1
|
de Menezes AB, Gashchak S, Wood MD, Beresford NA. Relationships between radiation, wildfire and the soil microbial communities in the Chornobyl Exclusion Zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175381. [PMID: 39122033 DOI: 10.1016/j.scitotenv.2024.175381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
There is considerable uncertainty regarding radiation's effects on biodiversity in natural complex ecosystems typically subjected to multiple environmental disturbances and stresses. In this study we characterised the relationships between soil microbial communities and estimated total absorbed dose rates to bacteria, grassy vegetation and trees in the Red Forest region of the Chornobyl Exclusion Zone. Samples were taken from sites of contrasting ecological histories and along burn and no burn areas following a wildfire. Estimated total absorbed dose rates to bacteria reached levels one order of magnitude higher than those known to affect bacteria in laboratory studies. Sites with harsher ecological conditions, notably acidic pH and low soil moisture, tended to have higher radiation contamination levels. No relationship between the effects of fire and radiation were observed. Microbial groups that correlated with high radiation sites were mostly classified to taxa associated with high environmental stress habitats or stress resistance traits. Distance-based linear models and co-occurrence analysis revealed that the effects of radiation on the soil microbiome were minimal. Hence, the association between high radiation sites and specific microbial groups is more likely a result of the harsher ecological conditions in these sites, rather than due to radiation itself. In this study, we provide a starting point for understanding the relationship between soil microbial communities and estimated total absorbed radiation dose rates to different components of an ecosystem highly contaminated with radiation. Our results suggest that soil microbiomes adapted to natural soil conditions are more likely to be resistant to ionising radiation than expected from laboratory studies, which demonstrates the importance of assessing the impact of ionising radiation on soil microbial communities under field conditions.
Collapse
Affiliation(s)
- Alexandre Barretto de Menezes
- University of Galway, School of Biological and Chemical Sciences, Ryan Institute, University Road, H91 TK33, Galway, Ireland.
| | - Sergii Gashchak
- Chornobyl Center for Nuclear Safety, Radioactive Waste & Radioecology, International Radioecology Laboratory, Slavutych, Kyiv Region, Ukraine.
| | - Michael D Wood
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, United Kingdom.
| | - Nicholas A Beresford
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, United Kingdom; Centre for Ecology & Hydrology, CEH Lancaster, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster LA1 4AP, United Kingdom
| |
Collapse
|
2
|
Zhang Z, Zhao H, Zhu R, Cheng S, Yu Y, Xiang L, Xiang Z, Guo Z, Wang Y. Characterization and correlation analysis of microbial flora and flavor profile of stinky acid, a Chinese traditional fermented condiment. Food Chem X 2024; 22:101311. [PMID: 38559445 PMCID: PMC10978482 DOI: 10.1016/j.fochx.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
To explore the microbial diversity and flavor profiles of stinky acid, we utilized high-throughput sequencing, culture-based techniques, and bionic E-sensory technologies. The results revealed a significant correlation between the acidity levels of stinky acid and the richness of its microbial community. Ten core bacterial genera and three core fungal genera exhibited ubiquity across all stinky acid samples. Through E-nose analysis, it was found that sulfides constituted the principal odor compounds responsible for stinky acid's distinct aroma. Further insights arose from the correlation analysis, indicating the potential contribution of Debaryomyces yeast to the sour taste profile. Meanwhile, three genera-Rhizopus and Thermoascus and Companilactobacillus-were identified as contributors to aromatic constituents. Interestingly, the findings indicated that Rhizopus and Thermoascus could reduce the intensity of the pungent odor of stinky acid. In summary, this investigation's outcomes offer new insights into the complex bacterial diversity of stinky acid.
Collapse
Affiliation(s)
- Zhendong Zhang
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyu, Guizhou Province, China
| | - Huijun Zhao
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei Province, China
- Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Renzhi Zhu
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyu, Guizhou Province, China
| | - Shaojing Cheng
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyu, Guizhou Province, China
| | - Yuanqi Yu
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyu, Guizhou Province, China
| | - Lan Xiang
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyu, Guizhou Province, China
| | - Zhipan Xiang
- School of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyu, Guizhou Province, China
| | - Zhuang Guo
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei Province, China
- Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Yurong Wang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei Province, China
- Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| |
Collapse
|
3
|
Kruis T, Menzel P, Schwarzer R, Wiesener S, Schoenrath F, Klefisch F, Stegemann M, Pfäfflin F. Outbreak of Pandoraea commovens Infections among Non-Cystic Fibrosis Intensive Care Patients, Germany, 2019-2021. Emerg Infect Dis 2023; 29:2229-2237. [PMID: 37877517 PMCID: PMC10617358 DOI: 10.3201/eid2911.230493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Pandoraea spp. are gram-negative, nonfermenting rods mainly known to infect patients with cystic fibrosis (CF). Outbreaks have been reported from several CF centers. We report a Pandoraea spp. outbreak comprising 24 non-CF patients at a large university hospital and a neighboring heart center in Germany during July 2019-December 2021. Common features in the patients were critical illness, invasive ventilation, antimicrobial pretreatment, and preceding surgery. Complicated and relapsing clinical courses were observed in cases with intraabdominal infections but not those with lower respiratory tract infections. Genomic analysis of 15 isolates identified Pandoraea commovens as the genetically most similar species and confirmed the clonality of the outbreak strain, designated P. commovens strain LB-19-202-79. The strain exhibited resistance to most antimicrobial drugs except ampicillin/sulbactam, imipenem, and trimethoprim/sulfamethoxazole. Our findings suggest Pandoraea spp. can spread among non-CF patients and underscore that clinicians and microbiologists should be vigilant in detecting and assessing unusual pathogens.
Collapse
|
4
|
Kugarajah V, Nisha KN, Jayakumar R, Sahabudeen S, Ramakrishnan P, Mohamed SB. Significance of microbial genome in environmental remediation. Microbiol Res 2023; 271:127360. [PMID: 36931127 DOI: 10.1016/j.micres.2023.127360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023]
Abstract
Environmental pollutants seriously threaten the ecosystem and health of various life forms, particularly with the rapid industrialization and emerging population. Conventionally physical and chemical strategies are being opted for the removal of these pollutants. Bioremediation, through several advancements, has been a boon to combat the existing threat faced today. Microbes with enzymes degrade various pollutants and utilize them as a carbon and energy source. With the existing demand and through several research explorations, Genetically Engineered Microorganisms (GEMs) have paved to be a successful approach to abate pollution through bioremediation. The genome of the microbe determines its biodegradative nature. Thus, methods including pure culture techniques and metagenomics are used for analyzing the genome of microbes, which provides information about catabolic genes. The information obtained along with the aid of biotechnology helps to construct GEMs that are cost-effective and safer thereby exhibiting higher degradation of pollutants. The present review focuses on the role of microbes in the degradation of environmental pollutants, role of evolution in habitat and adaptation of microbes, microbial degenerative genes, their pathways, and the efficacy of recombinant DNA (rDNA) technology for creating GEMs for bioremediation. The present review also provides a gist of existing GEMs for bioremediation and their limitations, thereby providing a future scope of implementation of these GEMs for a sustainable environment.
Collapse
Affiliation(s)
- Vaidhegi Kugarajah
- Department of Nanobiomaterials, Institute for Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602015, India
| | | | - R Jayakumar
- Department of Nanobiomaterials, Institute for Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602015, India
| | - S Sahabudeen
- Department of Biotechnology, SRM Institute of Science and Technology, Kanchipuram Dist, Kattankulathur, Tamil Nadu, India; Medical Team, Doctoral Institute for Evidence Based Policy, Tokyo, Japan
| | - P Ramakrishnan
- Department of Nanobiomaterials, Institute for Biomedical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602015, India.
| | - S B Mohamed
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Thiruvarur 610005, Tamil Nadu, India.
| |
Collapse
|
5
|
Munson E, Carroll KC. Update on Accepted Novel Bacterial Isolates Derived from Human Clinical Specimens and Taxonomic Revisions Published in 2020 and 2021. J Clin Microbiol 2023; 61:e0028222. [PMID: 36533910 PMCID: PMC9879126 DOI: 10.1128/jcm.00282-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A number of factors, including microbiome analyses and the increased utilization of whole-genome sequencing in the clinical microbiology laboratory, has contributed to the explosion of novel prokaryotic species discovery, as well as bacterial taxonomy revision. This review attempts to summarize such changes relative to human clinical specimens that occurred in 2020 and 2021, per primary publication in the International Journal of Systematic and Evolutionary Microbiology or acceptance on Validation Lists published by the International Journal of Systematic and Evolutionary Microbiology. Of particular significance among valid and effectively published taxa within the past 2 years were novel Corynebacterium spp., coagulase-positive staphylococci, Pandoraea spp., and members of family Yersiniaceae. Noteworthy taxonomic revisions include those within the Bacillus and Lactobacillus genera, family Staphylococcaceae (including unifications of subspecies designations to species level taxa), Elizabethkingia spp., and former members of Clostridium spp. and Bacteroides spp. Revisions within the Brucella genus have the potential to cause deleterious effects unless the relevance of such changes is properly communicated by microbiologists to stakeholders in clinical practice, infection prevention, and public health.
Collapse
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C. Carroll
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Qiu L, Zhao Y, Ma H, Tian X, Bai C, Liao T. The Quality and Bacterial Community Changes in Freshwater Crawfish Stored at 4 °C in Vacuum Packaging. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238618. [PMID: 36500719 PMCID: PMC9740484 DOI: 10.3390/molecules27238618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Crawfish can be easily spoiled due to their rich nutrition and high water content, which is difficult to preserve. In this study, the dominant spoilage organisms in crawfish which were stored at 4 °C in vacuum packaging were identified by high-throughput sequencing technology; after sequencing the full-length 16S rRNA gene, the changes in the bacterial community structure, diversity and quality (texture, flavor, etc.) were analyzed. Our results reflected that the specific spoilage organisms (SSOs) of crawfish were Aeromonas sobria, Shewanella putrefaciens, Trichococcus pasteurii and Enterococcus aquimarinus, since their abundances significantly increased after being stored for 12 days at 4 °C under vacuum conditions. At the same time, the abundance and diversity of the microbial community decreased with storage time, which was related to the rapid growth of the dominant spoilage organisms and the inhibition of other kinds of microorganisms at the end of the spoilage stage. Function prediction results showed that the gene which contributed to metabolism influenced the spoilage process. Moreover, the decline in texture of crawfish was negatively correlated to the richness of SSOs; this may be because SSOs can produce alkaline proteases to degrade the myofibrillar protein. On the contrary, the unpleasant flavor of crawfish, resulting from volatile flavor compounds such as S-containing compounds and APEOs, etc., is negatively correlated to the richness of SSOs, due to the metabolism of SSOs by secondary metabolites such as terpenoids, polyketides and lips, which can lead to decarboxylation, deamination and enzymatic oxidation. These results are very important to achieve the purpose of targeted inhibition of crawfish spoilage at 4 °C in vacuum packaging.
Collapse
Affiliation(s)
- Liang Qiu
- Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, 5th Nanhu Aevenue, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Yunchun Zhao
- Guangdong Key Laboratory of Fermentation & Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, 382 East Out Loop, University Park, Guangzhou 510006, China
| | - Hui Ma
- Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, 5th Nanhu Aevenue, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Xiaofei Tian
- Guangdong Key Laboratory of Fermentation & Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, 382 East Out Loop, University Park, Guangzhou 510006, China
| | - Chan Bai
- Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, 5th Nanhu Aevenue, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Tao Liao
- Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, 5th Nanhu Aevenue, Wuhan 430064, China
- Key Laboratory of Cold Chain Logistics for Agro-Product, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
- Correspondence: ; Tel.: +868-738-9705
| |
Collapse
|
7
|
Sharma P, Bano A, Singh SP, Sharma S, Xia C, Nadda AK, Lam SS, Tong YW. Engineered microbes as effective tools for the remediation of polyaromatic aromatic hydrocarbons and heavy metals. CHEMOSPHERE 2022; 306:135538. [PMID: 35792210 DOI: 10.1016/j.chemosphere.2022.135538] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/04/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) have become a major concern to human health and the environment due to rapid industrialization and urbanization. Traditional treatment measures for removing toxic substances from the environment have largely failed, and thus development and advancement in newer remediation techniques are of utmost importance. Rising environmental pollution with HMs and PAHs prompted the research on microbes and the development of genetically engineered microbes (GEMs) for reducing pollution via the bioremediation process. The enzymes produced from a variety of microbes can effectively treat a range of pollutants, but evolutionary trends revealed that various emerging pollutants are resistant to microbial or enzymatic degradation. Naturally, existing microbes can be engineered using various techniques including, gene engineering, directed evolution, protein engineering, media engineering, strain engineering, cell wall modifications, rationale hybrid design, and encapsulation or immobilization process. The immobilization of microbes and enzymes using a variety of nanomaterials, membranes, and supports with high specificity toward the emerging pollutants is also an effective strategy to capture and treat the pollutants. The current review focuses on successful bioremediation techniques and approaches that make use of GEMs or engineered enzymes. Such engineered microbes are more potent than natural strains and have greater degradative capacities, as well as rapid adaptation to various pollutants as substrates or co-metabolizers. The future for the implementation of genetic engineering to produce such organisms for the benefit of the environment andpublic health is indeed long and valuable.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Ambreen Bano
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, UP, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208001, India
| | - Swati Sharma
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Dehua Tubao New Decoration Material Co., Ltd., Huzhou, Zhejiang 313200, China
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
8
|
Gao RF, Wang Y, Wang Y, Wang ZW, Zhang GM. Genome insights from the identification of a novel Pandoraea sputorum isolate and its characteristics. PLoS One 2022; 17:e0272435. [PMID: 35930552 PMCID: PMC9355198 DOI: 10.1371/journal.pone.0272435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, we sequenced a bacteria isolate Pandoraea sp. 892iso isolated from a Phytophthora rubi strain which is an important plant pathogenic oomycete, identified through genome and combined the data with existing genomic data from other 28 the genus of Pandoraea species. Next, we conducted a comparative genomic analysis of the genome structure, evolutionary relationships, and pathogenic characteristics of Pandoraea species. Our results identified Pandoraea sp. 892iso as Pandoraea sputorum at both the genome and gene levels. At the genome level, we carried out phylogenetic analysis of single-copy, gene co-linearity, ANI (average nucleotide identity) and AAI (average amino acid identity) indices, rpoB similarity, MLSA phylogenetic analysis, and genome-to-genome distance calculator calculations to identify the relationship between Pandoraea sp. 892iso and P. sputorum. At the gene level, the quorum sensing genes ppnI and ppnR and the OXA-159 gene were assessed. It is speculated that Pandoraea sp. 892iso is the endosymbiont of the Oomycetes strain of Phytophthora rubi.
Collapse
Affiliation(s)
- Rui-Fang Gao
- Animal & Plant Inspection and Quarantine Technology Center of Shenzhen Customs District P.R. China, Shenzhen, China
- Shenzhen Key Laboratory for Research & Development on Detection Technology of Alien Pests, Shenzhen Academy of Inspection and Quarantine, Shenzhen, China
- * E-mail:
| | - Ying Wang
- Animal & Plant Inspection and Quarantine Technology Center of Shenzhen Customs District P.R. China, Shenzhen, China
- Shenzhen Key Laboratory for Research & Development on Detection Technology of Alien Pests, Shenzhen Academy of Inspection and Quarantine, Shenzhen, China
| | - Ying Wang
- Animal & Plant Inspection and Quarantine Technology Center of Shenzhen Customs District P.R. China, Shenzhen, China
- Shenzhen Key Laboratory for Research & Development on Detection Technology of Alien Pests, Shenzhen Academy of Inspection and Quarantine, Shenzhen, China
| | | | - Gui-Ming Zhang
- Animal & Plant Inspection and Quarantine Technology Center of Shenzhen Customs District P.R. China, Shenzhen, China
- Shenzhen Key Laboratory for Research & Development on Detection Technology of Alien Pests, Shenzhen Academy of Inspection and Quarantine, Shenzhen, China
| |
Collapse
|
9
|
Lin Z, Pang S, Zhou Z, Wu X, Li J, Huang Y, Zhang W, Lei Q, Bhatt P, Mishra S, Chen S. Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127841. [PMID: 34844804 DOI: 10.1016/j.jhazmat.2021.127841] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The microbial degradation of acephate in pure cultures has been thoroughly explored, but synergistic metabolism at the community level has rarely been investigated. Here, we report a novel microbial consortium, ZQ01, capable of effectively degrading acephate and its toxic product methamidophos, which can use acephate as a source of carbon, phosphorus and nitrogen. The degradation conditions with consortium ZQ01 were optimized using response surface methodology at a temperature of 34.1 °C, a pH of 8.9, and an inoculum size of 2.4 × 108 CFU·mL-1, with 89.5% of 200 mg L-1 acephate degradation observed within 32 h. According to the main products methamidophos, acetamide and acetic acid, a novel degradation pathway for acephate was proposed to include hydrolysis and oxidation as the main pathways of acephate degradation. Moreover, the bioaugmentation of acephate-contaminated soils with consortium ZQ01 significantly enhanced the removal rate of acephate. The results of the present work demonstrate the potential of microbial consortium ZQ01 to degrade acephate in water and soil environments, with a different and complementary acephate degradation pathway.
Collapse
Affiliation(s)
- Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
10
|
Huang A, Wu T, Wu X, Zhang B, Shen Y, Wang S, Song W, Ruan H. Analysis of Internal and External Microorganism Community of Wild Cicada Flowers and Identification of the Predominant Cordyceps cicadae Fungus. Front Microbiol 2021; 12:752791. [PMID: 34899639 PMCID: PMC8656164 DOI: 10.3389/fmicb.2021.752791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
The parasitoid fungus Cordyceps cicadae, whose fruiting bodies are known in China as “chan hua,” literally “cicada flower,” has been used as a traditional Chinese medicinal ingredient for centuries. However, systematic disclosure of the vital factors responsible for the formation of wild cicada flower is limited. Here, we determined the physicochemical properties of soil and simultaneously analyzed the diversities and the structures of microbial community inhabiting the coremia, sclerotia, and soil around wild cicada flowers through high-throughput sequencing. Our results indicated that cicada flower more preferentially occurred in acidic soil (pH 5.9) with abundant moisture content (MC), total nitrogen (TN), and organic matter (OM). The dominant fungal genera in soil mainly included Isaria, f__Clavariaceae_Unclassified, Umbelopsis, f__Chaetomiaceae_Unclassified, Mortierella, f__Sordariaceae_Unclassified, and Arcopilus. Among them, C. cicadae was the only fungus that was massively detected in both the coremia and sclerotia with abundance of 83.5 and 53.6%, respectively. Based on this, a C. cicadae strain named AH10-4 with excellent adenosine- and N6-(2-hydroxyethyl)-adenosine (HEA)-producing capability was successfully isolated. However, to the aspect of bacteria, Burkholderia–Caballeronia–Paraburkholderia, Bacillus, Acidibacter, f__Xanthobacteraceae_Unclassified, and Candidatus_Solibacter were the dominant genera in soil. Pedobacter, f__Enterobacteriaceae_Unclassified, Pandoraea, Achromobacter, Stenotrophomonas, Burkholderia–Caballeronia–Paraburkholderia, and Chitinophaga were the dominant genera in the coremia and sclerotia. Notably, Burkholderia–Caballeronia–Paraburkholderia was the shared bacteria among them with high abundance of 3.1, 11.4, and 5.2% in the sclerotia, coremia, and soil, respectively. However, the possible role of these bacteria to the occurrence of cicada flower has been unclear to our knowledge. By analyzing the correlation between physicochemical properties and microbial community of soil, we found that MC, Fe, and Zn were significantly negatively correlated with soil Isaria and that Cu was significantly negatively correlated with most dominant soil bacterial genera. But Mg was significantly positively correlated with most dominant taxa. This study provides new insight into the formation mechanisms of cicada flower and may contribute to the large-scale cultivation of cicada flowers.
Collapse
Affiliation(s)
- Ailin Huang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Tao Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xiuyun Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Biao Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yuanyuan Shen
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Suying Wang
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Wenjun Song
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Haihua Ruan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
11
|
Patil NR, Tripathi M, Charaya K, Angrup A, Ahuja C, Mohindra S. Skull base osteomyelitis by Pandoraea apista: An unusual pathogen at unusual location - A case report. Surg Neurol Int 2021; 12:447. [PMID: 34621562 PMCID: PMC8492433 DOI: 10.25259/sni_472_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Pandoraea apista is predominantly recovered from the respiratory tract of patients with cystic fibrosis (CF). Authors report first case of central nervous system infection by P. apista in the form of skull base osteomyelitis. Case Description: A 67-year-old male presented with complaints of earache and hearing deficit for few months. The radiology was suggestive of skull base osteomyelitis and polypoidal soft tissue extending from the middle cranial fossa to the infratemporal fossa. The sample from the targeted area revealed P. apista on matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. With adequate antibiotic therapy, there was clinicoradiologic improvement. P. apista is an infection exclusively seen in pulmonary infection in patients with CF. We identified its intracranial involvement in a patient for the 1st time in the literature. The serendipitous diagnosis needs evaluation on specific PCR and matrix-assisted laser desorption spectrometry. The treatment with antibiotics provides a definite cure. Conclusion: We report a rare opportunistic infection with central nervous system involvement which can be cured by accurate diagnosis and appropriate antibiotic treatment.
Collapse
Affiliation(s)
- Ninad Ramesh Patil
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manjul Tripathi
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kshitij Charaya
- Department of Otorhinolaryngology, Indus Hospital, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Archana Angrup
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Chirag Ahuja
- Department of Neuroradiodiagnosis, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sandeep Mohindra
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
12
|
Luo J, Xu Y, Wang J, Zhang L, Jiang X, Shen J. Coupled biodegradation of p-nitrophenol and p-aminophenol in bioelectrochemical system: Mechanism and microbial functional diversity. J Environ Sci (China) 2021; 108:134-144. [PMID: 34465427 DOI: 10.1016/j.jes.2021.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/13/2023]
Abstract
Biodegradation mechanisms and microbial functional diversity during coupled p-nitrophenol (PNP) and p-aminophenol (PAP) degradation were studied in a bioelectrochemical system. PNP in the biocathode and PAP in the bioanode were almost completely removed within 28hr and 68hr respectively. The degradation followed the steps including hydrating hydroxyalkylation, dehydrogenating carbonylation, and hydrolating ring cleavage, etc. Metagemomic analysis based on the KEGG and eggNOG database annotations revealed the microbial composition and functional genes/enzymes related to phenol degradation in the system. The predominant bacteria genera were Lautropia, Pandoraea, Thiobacillus, Ignavibacterium, Truepera and Hyphomicrobium. The recognized biodegradation genes/enzymes related to pollutant degradation were as follows: pmo, hbd, & ppo for phenol degradation, nzba, amie, & badh for aromatic degradation, and CYP & p450 for xenobiotics degradation, etc. The co-occurrence of ARGs (antibiotic resistant genes), such as adeF, MexJ, ErmF, PDC-93 and Escherichia_coli_mdfA, etc., were annotated in CARD database during the biodegradation process. The Proteobacteria & Actinobacteria phylum was the primary host of both the biodegradation genes & ARGs in this system. The microbial functional diversity ensured the effective biodegradation of the phenol pollutants in the bioelectrochemical system.
Collapse
Affiliation(s)
- Jianjun Luo
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuxi Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jing Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Libin Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
13
|
Jog KV, Hess KZ, Field JA, Krzmarzick MJ, Sierra-Alvarez R. Aerobic biodegradation of emerging azole contaminants by return activated sludge and enrichment cultures. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126151. [PMID: 34229401 DOI: 10.1016/j.jhazmat.2021.126151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Azoles are an emerging class of contaminants with a growing ubiquitous presence in the environment. This study investigates the aerobic microbial degradation of four azoles, pyrazole (PA), 1,2,4-triazole (TA), benzotriazole (BTA) and 5-methylbenzotriazole (5-MBTA), with return activated sludge and microbial enrichment cultures. Slow degradation of PA was observed in the presence of glucose and NH4+ with a peak degradation rate of 0.5 mg d-1 gVSS-1. TA was found to be highly persistent, with no significant degradation observed in 6-8 months under any incubation condition. In contrast, the benzotriazoles were readily degraded at faster rates in all incubation conditions. The degradation rates observed for BTA and 5-MBTA, when provided as the sole substrates, were 8.1 and 16.5 mg d-1 gVSS-1, respectively. Two enrichment cultures, one degrading BTA and the other degrading 5-MBTA, were developed from the activated sludge. Mass balance studies revealed complete mineralization of 5-MBTA and partial breakdown of BTA by the enrichment cultures. Nocardioides sp. and Pandoraea pnomenusa were the most abundant bacteria in the BTA and 5-MBTA degrading enrichment cultures, respectively. The research shows large differences in the biodegradability of various azoles, ranging from complete mineralization of 5-MBTA to complete persistence for TA.
Collapse
Affiliation(s)
- Kalyani V Jog
- Department of Chemical & Environmental Engineering, University of Arizona, Tucson, AZ 85721-0011, USA
| | - Kendra Z Hess
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jim A Field
- Department of Chemical & Environmental Engineering, University of Arizona, Tucson, AZ 85721-0011, USA
| | - Mark J Krzmarzick
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Reyes Sierra-Alvarez
- Department of Chemical & Environmental Engineering, University of Arizona, Tucson, AZ 85721-0011, USA.
| |
Collapse
|
14
|
Metagenome-assembled genome of a Chitinophaga sp. and its potential in plant biomass degradation, as well of affiliated Pandoraea and Labrys species. World J Microbiol Biotechnol 2021; 37:162. [PMID: 34448059 DOI: 10.1007/s11274-021-03128-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022]
Abstract
The prospection of new degrading enzymes of the plant cell wall has been the subject of many studies and is fundamental for industries, due to the great biotechnological importance of achieving a more efficient depolymerization conversion from plant polysaccharides to fermentable sugars, which are useful not only for biofuel production but also for various bioproducts. Thus, we explored the shotgun metagenome data of a bacterial community (CB10) isolated from sugarcane bagasse and recovered three metagenome-assembled genomes (MAGs). The genomic distance analyses, along with phylogenetic analysis, revealed the presence of a putative novel Chitinophaga species, a Pandoraea nosoerga, and Labrys sp. isolate. The isolation process for each one of these bacterial lineages from the community was carried out in order to relate them with the MAGs. The recovered draft genomes have reasonable completeness (72.67-100%) and contamination (0.26-2.66%) considering the respective marker lineage for Chitinophaga (Bacteroidetes), Pandoraea (Burkholderiales), and Labrys (Rhizobiales). The in-vitro assay detected cellulolytic activity (endoglucanases) only for the isolate Chitinophaga, and its genome analysis revealed 319 CAZymes, of which 115 are classified as plant cell wall degrading enzymes, which can act in fractions of hemicellulose and pectin. Our study highlights the potential of this Chitinophaga isolate provides several plant-polysaccharide-degrading enzymes.
Collapse
|
15
|
Sharma P, Sirohi R, Tong YW, Kim SH, Pandey A. Metal and metal(loids) removal efficiency using genetically engineered microbes: Applications and challenges. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125855. [PMID: 34492804 DOI: 10.1016/j.jhazmat.2021.125855] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 06/13/2023]
Abstract
The environment is being polluted in different many with metal and metalloid pollution, mostly due to anthropogenic activity, which is directly affecting human and environmental health. Metals and metalloids are highly toxic at low concentrations and contribute primarily to the survival equilibrium of activities in the environment. However, because of non-degradable, they persist in nature and these metal and metalloids bioaccumulate in the food chain. Genetically engineered microorganisms (GEMs) mediated techniques for the removal of metals and metalloids are considered an environmentally safe and economically feasible strategy. Various forms of GEMs, including fungi, algae, and bacteria have been produced by recombinant DNA and RNA technologies, which have been used to eliminate metal and metalloids compounds from the polluted areas. Besides, GEMs have the potentiality to produce enzymes and other metabolites that are capable of tolerating metals stress and detoxify the pollutants. Thus, the aim of this review is to discuss the use of GEMs as advanced tools to produce metabolites, signaling molecules, proteins through genetic expression during metal and metalloids interaction, which help in the breakdown of persistent pollutants in the environment.
Collapse
Affiliation(s)
- Pooja Sharma
- Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Sang Hyoun Kim
- Department of Chemical and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
16
|
Outbreak of Burkholderia contaminans endophthalmitis traced to a clinic ventilation system. Infect Control Hosp Epidemiol 2021; 43:1705-1707. [PMID: 34250879 DOI: 10.1017/ice.2021.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We describe the follow-up investigation of an outbreak of endophthalmitis due to Burkholderia contaminans following cataract surgery in a single clinic. Whole-genome sequence analysis of bacteria recovered from affected patients and the clinic identified the clinic's ventilation system as the source of infection.
Collapse
|
17
|
Ying Z, Chen H, Gao J, Zhang S, Peng R, You J, Chen J, Zhao J. External potential regulated biocathode for enhanced removal of gaseous chlorobenzene in bioelectrchemical system. CHEMOSPHERE 2021; 274:129990. [PMID: 33979919 DOI: 10.1016/j.chemosphere.2021.129990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Microbial electrolysis cell (MEC) with a biocathode could provide extra reaction driving force for gaseous chlorobenzene (CB) removal. In this work, external potentials (-0.1 to -0.7 V vs. SHE) were applied to regulate the biocathodic activity. Results showed -0.3 V was the optimum potential, while the removal efficiency, dechlorination efficiency and Coulombic efficiency achieved 94%, 65%, and 89%, respectively. Electrochemical stimulation enriched dechlorination microorganisms (Achromobacter and Gordonia), and significantly improved CB mineralization efficiency, which was twice higher than that without additional potential at 300 mg m-3 inlet concentration. Furthermore, electron transfer between biocathode and microorganisms was mainly through direct electron transfer (DET). A new integrated redox pathway for CB anaerobic degradation was proposed, in which CB was sequentially converted into 2-chlorophenol and 3-chlorocatechol, then dechlorinated to catechol, and finally mineralized into CO2. Overall, this work provided an insight into gaseous CB bioelectrochemical degradation through the potential regulation.
Collapse
Affiliation(s)
- Zanyun Ying
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Han Chen
- Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Jialing Gao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Ruijian Peng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Juping You
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China; School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jingkai Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
18
|
Peyclit L, Baron SA, Reynaud-Gaubert M, Cassir N, Rolain JM. Fatal Pandoraea nosoerga infection after combined liver-lung transplantation for cystic fibrosis: a recontamination by the pre-transplantation strain. Eur J Clin Microbiol Infect Dis 2021; 40:2403-2406. [PMID: 33830365 DOI: 10.1007/s10096-021-04235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
A 26-year-old girl with a longstanding colonization by Pandoraea nosoerga underwent liver-lung transplantation for cystic fibrosis (CF) in 2018. Her brother also suffering from CF was also colonized by P. nosoerga. Despite appropriate perioperative antibiotic therapy, she had post-transplant bacteremic pneumonia caused by extensively drug-resistant P. nosoerga. Drug repurposing was used to optimize treatment options. The cause of post-transplant contamination was studied by comparative whole-genome sequencing including pre- and post-transplant strains and her brother's strains. Post-transplant contamination appeared to be due to her own pre-transplant strain, emphasizing the urgent need to study and implement effective decontamination protocols before transplantation.
Collapse
Affiliation(s)
- Lucie Peyclit
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France.,IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France
| | - Sophie Alexandra Baron
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France.,IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France
| | - Martine Reynaud-Gaubert
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France.,IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France.,Equipe de Transplantation Pulmonaire, CRCM- Soins en Mucoviscidose Adulte, APHM- CHU Nord, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - Nadim Cassir
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France.,IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France.,Equipe de Transplantation Pulmonaire, CRCM- Soins en Mucoviscidose Adulte, APHM- CHU Nord, Chemin des Bourrely, 13915, Marseille Cedex 20, France
| | - Jean-Marc Rolain
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Univ, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France. .,IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13385, Marseille CEDEX 05, France.
| |
Collapse
|
19
|
Bodendoerfer E, Personnic N, Mestres CA, Wilhelm MJ, Meyer L, Hasse B. Possible Prosthetic Valve Endocarditis by Pandoraea pnomenusa and Specific Virulence Mechanisms. Infect Drug Resist 2021; 14:1319-1324. [PMID: 33854344 PMCID: PMC8040088 DOI: 10.2147/idr.s301138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteremia by Pandoraea spp. has rarely been described before. We report the first case of a P. pnomenusa possible prosthetic valve endocarditis, according to the modified Duke criteria, in a 37-year old male injecting drug user suffering from recurrent endocarditis. Furthermore, we demonstrate biofilm formation by the P. pnomenusa isolates of this patient and investigate antibiotic resistance.
Collapse
Affiliation(s)
- Elias Bodendoerfer
- University of Zurich, Institute of Medical Microbiology, Zurich, Switzerland
| | - Nicolas Personnic
- University of Zurich, Institute of Medical Microbiology, Zurich, Switzerland
| | - Carlos A Mestres
- University Hospital Zurich, Clinic for Cardiac Surgery, Zurich, Switzerland
| | - Markus J Wilhelm
- University Hospital Zurich, Clinic for Cardiac Surgery, Zurich, Switzerland
| | - Lilly Meyer
- University Hospital Zurich, Department of Infectious Diseases and Hospital Epidemiology, Zurich, Switzerland
| | - Barbara Hasse
- University Hospital Zurich, Department of Infectious Diseases and Hospital Epidemiology, Zurich, Switzerland
| |
Collapse
|
20
|
Pant G, Garlapati D, Agrawal U, Prasuna RG, Mathimani T, Pugazhendhi A. Biological approaches practised using genetically engineered microbes for a sustainable environment: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124631. [PMID: 33278727 DOI: 10.1016/j.jhazmat.2020.124631] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/28/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Conventional methods used to remediate toxic substances from the environment have failed drastically, and thereby, advancement in newer remediation techniques can be one of the ways to improve the quality of bioremediation. The increased environmental pollution led to the exploration of microorganisms and construction of genetically engineered microbes (GEMs) for pollution abatement through bioremediation. The present review deals with the successful bioremediation techniques and approaches practised using genetically modified or engineered microbes. In the present scenario, physical and chemical strategies have been practised for the remediation of domestic and industrial wastes but these techniques are expensive and toxic to the environment. Involving engineered microbes can provide a much safer and cost effective strategy in comparison with the other techniques. With the aid of biotechnology and genetic engineering, GEMs are designed by transforming microbes with a more potent protein to overexpress the desired character. GEMs such as bacteria, fungi and algae have been used to degrade oil spills, camphor, hexane, naphthalene, toluene, octane, xylene, halobenzoates, trichloroethylene etc. These engineered microbes are more potent than the natural strains and have higher degradative capacities with quick adaptation for various pollutants as substrates or cometabolize. The road ahead for the implementation of genetic engineering to produce such organisms for the welfare of the environment and finally, public health is indeed long and worthwhile.
Collapse
Affiliation(s)
- Gaurav Pant
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Deviram Garlapati
- National Centre for Coastal Research, Ministry of Earth Sciences (MoES), Govt. of India, Chennai 600 100, Tamil Nadu, India
| | - Urvashi Agrawal
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - R Gyana Prasuna
- Department of Microbiology & FST, GITAM Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh, India
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
21
|
Yeung M, Saingam P, Xu Y, Xi J. Low-dosage ozonation in gas-phase biofilter promotes community diversity and robustness. MICROBIOME 2021; 9:14. [PMID: 33436067 PMCID: PMC7805145 DOI: 10.1186/s40168-020-00944-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The ozonation of biofilters is known to alleviate clogging and pressure drop issues while maintaining removal performances in biofiltration systems treating gaseous volatile organic compounds (VOCs). The effects of ozone on the biofilter microbiome in terms of biodiversity, community structure, metabolic abilities, and dominant taxa correlated with performance remain largely unknown. METHODS This study investigated two biofilters treating high-concentration toluene operating in parallel, with one acting as control and the other exposed to low-dosage (200 mg/m3) ozonation. The microbial community diversity, metabolic rates of different carbon sources, functional predictions, and microbial co-occurrence networks of both communities were examined. RESULTS Consistently higher biodiversity of over 30% was observed in the microbiome after ozonation, with increased overall metabolic abilities for amino acids and carboxylic acids. The relative abundance of species with reported stress-tolerant and biofilm-forming abilities significantly increased, with a consortium of changes in predicted biological pathways, including shifts in degradation pathways of intermediate compounds, while the correlation of top ASVs and genus with performance indicators showed diversifications in microbiota responsible for toluene degradation. A co-occurrence network of the community showed a decrease in average path distance and average betweenness with ozonation. CONCLUSION Major degrading species highly correlated with performance shifted after ozonation. Increases in microbial biodiversity, coupled with improvements in metabolizing performances of multiple carbon sources including organic acids could explain the consistent performance commonly seen in the ozonation of biofilters despite the decrease in biomass, while avoiding acid buildup in long-term operation. The increased presence of stress-tolerant microbes in the microbiome coupled with the decentralization of the co-occurrence network suggest that ozonation could not only ameliorate clogging issues but also provide a microbiome more robust to loading shock seen in full-scale biofilters. Video abstract.
Collapse
Affiliation(s)
- Marvin Yeung
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084 China
| | - Prakit Saingam
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084 China
- Department of Civil and Environmental Engineering, University of Hawaiʻi at Mānoa, 2500 Campus Rd, Honolulu, HI 96822 USA
| | - Yang Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084 China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
22
|
Kerkhof PJ, Van den Abeele AM, Strubbe B, Vogelaers D, Vandamme P, Houf K. Diagnostic approach for detection and identification of emerging enteric pathogens revisited: the (Ali)arcobacter lanthieri case. New Microbes New Infect 2020; 39:100829. [PMID: 33473321 PMCID: PMC7803648 DOI: 10.1016/j.nmni.2020.100829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022] Open
Abstract
An immunocompetent patient without a history of recent travel or animal exposure developed persistent abdominal bloating and cramps without diarrhoea or fever. Negative additional investigations excluded gastritis, infectious colitis, inflammatory bowel disease and neoplasia, but routine stool culture detected a Campylobacter-like organism. The isolate was obtained with use of a polycarbonate filter technique, emphasizing the importance of culture to support and validate the occurrence of emerging and new bacterial enteric pathogens. The ensuing extensive laboratory examinations proved challenging in identifying this potential pathogen. Phylogenetic marker analysis based on the 16S ribosomal RNA and rpoB gene sequences revealed that the isolate was most closely related to Arcobacter lanthieri and Arcobacter faecis. Subsequent analysis of a draft whole genome sequence assigned the isolate to A. lanthieri. We report the presence of five virulence genes, cadF, ciaB, mviN, hecA and iroE, indicating a possible pathogenic nature of this organism. This case demonstrated the importance of the use of agnostic methods for the detection of emerging pathogens in cases of enteric disease with a wide array of gastrointestinal symptoms.
Collapse
Affiliation(s)
- P.-J. Kerkhof
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Corresponding author: P.-J. Kerkhof, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - A.-M. Van den Abeele
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Laboratory of Microbiology, Saint-Lucas Hospital, Ghent, Belgium
| | - B. Strubbe
- Department of Gastroenterology, Saint-Lucas Hospital, Ghent, Belgium
| | - D. Vogelaers
- Department of General Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - P. Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - K. Houf
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Depoorter E, De Canck E, Peeters C, Wieme AD, Cnockaert M, Zlosnik JEA, LiPuma JJ, Coenye T, Vandamme P. Burkholderia cepacia Complex Taxon K: Where to Split? Front Microbiol 2020; 11:1594. [PMID: 32760373 PMCID: PMC7372133 DOI: 10.3389/fmicb.2020.01594] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023] Open
Abstract
The objective of the present study was to provide an updated classification for Burkholderia cepacia complex (Bcc) taxon K isolates. A representative set of 39 taxon K isolates were analyzed through multilocus sequence typing (MLST) and phylogenomic analyses. MLST analysis revealed the presence of at least six clusters of sequence types (STs) within taxon K, two of which contain the type strains of Burkholderia contaminans (ST-102) and Burkholderia lata (ST-101), and four corresponding to the previously defined taxa Other Bcc groups C, G, H and M. This clustering was largely supported by a phylogenomic tree which revealed three main clades. Isolates of B. contaminans and of Other Bcc groups C, G, and H represented a first clade which generally shared average nucleotide identity (ANI) and average digital DNA-DNA hybridization (dDDH) values at or above the 95-96% ANI and 70% dDDH thresholds for species delineation. A second clade consisted of Other Bcc group M bacteria and of four B. lata isolates and was supported by average ANI and dDDH values of 97.2 and 76.1% within this clade and average ANI and dDDH values of 94.5 and 57.2% toward the remaining B. lata isolates (including the type strain), which represented a third clade. We therefore concluded that isolates known as Other Bcc groups C, G, and H should be classified as B. contaminans, and propose a novel species, Burkholderia aenigmatica sp. nov., to accommodate Other Bcc M and B. lata ST-98, ST-103, and ST-119 isolates. Optimized MALDI-TOF MS databases for the identification of clinical Burkholderia isolates may provide correct species-level identification for some of these bacteria but would identify most of them as B. cepacia complex. MLST facilitates species-level identification of many taxon K strains but some may require comparative genomics for accurate species-level assignment. Finally, the inclusion of Other Bcc groups C, G, and H into B. contaminans affects the phenotype of this species minimally and the proposal to classify Other Bcc group M and B. lata ST-98, ST-103, and ST-119 strains as a novel Burkholderia species is supported by a distinctive phenotype, i.e., growth at 42°C and lysine decarboxylase activity.
Collapse
Affiliation(s)
- Eliza Depoorter
- Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Evelien De Canck
- Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Charlotte Peeters
- Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Anneleen D Wieme
- Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium.,BCCM/LMG Bacteria Collection, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - James E A Zlosnik
- Division of Infectious Diseases, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium.,BCCM/LMG Bacteria Collection, Department of Biochemistry and Biotechnology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Oren A, Garrity G. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2020; 70:1443-1446. [PMID: 32228802 DOI: 10.1099/ijsem.0.003991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|