] [Indexed: 12/29/2022] Open
Abstract
Today, antivirulence compounds that attenuate bacterial pathogenicity and have no interference with bacterial viability or growth are introduced as the next generation of antibacterial agents. However, the development of such compounds that can be used by humans is restricted by various factors, including the need for extensive economic investments, the inability of many molecules to penetrate the membrane of Gram-negative bacteria, and unfavorable pharmacological properties and cytotoxicity. Here, we take a new and different look into two frequent supplements, vitamin E and K1, as anti-quorum-sensing agents against Pseudomonas aeruginosa, a pathogen that is hazardous to human life and responsible for several diseases. Both vitamins showed significant anti-biofilm activity (62% and 40.3% reduction by vitamin E and K1, respectively), and the expression of virulence factors, including pyocyanin, pyoverdine, and protease, was significantly inhibited, especially in the presence of vitamin E. Cotreatment of constructed biofilms with these vitamins plus tobramycin significantly reduced the number of bacterial cells sheltered inside the impermeable matrix (71.6% and 69% by a combination of tobramycin and vitamin E or K1, respectively). The in silico studies, besides the similarities of chemical structures, reinforce the possibility that both vitamins act through inhibition of the PqsR protein. This is the first report of the antivirulence and antipathogenic activity of vitamin E and K1 against P. aeruginosa and confirms their potential for further research against other multidrug-resistant bacteria.
Collapse
|
27
|
Identification of New Potential Inhibitors of Quorum Sensing through a Specialized Multi-Level Computational Approach. Molecules 2021; 26:molecules26092600. [PMID: 33946907 PMCID: PMC8125606 DOI: 10.3390/molecules26092600] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Biofilms are aggregates of microorganisms anchored to a surface and embedded in a self-produced matrix of extracellular polymeric substances and have been associated with 80% of all bacterial infections in humans. Because bacteria in biofilms are less amenable to antibiotic treatment, biofilms have been associated with developing antibiotic resistance, a problem that urges developing new therapeutic options and approaches. Interfering with quorum-sensing (QS), an important process of cell-to-cell communication by bacteria in biofilms is a promising strategy to inhibit biofilm formation and development. Here we describe and apply an in silico computational protocol for identifying novel potential inhibitors of quorum-sensing, using CviR—the quorum-sensing receptor from Chromobacterium violaceum—as a model target. This in silico approach combines protein-ligand docking (with 7 different docking programs/scoring functions), receptor-based virtual screening, molecular dynamic simulations, and free energy calculations. Particular emphasis was dedicated to optimizing the discrimination ability between active/inactive molecules in virtual screening tests using a target-specific training set. Overall, the optimized protocol was used to evaluate 66,461 molecules, including those on the ZINC/FDA-Approved database and to the Mu.Ta.Lig Virtual Chemotheca. Multiple promising compounds were identified, yielding good prospects for future experimental validation and for drug repurposing towards QS inhibition.
Collapse
|
28
|
Sintchenko V, Timms V, Sim E, Rockett R, Bachmann N, O'Sullivan M, Marais B. Microbial Genomics as a Catalyst for Targeted Antivirulence Therapeutics. Front Med (Lausanne) 2021; 8:641260. [PMID: 33928102 PMCID: PMC8076527 DOI: 10.3389/fmed.2021.641260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/17/2021] [Indexed: 01/06/2023] Open
Abstract
Virulence arresting drugs (VAD) are an expanding class of antimicrobial treatment that act to “disarm” rather than kill bacteria. Despite an increasing number of VAD being registered for clinical use, uptake is hampered by the lack of methods that can identify patients who are most likely to benefit from these new agents. The application of pathogen genomics can facilitate the rational utilization of advanced therapeutics for infectious diseases. The development of genomic assessment of VAD targets is essential to support the early stages of VAD diffusion into infectious disease management. Genomic identification and characterization of VAD targets in clinical isolates can augment antimicrobial stewardship and pharmacovigilance. Personalized genomics guided use of VAD will provide crucial policy guidance to regulating agencies, assist hospitals to optimize the use of these expensive medicines and create market opportunities for biotech companies and diagnostic laboratories.
Collapse
Affiliation(s)
- Vitali Sintchenko
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, NSW, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Verlaine Timms
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, NSW, Australia
| | - Eby Sim
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Rebecca Rockett
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, NSW, Australia
| | - Nathan Bachmann
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, NSW, Australia
| | - Matthew O'Sullivan
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, NSW, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology-Institute of Clinical Pathology and Medical Research, Westmead, NSW, Australia
| | - Ben Marais
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia.,Children's Hospital at Westmead, Westmead, NSW, Australia
| |
Collapse
|
29
|
An AY, Choi KYG, Baghela AS, Hancock REW. An Overview of Biological and Computational Methods for Designing Mechanism-Informed Anti-biofilm Agents. Front Microbiol 2021; 12:640787. [PMID: 33927701 PMCID: PMC8076610 DOI: 10.3389/fmicb.2021.640787] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial biofilms are complex and highly antibiotic-resistant aggregates of microbes that form on surfaces in the environment and body including medical devices. They are key contributors to the growing antibiotic resistance crisis and account for two-thirds of all infections. Thus, there is a critical need to develop anti-biofilm specific therapeutics. Here we discuss mechanisms of biofilm formation, current anti-biofilm agents, and strategies for developing, discovering, and testing new anti-biofilm agents. Biofilm formation involves many factors and is broadly regulated by the stringent response, quorum sensing, and c-di-GMP signaling, processes that have been targeted by anti-biofilm agents. Developing new anti-biofilm agents requires a comprehensive systems-level understanding of these mechanisms, as well as the discovery of new mechanisms. This can be accomplished through omics approaches such as transcriptomics, metabolomics, and proteomics, which can also be integrated to better understand biofilm biology. Guided by mechanistic understanding, in silico techniques such as virtual screening and machine learning can discover small molecules that can inhibit key biofilm regulators. To increase the likelihood that these candidate agents selected from in silico approaches are efficacious in humans, they must be tested in biologically relevant biofilm models. We discuss the benefits and drawbacks of in vitro and in vivo biofilm models and highlight organoids as a new biofilm model. This review offers a comprehensive guide of current and future biological and computational approaches of anti-biofilm therapeutic discovery for investigators to utilize to combat the antibiotic resistance crisis.
Collapse
Affiliation(s)
| | | | | | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Tabrez S, Rahman F, Ali R, Akand SK, Alaidarous MA, Alshehri BM, Banawas S, Dukhyil AAB, Rub A. Targeting sterol alpha-14 demethylase of Leishmania donovani to fight against leishmaniasis. J Cell Biochem 2021; 122:1037-1047. [PMID: 33817826 DOI: 10.1002/jcb.29922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/12/2023]
Abstract
Leishmaniasis is a neglected tropical disease caused by the protozoan parasite Leishmania. It is endemic in more than 89 different countries worldwide. Sterol alpha-14 demethylase (LdSDM), a sterol biosynthetic pathway enzyme in Leishmania donovani, plays an essential role in parasite survival and proliferation. Here, we used a drug repurposing approach to virtually screen the library of the Food and Drug Administration (FDA)-approved drugs against LdSDM to identify the potential lead-drug against leishmaniasis. Zafirlukast and avodart showed the best binding with LdSDM. Zafirlukast was tested for in vitro antileishmanial assay, but no significant effect on L. donovani promastigotes was observed even at higher concentrations. On the other hand, avodart profoundly inhibited parasite growth at relatively lower concentrations. Further, avodart showed a significant decrease in the number of intra-macrophagic amastigotes. Avodart-induced reactive oxygen species (ROS) in the parasites in a dose-dependent manner. ROS induced by avodart led to the induction of apoptosis-like cell death in the parasites as observed through annexin V/PI staining. Here, for the first time, we reported the antileishmanial activity and its possible mechanism of action of FDA-approved drug, avodart, establishing a nice example of the drug-repurposing approach. Our study suggested the possible use of avodart as an effective antileishmanial agent after further detailed validations.
Collapse
Affiliation(s)
- Shams Tabrez
- Infection and Immunity Lab (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), Delhi, New Delhi, India
| | - Fazlur Rahman
- Infection and Immunity Lab (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), Delhi, New Delhi, India
| | - Rahat Ali
- Infection and Immunity Lab (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), Delhi, New Delhi, India
| | - Sajjadul Kadir Akand
- Infection and Immunity Lab (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), Delhi, New Delhi, India
| | - Mohammed A Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Bader Mohammed Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
| | - Abdur Rub
- Infection and Immunity Lab (414), Department of Biotechnology, Jamia Millia Islamia (A Central University), Delhi, New Delhi, India
| |
Collapse
|
31
|
Tanoli Z, Seemab U, Scherer A, Wennerberg K, Tang J, Vähä-Koskela M. Exploration of databases and methods supporting drug repurposing: a comprehensive survey. Brief Bioinform 2021; 22:1656-1678. [PMID: 32055842 PMCID: PMC7986597 DOI: 10.1093/bib/bbaa003] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Drug development involves a deep understanding of the mechanisms of action and possible side effects of each drug, and sometimes results in the identification of new and unexpected uses for drugs, termed as drug repurposing. Both in case of serendipitous observations and systematic mechanistic explorations, confirmation of new indications for a drug requires hypothesis building around relevant drug-related data, such as molecular targets involved, and patient and cellular responses. These datasets are available in public repositories, but apart from sifting through the sheer amount of data imposing computational bottleneck, a major challenge is the difficulty in selecting which databases to use from an increasingly large number of available databases. The database selection is made harder by the lack of an overview of the types of data offered in each database. In order to alleviate these problems and to guide the end user through the drug repurposing efforts, we provide here a survey of 102 of the most promising and drug-relevant databases reported to date. We summarize the target coverage and types of data available in each database and provide several examples of how multi-database exploration can facilitate drug repurposing.
Collapse
Affiliation(s)
- Ziaurrehman Tanoli
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - Umair Seemab
- Haartman Institute, University of Helsinki, Finland
| | - Andreas Scherer
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| | - Krister Wennerberg
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Jing Tang
- Faculty of medicine, University of Helsinki, Finland
| | - Markus Vähä-Koskela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland
| |
Collapse
|
32
|
Tanoli Z, Vähä-Koskela M, Aittokallio T. Artificial intelligence, machine learning, and drug repurposing in cancer. Expert Opin Drug Discov 2021; 16:977-989. [PMID: 33543671 DOI: 10.1080/17460441.2021.1883585] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Drug repurposing provides a cost-effective strategy to re-use approved drugs for new medical indications. Several machine learning (ML) and artificial intelligence (AI) approaches have been developed for systematic identification of drug repurposing leads based on big data resources, hence further accelerating and de-risking the drug development process by computational means.Areas covered: The authors focus on supervised ML and AI methods that make use of publicly available databases and information resources. While most of the example applications are in the field of anticancer drug therapies, the methods and resources reviewed are widely applicable also to other indications including COVID-19 treatment. A particular emphasis is placed on the use of comprehensive target activity profiles that enable a systematic repurposing process by extending the target profile of drugs to include potent off-targets with therapeutic potential for a new indication.Expert opinion: The scarcity of clinical patient data and the current focus on genetic aberrations as primary drug targets may limit the performance of anticancer drug repurposing approaches that rely solely on genomics-based information. Functional testing of cancer patient cells exposed to a large number of targeted therapies and their combinations provides an additional source of repurposing information for tissue-aware AI approaches.
Collapse
Affiliation(s)
- Ziaurrehman Tanoli
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLife, University of Helsinki, Helsinki, Finland
| | - Markus Vähä-Koskela
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLife, University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLife, University of Helsinki, Helsinki, Finland.,Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway.,Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
33
|
Baldelli V, D’Angelo F, Pavoncello V, Fiscarelli EV, Visca P, Rampioni G, Leoni L. Identification of FDA-approved antivirulence drugs targeting the Pseudomonas aeruginosa quorum sensing effector protein PqsE. Virulence 2020; 11:652-668. [PMID: 32423284 PMCID: PMC7549961 DOI: 10.1080/21505594.2020.1770508] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of the bacterial pathogen Pseudomonas aeruginosa to cause both chronic and acute infections mainly relies on its capacity to finely modulate the expression of virulence factors through a complex network of regulatory circuits, including the pqs quorum sensing (QS) system. While in most QS systems the signal molecule/receptor complexes act as global regulators that modulate the expression of QS-controlled genes, the main effector protein of the pqs system is PqsE. This protein is involved in the synthesis of the QS signal molecules 2-alkyl-4(1H)-quinolones (AQs), but it also modulates the expression of genes involved in virulence factors production and biofilm formation via AQ-independent pathway(s). P. aeruginosa pqsE mutants disclose attenuated virulence in plant and animal infection models, hence PqsE is considered a good target for the development of antivirulence drugs against P. aeruginosa. In this study, the negative regulation exerted by PqsE on its own transcription has been exploited to develop a screening system for the identification of PqsE inhibitors in a library of FDA-approved drugs. This led to the identification of nitrofurazone and erythromycin estolate, two antibiotic compounds that reduce the expression of PqsE-dependent virulence traits and biofilm formation in the model strain P. aeruginosa PAO1 at concentrations far below those affecting the bacterial growth rate. Notably, both drugs reduce the production of the PqsE-controlled virulence factor pyocyanin also in P. aeruginosa strains isolated from cystic fibrosis patients, and do not antagonize the activity of antibiotics commonly used to treat P. aeruginosa infection.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
| | | | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| |
Collapse
|
34
|
Krzyżek P. Challenges and Limitations of Anti-quorum Sensing Therapies. Front Microbiol 2019; 10:2473. [PMID: 31736912 PMCID: PMC6834643 DOI: 10.3389/fmicb.2019.02473] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Quorum sensing (QS) is a mechanism allowing microorganisms to sense population density and synchronously control genes expression. It has been shown that QS supervises the activity of many processes important for microbial pathogenicity, e.g., sporulation, biofilm formation, and secretion of enzymes or membrane vesicles. This contributed to the concept of anti-QS therapy [also called quorum quenching (QQ)] and the opportunity of its application in fighting against various types of pathogens. In recent years, many published articles reported promising results indicating the possibility of reducing pathogenicity of tested microorganisms and their easier eradication when co-treated with antibiotics. The aim of the present article is to point to the opposite, negative side of the QQ therapy, with particular emphasis on three fundamental properties attributed to anti-QS substances: the selectivity, virulence reduction, and lack of resistance against QQ. This point of view may highlight new directions of research, which should be taken into account in the future before the widespread introduction of QQ therapies in the treatment of people.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|