1
|
Martinho I, Braz M, Duarte J, Brás A, Oliveira V, Gomes NCM, Pereira C, Almeida A. The Potential of Phage Treatment to Inactivate Planktonic and Biofilm-Forming Pseudomonas aeruginosa. Microorganisms 2024; 12:1795. [PMID: 39338470 PMCID: PMC11433742 DOI: 10.3390/microorganisms12091795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Pseudomonas aeruginosa is a common cause of hospital-acquired infections and exhibits a strong resistance to antibiotics. An alternative treatment option for bacterial infections is the use of bacteriophages (or phages). In this study, two distinct phages, VB_PaD_phPA-G (phPA-G) and VB_PaN_phPA-Intesti (phPA-Intesti), were used as single suspensions or in a phage cocktail to inactivate the planktonic cells and biofilms of P. aeruginosa. Preliminary experiments in culture medium showed that phage phPA-Intesti (reductions of 4.5-4.9 log CFU/mL) outperformed phPA-G (reductions of 0.6-2.6 log CFU/mL) and the phage cocktail (reduction of 4.2 log CFU/mL). Phage phPA-Intesti caused a maximum reduction of 5.5 log CFU/cm2 in the P. aeruginosa biofilm in urine after 4 h of incubation. The combination of phage phPA-Intesti and ciprofloxacin did not improve the efficacy of bacterial inactivation nor reduce the development of resistant mutants. However, the development of resistant bacteria was lower in the combined treatment with the phage and the antibiotic compared to treatment with the antibiotic alone. This phage lacks known toxins, virulence, antibiotic resistance, and integrase genes. Overall, the results suggest that the use of phage phPA-Intesti could be a potential approach to control urinary tract infections (UTIs), namely those caused by biofilm-producing and multidrug-resistant strains of P. aeruginosa.
Collapse
Affiliation(s)
- Inês Martinho
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Márcia Braz
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João Duarte
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Brás
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Vanessa Oliveira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Newton C M Gomes
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Pereira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Li S, Wei B, Xu L, Cong C, Murtaza B, Wang L, Li X, Li J, Xu M, Yin J, Xu Y. In vivo efficacy of phage cocktails against carbapenem resistance Acinetobacter baumannii in the rat pneumonia model. J Virol 2024; 98:e0046724. [PMID: 38864621 PMCID: PMC11265278 DOI: 10.1128/jvi.00467-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/22/2024] [Indexed: 06/13/2024] Open
Abstract
Acinetobacter baumannii, an opportunistic pathogen, poses a significant threat in intensive care units, leading to severe nosocomial infections. The rise of multi-drug-resistant strains, particularly carbapenem-resistant A. baumannii, has created formidable challenges for effective treatment. Given the prolonged development cycle and high costs associated with antibiotics, phages have garnered clinical attention as an alternative for combating infections caused by drug-resistant bacteria. However, the utilization of phage therapy encounters notable challenges, including the narrow host spectrum, where each phage targets a limited subset of bacteria, increasing the risk of phage resistance development. Additionally, uncertainties in immune system dynamics during treatment hinder tailoring symptomatic interventions based on patient-specific states. In this study, we isolated two A. baumannii phages from wastewater and conducted a comprehensive assessment of their potential applications. This evaluation included sequencing analysis, genome classification, pH and temperature stability assessments, and in vitro bacterial inhibition assays. Further investigations involved analyzing histological and cytokine alterations in rats undergoing phage cocktail treatment for pneumonia. The therapeutic efficacy of the phages was validated, and transcriptomic studies of rat lung tissue during phage treatment revealed crucial changes in the immune system. The findings from our study underscore the potential of phages for future development as a treatment strategy and offer compelling evidence regarding immune system dynamics throughout the treatment process.IMPORTANCEDue to the growing problem of multi-drug-resistant bacteria, the use of phages is being considered as an alternative to antibiotics, and the genetic safety and application stability of phages determine the potential of phage application. The absence of drug resistance genes and virulence genes in the phage genome can ensure the safety of phage application, and the fact that phage can remain active in a wide range of temperatures and pH is also necessary for application. In addition, the effect evaluation of preclinical studies is especially important for clinical application. By simulating the immune response situation during the treatment process through mammalian models, the changes in animal immunity can be observed, and the effect of phage therapy can be further evaluated. Our study provides compelling evidence that phages hold promise for further development as therapeutic agents for Acinetobacter baumannii infections.
Collapse
Affiliation(s)
- Shibin Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bingdong Wei
- Institute of Animal Nutrition and Feed Science, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Le Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Cong Cong
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Jibin Li
- R&D Centre, Liaoning Innovation Center for Phage Application Professional Technology, Dalian, China
| | - Mu Xu
- R&D Department, Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, China
| | - Jiajun Yin
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
- R&D Department, Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, China
| |
Collapse
|
3
|
Kozlova AP, Muntyan VS, Vladimirova ME, Saksaganskaia AS, Kabilov MR, Gorbunova MK, Gorshkov AN, Grudinin MP, Simarov BV, Roumiantseva ML. Soil Giant Phage: Genome and Biological Characteristics of Sinorhizobium Jumbo Phage. Int J Mol Sci 2024; 25:7388. [PMID: 39000497 PMCID: PMC11242549 DOI: 10.3390/ijms25137388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
This paper presents the first in-depth research on the biological and genomic properties of lytic rhizobiophage AP-J-162 isolated from the soils of the mountainous region of Dagestan (North Caucasus), which belongs to the centers of origin of cultivated plants, according to Vavilov N.I. The rhizobiophage host strains are nitrogen-fixing bacteria of the genus Sinorhizobium spp., symbionts of leguminous forage grasses. The phage particles have a myovirus virion structure. The genome of rhizobiophage AP-J-162 is double-stranded DNA of 471.5 kb in length; 711 ORFs are annotated and 41 types of tRNAs are detected. The closest phylogenetic relative of phage AP-J-162 is Agrobacterium phage Atu-ph07, but no rhizobiophages are known. The replicative machinery, capsid, and baseplate proteins of phage AP-J-162 are structurally similar to those of Escherichia phage T4, but there is no similarity between their tail protein subunits. Amino acid sequence analysis shows that 339 of the ORFs encode hypothetical or functionally relevant products, while the remaining 304 ORFs are unique. Additionally, 153 ORFs are similar to those of Atu_ph07, with one-third of the ORFs encoding different enzymes. The biological properties and genomic characteristics of phage AP-J-162 distinguish it as a unique model for exploring phage-microbe interactions with nitrogen-fixing symbiotic microorganisms.
Collapse
Affiliation(s)
- Alexandra P Kozlova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Victoria S Muntyan
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Maria E Vladimirova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Alla S Saksaganskaia
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Marsel R Kabilov
- SB RAS Genomics Core Facility, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Maria K Gorbunova
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Andrey N Gorshkov
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia
| | - Mikhail P Grudinin
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia
| | - Boris V Simarov
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| | - Marina L Roumiantseva
- Laboratory of Genetics and Selection of Microorganisms, Federal State Budget Scientific Institution All-Russia Research Institute for Agricultural Microbiology (FSBSI ARRIAM), 196608 Saint Petersburg, Russia
| |
Collapse
|
4
|
Ning Y, Teng T, Wu X, Wang M, Jiao X, Qiao J. Development of an enzyme-linked phage receptor-binding protein assay (ELPRA) based on a novel biorecognition molecule- receptor-binding protein Gp130 of Pseudomonas aeruginosa bacteriophage Henu5. Enzyme Microb Technol 2024; 177:110442. [PMID: 38593554 DOI: 10.1016/j.enzmictec.2024.110442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium associated with life-threatening healthcare-associated infections (HAIs), including burn wound infections, pneumonia and sepsis. Moreover, P. aeruginosa has been considered a pathogen of global concern due to its rising antibiotic resistance. Efficient identification of P. aeruginosa would significantly benefit the containment of bacterial infections, prevent pathogen transmission, and provide orientated treatment options. The accuracy and specificity of bacterial detection are primarily dictated by the biorecognition molecules employed. Lytic bacteriophages (or phages) could specifically attach to and lyse host bacterial cells. Phages' host specificity is typically determined by their receptor-binding proteins (RBPs), which recognize and adsorb phages to particular bacterial host receptors. This makes RBPs promising biorecognition molecules in bacterial detection. This study identified a novel RBP (Gp130) from the P. aeruginosa phage Henu5. A modified enzyme-linked phage receptor-binding protein assay (ELPRA) was developed for P. aeruginosa detection employing Gp130 as biorecognition molecules. Optimized conditions provided a calibration curve for P. aeruginosa with a range from 1.0 × 103 to 1.0 × 107 CFU/mL, with a limit of detection as low as 10 CFU/mL in phosphate-buffered saline (PBS). With VITEKⓇ 2 Compact system identification (40 positives and 21 negatives) as the gold standard, the sensitivity of ELPRA was 0.950 (0.818-0.991), and the specificity was 0.905 (0.682-0.983) within a 95 %confidence interval. Moreover, the recovery test in spiked mouse serum showed recovery rates ranging from 82.79 %to 98.17%, demonstrating the prospect of the proposed ELPRA for detecting P. aeruginosa in biological samples.
Collapse
Affiliation(s)
- Yu Ning
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong 261053, PR China
| | - Tieshan Teng
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, PR China
| | - Xuehan Wu
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong 261053, PR China
| | - Menglu Wang
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong 261053, PR China
| | - Xin Jiao
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong 261053, PR China
| | - Jinjuan Qiao
- Department of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong 261053, PR China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Shandong Second Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
5
|
Naknaen A, Samernate T, Saeju P, Nonejuie P, Chaikeeratisak V. Nucleus-forming jumbophage PhiKZ therapeutically outcompetes non-nucleus-forming jumbophage Callisto. iScience 2024; 27:109790. [PMID: 38726363 PMCID: PMC11079468 DOI: 10.1016/j.isci.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
With the recent resurgence of phage therapy in modern medicine, jumbophages are currently under the spotlight due to their numerous advantages as anti-infective agents. However, most significant discoveries to date have primarily focused on nucleus-forming jumbophages, not their non-nucleus-forming counterparts. In this study, we compare the biological characteristics exhibited by two genetically diverse jumbophages: 1) the well-studied nucleus-forming jumbophage, PhiKZ; and 2) the newly discovered non-nucleus-forming jumbophage, Callisto. Single-cell infection studies further show that Callisto possesses different replication machinery, resulting in a delay in phage maturation compared to that of PhiKZ. The therapeutic potency of both phages was examined in vitro and in vivo, demonstrating that PhiKZ holds certain superior characteristics over Callisto. This research sheds light on the importance of the subcellular infection machinery and the organized progeny maturation process, which could potentially provide valuable insight in the future development of jumbophage-based therapeutics.
Collapse
Affiliation(s)
- Ampapan Naknaen
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanadon Samernate
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Panida Saeju
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | | |
Collapse
|
6
|
Withatanung P, Janesomboon S, Vanaporn M, Muangsombut V, Charoensudjai S, Baker DJ, Wuthiekanun V, Galyov EE, Clokie MRJ, Gundogdu O, Korbsrisate S. Induced Burkholderia prophages detected from the hemoculture: a biomarker for Burkholderia pseudomallei infection. Front Microbiol 2024; 15:1361121. [PMID: 38633694 PMCID: PMC11022660 DOI: 10.3389/fmicb.2024.1361121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Bacteriophages (phages), viruses that infect bacteria, are found in abundance not only in the environment but also in the human body. The use of phages for the diagnosis of melioidosis, a tropical infectious disease caused by Burkholderia pseudomallei, is emerging as a promising novel approach, but our understanding of conditions under which Burkholderia prophages can be induced remains limited. Here, we first demonstrated the isolation of Burkholderia phages from the hemocultures of melioidosis patients. The B. pseudomallei-positive hemoculture bottles were filtered to remove bacteria, and then phages were isolated and purified by spot and double agar overlay plaque assays. Forty blood samples (hemoculture-confirmed melioidosis) were tested, and phages were found in 30% of the samples. Transmission electron microscopy and genome analysis of the isolated phages, vB_HM387 and vB_HM795, showed that both phages are Myoviruses. These two phages were stable at a pH of 5-7 and temperatures of 25-37°C, suggesting their ability to survive in human blood. The genome sizes of vB_HM387 and vB_HM795 are 36.3 and 44.0 kb, respectively. A phylogenetic analysis indicated that vB_HM387 has homologs, but vB_HM795 is a novel Myovirus, suggesting the heterogeneity of Burkholderia phages in melioidosis patients. The key finding that Burkholderia phages could be isolated from the blood of melioidosis patients highlights the potential application of phage-based assays by detecting phages in blood as a pathogen-derived biomarker of infection.
Collapse
Affiliation(s)
- Patoo Withatanung
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sujintana Janesomboon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Muthita Vanaporn
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Veerachat Muangsombut
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Dave J. Baker
- Science Operations, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Edouard E. Galyov
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ozan Gundogdu
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Ouyang R, Ongenae V, Muok A, Claessen D, Briegel A. Phage fibers and spikes: a nanoscale Swiss army knife for host infection. Curr Opin Microbiol 2024; 77:102429. [PMID: 38277900 DOI: 10.1016/j.mib.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Bacteriophages are being rediscovered as potent agents for medical and industrial applications. However, finding a suitable phage relies on numerous factors, including host specificity, burst size, and infection cycle. The host range of a phage is, besides phage defense systems, initially determined by the recognition and attachment of receptor-binding proteins (RBPs) to the target receptors of susceptible bacteria. RBPs include tail (or occasionally head) fibers and tailspikes. Owing to the potential flexibility and heterogeneity of these structures, they are often overlooked during structural studies. Recent advances in cryo-electron microscopy studies and computational approaches have begun to unravel their structural and fundamental mechanisms during phage infection. In this review, we discuss the current state of research on different phage tail and head fibers, spike models, and molecular mechanisms. These details may facilitate the manipulation of phage-host specificity, which in turn will have important implications for science and society.
Collapse
Affiliation(s)
- Ruochen Ouyang
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xianning West Road 28, Xi'an 710049, China
| | - Véronique Ongenae
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Alise Muok
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Dennis Claessen
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Ariane Briegel
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
8
|
Singh D, Pal S, Subramanian S, Manickam N. Characterization and complete genome analysis of Klebsiella phage Kp109 with lytic activity against Klebsiella pneumoniae. Virus Genes 2024:10.1007/s11262-024-02053-y. [PMID: 38279974 DOI: 10.1007/s11262-024-02053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/06/2024] [Indexed: 01/29/2024]
Abstract
Klebsiella pneumonia is a serious pathogen involved in a range of infections. The increasing frequency of infection associated with K. pneumoniae and accelerated development of antimicrobial resistance has limited the available options of antibiotics for the treatment of infection. Bacteriophages are an attractive substitute to alleviate the problem of antibiotic resistance. In this study, isolation, microbiological and genomic characterization of bacteriophage Kp109 having the ability to infect K. pneumoniae has been shown. Phage Kp109 showed good killing efficiency and tolerance to a broad range of temperatures (4-60 °C) and pH (3-9). Transmission electron microscopy and genomic analysis indicated that phage Kp109 belongs to the genus Webervirus and family Drexlerviridae. Genomic analysis showed that the Kp109 has a 51,630 bp long double-stranded DNA genome with a GC content of 51.64%. The absence of known lysogenic, virulence, and antibiotic-resistant genes (ARGs) in its genome makes phage Kp109 safer to be used as a biocontrol agent for different purposes including phage therapy. The computational analysis of the putative endolysin gene revealed a binding energy of - 6.23 kcal/mol between LysKp109 and ligand NAM-NAG showing its potential to be used as an enzybiotic. However, future research is required for experimental validation of the in silico work to further corroborate the results obtained in the present study. Overall, phenotypic, genomic, and computational characterization performed in the present study showed that phages Kp109 and LysKp109 are promising candidates for future in vivo studies and could potentially be used for controlling K. pneumoniae infection.
Collapse
Affiliation(s)
- Deeksha Singh
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Shilpee Pal
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Srikrishna Subramanian
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
9
|
Huang Z, Yuan X, Zhu Z, Feng Y, Li N, Yu S, Li C, Chen B, Wu S, Gu Q, Zhang J, Wang J, Wu Q, Ding Y. Isolation and characterization of Bacillus cereus bacteriophage DZ1 and its application in foods. Food Chem 2024; 431:137128. [PMID: 37591138 DOI: 10.1016/j.foodchem.2023.137128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023]
Abstract
Bacillus cereus is a pathogenic bacterium that causes food contamination, resulting in food poisoning such as diarrhea and emesis. Therefore, it is crucial to develop effective strategies to control this bacterium. In this study, we isolated and characterized a novel B. cereus phage, named DZ1. Morphological and genomic analyses revealed that phage DZ1 is a new species belonging to the Andromedavirus genus. Phage DZ1 was tolerant to a wide range of pH values (5-9), temperatures (4-55 ℃), and high concentrations of NaCl solution (1000 mM). B. cereus with 21 different sequence types (STs) can be lysed by phage DZ1. Importantly, phage DZ1 inhibited B. cereus growth in spiked rice substrates or milk up to 36 and 72 h, respectively, with suppression of 3 log. Therefore, phage DZ1 is a useful biocontrol agent for the control of B. cereus in the food industry.
Collapse
Affiliation(s)
- Zhichao Huang
- Department of Food Science & Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaoming Yuan
- Department of Food Science & Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhenjun Zhu
- Department of Food Science & Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China
| | - Ying Feng
- Department of Food Science & Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China
| | - Na Li
- Department of Food Science & Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shubo Yu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Chun Li
- Department of Food Science & Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Bo Chen
- Department of Food Science & Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China; Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shi Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qihui Gu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science & Engineering, Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Maffei E, Woischnig AK, Burkolter MR, Heyer Y, Humolli D, Thürkauf N, Bock T, Schmidt A, Manfredi P, Egli A, Khanna N, Jenal U, Harms A. Phage Paride can kill dormant, antibiotic-tolerant cells of Pseudomonas aeruginosa by direct lytic replication. Nat Commun 2024; 15:175. [PMID: 38168031 PMCID: PMC10761892 DOI: 10.1038/s41467-023-44157-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteriophages are ubiquitous viral predators that have primarily been studied using fast-growing laboratory cultures of their bacterial hosts. However, microbial life in nature is mostly in a slow- or non-growing, dormant state. Here, we show that diverse phages can infect deep-dormant bacteria and suspend their replication until the host resuscitates ("hibernation"). However, a newly isolated Pseudomonas aeruginosa phage, named Paride, can directly replicate and induce the lysis of deep-dormant hosts. While non-growing bacteria are notoriously tolerant to antibiotic drugs, the combination with Paride enables the carbapenem meropenem to eradicate deep-dormant cultures in vitro and to reduce a resilient bacterial infection of a tissue cage implant in mice. Our work might inspire new treatments for persistent bacterial infections and, more broadly, highlights two viral strategies to infect dormant bacteria (hibernation and direct replication) that will guide future studies on phage-host interactions.
Collapse
Affiliation(s)
- Enea Maffei
- Biozentrum, University of Basel, Basel, Switzerland
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
| | - Anne-Kathrin Woischnig
- Laboratory of Infection Biology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Marco R Burkolter
- Biozentrum, University of Basel, Basel, Switzerland
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
| | - Yannik Heyer
- Biozentrum, University of Basel, Basel, Switzerland
| | - Dorentina Humolli
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
| | | | - Thomas Bock
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University and University Hospital of Basel, Basel, Switzerland
| | - Nina Khanna
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland
- Laboratory of Infection Biology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Urs Jenal
- Biozentrum, University of Basel, Basel, Switzerland
| | - Alexander Harms
- Biozentrum, University of Basel, Basel, Switzerland.
- Institute of Food, Nutrition and Health, D-HEST, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Dehari D, Kumar DN, Chaudhuri A, Kumar A, Kumar R, Kumar D, Singh S, Nath G, Agrawal AK. Bacteriophage entrapped chitosan microgel for the treatment of biofilm-mediated polybacterial infection in burn wounds. Int J Biol Macromol 2023; 253:127247. [PMID: 37802451 DOI: 10.1016/j.ijbiomac.2023.127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria are most commonly present in burn wound infections. Multidrug resistance (MDR) and biofilm formation make it difficult to treat these infections. Bacteriophages (BPs) are proven as an effective therapy against MDR as well as biofilm-associated wound infections. In the present work, a naturally inspired bacteriophage cocktail loaded chitosan microparticles-laden topical gel has been developed for the effective treatment of these infections. Bacteriophages against MDR S. aureus (BPSAФ1) and P. aeruginosa (BPPAФ1) were isolated and loaded separately and in combination into the chitosan microparticles (BPSAФ1-CHMPs, BPPAФ1-CHMPs, and MBP-CHMPs), which were later incorporated into the SEPINEO™ P 600 gel (BPSAФ1-CHMPs-gel, BPPAФ1-CHMPs-gel, and MBP-CHMPs-gel). BPs were characterized for their morphology, lytic activity, burst size, and hemocompatibility, and BPs belongs to Caudoviricetes class. Furthermore, BPSAФ1-CHMPs, BPPAФ1-CHMPs, and MBP-CHMPs had an average particle size of 1.19 ± 0.11, 1.42 ± 0.21, and 2.84 ± 0.28 μm, respectively, and expressed promising in vitro antibiofilm eradication potency. The ultrasound and photoacoustic imaging in infected burn wounds demonstrated improved wound healing reduced inflammation and increased oxygen saturation following treatment with BPs formulations. The obtained results suggested that the incorporation of the BPs in the MP-gel protected the BPs, sustained the BPs release, and improved the antibacterial activity.
Collapse
Affiliation(s)
- Deepa Dehari
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Akshay Kumar
- Department of Microbiology, Institute of Medial Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Rajesh Kumar
- Department of Microbiology, Institute of Medial Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India
| | - Sanjay Singh
- Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P., India
| | - Gopal Nath
- Department of Microbiology, Institute of Medial Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, U.P., India.
| |
Collapse
|
12
|
Montso PK, Kropinski AM, Mokoena F, Pierneef RE, Mlambo V, Ateba CN. Comparative genomics and proteomics analysis of phages infecting multi-drug resistant Escherichia coli O177 isolated from cattle faeces. Sci Rep 2023; 13:21426. [PMID: 38052835 PMCID: PMC10698182 DOI: 10.1038/s41598-023-48788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
The increasing prevalence of antimicrobial-resistant (AMR) pathogens has become a major global health concern. To address this challenge, innovative strategies such as bacteriophage therapy must be optimised. Genomic characterisation is a crucial step in identifying suitable phage candidates for combating AMR pathogens. The aim of this study was to characterise seven phages that infect the Escherichia coli O177 strain using a whole genome sequencing. The analysis of genome sequences revealed that these phages had linear dsDNA, with genome sizes spanning from 136, 483 to 166,791 bp and GC content varying from 35.39 to 43.63%. Taxonomically, the phages were classified under three different subfamilies (Stephanstirmvirinae, Tevenvirinae, and Vequintavirinae) and three genera (Phapecoctavirus, Tequatrovirus, and Vequintavirus) within the class Caudoviricetes. In silico PhageAI analysis predicted that all the phages were virulent, with confidence levels between 96.07 and 97.26%. The phage genomes contained between 66 and 82 ORFs, which encode hypothetical and putative functional proteins. In addition, the phage genomes contained core genes associated with molecular processes such as DNA replication, transcription modulation, nucleotide metabolism, phage structure (capsid and tail), and lysis. None of the genomes carried genes associated with undesirable traits such as integrase, antimicrobial resistance, virulence, and toxins. The study revealed high genome and proteome homology among E. coli O177 phages and other known Escherichia phages. The results suggest that the seven phages are new members of the genera Phapecoctavirus, Tequatrovirus, and Vequintavirus under the subfamilies Stephanstirmvirinae, Tevenvirinae, and Vequintavirinae, respectively.
Collapse
Affiliation(s)
- Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| | - Andrew M Kropinski
- Department Food Science, and Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Fortunate Mokoena
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Rian Ewald Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0001, South Africa
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, 0001, South Africa
- SARChI Chair: Marine Microbiomics, Microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria (UP), Hatfield, Pretoria, South Africa
| | - Victor Mlambo
- Faculty of Agriculture and Natural Sciences, School of Agricultural Sciences, University of Mpumalanga, Mbombela, 1200, South Africa
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
- Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| |
Collapse
|
13
|
da Silva JD, Melo LDR, Santos SB, Kropinski AM, Xisto MF, Dias RS, da Silva Paes I, Vieira MS, Soares JJF, Porcellato D, da Silva Duarte V, de Paula SO. Genomic and proteomic characterization of vB_SauM-UFV_DC4, a novel Staphylococcus jumbo phage. Appl Microbiol Biotechnol 2023; 107:7231-7250. [PMID: 37741937 PMCID: PMC10638138 DOI: 10.1007/s00253-023-12743-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/03/2023] [Accepted: 08/21/2023] [Indexed: 09/25/2023]
Abstract
Staphylococcus aureus is one of the most relevant mastitis pathogens in dairy cattle, and the acquisition of antimicrobial resistance genes presents a significant health issue in both veterinary and human fields. Among the different strategies to tackle S. aureus infection in livestock, bacteriophages have been thoroughly investigated in the last decades; however, few specimens of the so-called jumbo phages capable of infecting S. aureus have been described. Herein, we report the biological, genomic, and structural proteomic features of the jumbo phage vB_SauM-UFV_DC4 (DC4). DC4 exhibited a remarkable killing activity against S. aureus isolated from the veterinary environment and stability at alkaline conditions (pH 4 to 12). The complete genome of DC4 is 263,185 bp (GC content: 25%), encodes 263 predicted CDSs (80% without an assigned function), 1 tRNA (Phe-tRNA), multisubunit RNA polymerase, and an RNA-dependent DNA polymerase. Moreover, comparative analysis revealed that DC4 can be considered a new viral species belonging to a new genus DC4 and showed a similar set of lytic proteins and depolymerase activity with closely related jumbo phages. The characterization of a new S. aureus jumbo phage increases our understanding of the diversity of this group and provides insights into the biotechnological potential of these viruses. KEY POINTS: • vB_SauM-UFV_DC4 is a new viral species belonging to a new genus within the class Caudoviricetes. • vB_SauM-UFV_DC4 carries a set of RNA polymerase subunits and an RNA-directed DNA polymerase. • vB_SauM-UFV_DC4 and closely related jumbo phages showed a similar set of lytic proteins.
Collapse
Affiliation(s)
- Jéssica Duarte da Silva
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Luís D R Melo
- Centre of Biological Engineering - CEB, University of Minho, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| | - Sílvio B Santos
- Centre of Biological Engineering - CEB, University of Minho, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Portugal
| | - Andrew M Kropinski
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mariana Fonseca Xisto
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Isabela da Silva Paes
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marcella Silva Vieira
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - José Júnior Ferreira Soares
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Vinícius da Silva Duarte
- Department of Microbiology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| | - Sérgio Oliveira de Paula
- Department of General Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/N, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
14
|
Hu M, Xing B, Yang M, Han R, Pan H, Guo H, Liu Z, Huang T, Du K, Jiang S, Zhang Q, Lu W, Huang X, Zhou C, Li J, Song W, Deng Z, Xiao M. Characterization of a novel genus of jumbo phages and their application in wastewater treatment. iScience 2023; 26:106947. [PMID: 37324530 PMCID: PMC10265529 DOI: 10.1016/j.isci.2023.106947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/22/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023] Open
Abstract
Phages widely exist in numerous environments from wastewater to deep ocean, representing a huge virus diversity, yet remain poorly characterized. Among them, jumbo phages are of particular interests due to their large genome (>200 kb) and unusual biology. To date, only six strains of jumbo phages infecting Klebsiella pneumoniae have been described. Here, we report the isolation and characterization of two jumbo phages from hospital wastewater representing the sixth genus: φKp5130 and φKp9438. Both phages showed lytic activity against broad range of clinical antibiotic-resistant K. pneumoniae strains and distinct physiology including long latent period, small burst size, and high resistance to thermal and pH stress. The treatment of sewage water with the phages cocktail resulted in dramatic decline in K. pneumoniae population. Overall, this study provides detailed molecular and genomics characterization of two novel jumbo phages, expands viral diversity, and provides novel candidate phages to facilitate environmental wastewater treatment.
Collapse
Affiliation(s)
- Ming Hu
- Department of Special Medicine, Basic Medicine College, Qingdao University, Qingdao 266071, China
| | - Bo Xing
- BGI-Shenzhen, Shenzhen 518083, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Yang
- BGI-Shenzhen, Shenzhen 518083, China
- BGI College, Zhengzhou University, Zhengzhou 450000, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Rui Han
- BGI-Beijing, Beijing 102601, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huazheng Pan
- Department of The Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hui Guo
- Department of The Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhen Liu
- Department of Special Medicine, Basic Medicine College, Qingdao University, Qingdao 266071, China
| | - Tao Huang
- Department of Kidney Transplantation, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Kang Du
- University of Science and Technology of China, Hefei 230026, China
| | | | - Qian Zhang
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wenjing Lu
- Department of Dermatology, Qilu Hospital of Shandong University (Qingdao), Qingdao 266000, China
| | - Xun Huang
- Infection Control Center, Xiangya Hospital, Central South University, Changsha 410011, China
| | - Congzhao Zhou
- University of Science and Technology of China, Hefei 230026, China
| | - Junhua Li
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Wenchen Song
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Ziqing Deng
- BGI-Shenzhen, Shenzhen 518083, China
- BGI-Beijing, Beijing 102601, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Minfeng Xiao
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
15
|
Jo D, Kim H, Lee Y, Kim J, Ryu S. Characterization and genomic study of EJP2, a novel jumbo phage targeting antimicrobial resistant Escherichia coli. Front Microbiol 2023; 14:1194435. [PMID: 37250060 PMCID: PMC10213699 DOI: 10.3389/fmicb.2023.1194435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) Escherichia coli has noticeably increased in recent years worldwide and causes serious public health concerns. As alternatives to antibiotics, bacteriophages are regarded as promising antimicrobial agents. In this study, we isolated and characterized a novel jumbo phage EJP2 that specifically targets AMR E. coli strains. EJP2 belonged to the Myoviridae family with an icosahedral head (120.9 ± 2.9 nm) and a non-contractile tail (111.1 ± 0.6 nm), and contained 349,185 bp double-stranded DNA genome with 540 putative ORFs, suggesting that EJP2 could be classified as jumbo phage. The functions of genes identified in EJP2 genome were mainly related to nucleotide metabolism, DNA replication, and recombination. Comparative genomic analysis revealed that EJP2 was categorized in the group of Rak2-related virus and presented low sequence similarity at the nucleotide and amino acid level compared to other E. coli jumbo phages. EJP2 had a broad host spectrum against AMR E. coli as well as pathogenic E. coli and recognized LPS as a receptor for infection. Moreover, EJP2 treatment could remove over 80% of AMR E. coli biofilms on 96-well polystyrene, and exhibit synergistic antimicrobial activity with cefotaxime against AMR E. coli. These results suggest that jumbo phage EJP2 could be used as a potential biocontrol agent to combat the AMR issue in food processing and clinical environments.
Collapse
|
16
|
Liu Z, Jiang W, Kim C, Peng X, Fan C, Wu Y, Xie Z, Peng F. A Pseudomonas Lysogenic Bacteriophage Crossing the Antarctic and Arctic, Representing a New Genus of Autographiviridae. Int J Mol Sci 2023; 24:ijms24087662. [PMID: 37108829 PMCID: PMC10142737 DOI: 10.3390/ijms24087662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Polar regions tend to support simple food webs, which are vulnerable to phage-induced gene transfer or microbial death. To further investigate phage-host interactions in polar regions and the potential linkage of phage communities between the two poles, we induced the release of a lysogenic phage, vB_PaeM-G11, from Pseudomonas sp. D3 isolated from the Antarctic, which formed clear phage plaques on the lawn of Pseudomonas sp. G11 isolated from the Arctic. From permafrost metagenomic data of the Arctic tundra, we found the genome with high-similarity to that of vB_PaeM-G11, demonstrating that vB_PaeM-G11 may have a distribution in both the Antarctic and Arctic. Phylogenetic analysis indicated that vB_PaeM-G11 is homologous to five uncultured viruses, and that they may represent a new genus in the Autographiviridae family, named Fildesvirus here. vB_PaeM-G11 was stable in a temperature range (4-40 °C) and pH (4-11), with latent and rise periods of about 40 and 10 min, respectively. This study is the first isolation and characterization study of a Pseudomonas phage distributed in both the Antarctic and Arctic, identifying its lysogenic host and lysis host, and thus provides essential information for further understanding the interaction between polar phages and their hosts and the ecological functions of phages in polar regions.
Collapse
Affiliation(s)
- Zhenyu Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenhui Jiang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Cholsong Kim
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoya Peng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Cong Fan
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhixiong Xie
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Peng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
17
|
Śliwka P, Weber-Dąbrowska B, Żaczek M, Kuźmińska-Bajor M, Dusza I, Skaradzińska A. Characterization and Comparative Genomic Analysis of Three Virulent E. coli Bacteriophages with the Potential to Reduce Antibiotic-Resistant Bacteria in the Environment. Int J Mol Sci 2023; 24:ijms24065696. [PMID: 36982770 PMCID: PMC10059673 DOI: 10.3390/ijms24065696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/26/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The emerging global crisis of antibiotic resistance demands new alternative antibacterial solutions. Although bacteriophages have been used to combat bacterial infections for over a century, a dramatic boost in phage studies has recently been observed. In the development of modern phage applications, a scientific rationale is strongly required and newly isolated phages need to be examined in detail. In this study, we present the full characterization of bacteriophages BF9, BF15, and BF17, with lytic activity against extended-spectrum β-lactamases (ESBLs)- and AmpC β-lactamases (AmpC)-producing Escherichia coli, the prevalence of which has increased significantly in livestock in recent decades, representing a great hazard to food safety and a public health risk. Comparative genomic and phylogenetic analysis indicated that BF9, BF15, and BF17 represent the genera Dhillonvirus, Tequatrovirus, and Asteriusvirus, respectively. All three phages significantly reduced in vitro growth of their bacterial host and retained the ability to lyse bacteria after preincubation at wide ranges of temperature (−20–40 °C) and pH (5–9). The results described herein indicate the lytic nature of BF9, BF15, and BF17, which, along with the absence of genes encoding toxins and bacterial virulence factors, represents an undoubted asset in terms of future phage application.
Collapse
Affiliation(s)
- Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Maciej Żaczek
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Marta Kuźmińska-Bajor
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Izabela Dusza
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- Correspondence: ; Tel.: +48-71-320-7791
| |
Collapse
|
18
|
Lerdsittikul V, Thongdee M, Chaiwattanarungruengpaisan S, Atithep T, Apiratwarrasakul S, Withatanung P, Clokie MRJ, Korbsrisate S. A novel virulent Litunavirus phage possesses therapeutic value against multidrug resistant Pseudomonas aeruginosa. Sci Rep 2022; 12:21193. [PMID: 36476652 PMCID: PMC9729221 DOI: 10.1038/s41598-022-25576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a notable nosocomial pathogen that can cause severe infections in humans and animals. The emergence of multidrug resistant (MDR) P. aeruginosa has motivated the development of phages to treat the infections. In this study, a novel Pseudomonas phage, vB_PaeS_VL1 (VL1), was isolated from urban sewage. Phylogenetic analyses revealed that VL1 is a novel species in the genus Litunavirus of subfamily Migulavirinae. The VL1 is a virulent phage as no genes encoding lysogeny, toxins or antibiotic resistance were identified. The therapeutic potential of phage VL1 was investigated and revealed that approximately 56% (34/60 strains) of MDR P. aeruginosa strains, isolated from companion animal diseases, could be lysed by VL1. In contrast, VL1 did not lyse other Gram-negative and Gram-positive bacteria suggesting its specificity of infection. Phage VL1 demonstrated high efficiency to reduce bacterial load (~ 6 log cell number reduction) and ~ 75% reduction of biofilm in pre-formed biofilms of MDR P. aeruginosa. The result of two of the three MDR P. aeruginosa infected Galleria mellonella larvae showed that VL1 could significantly increase the survival rate of infected larvae. Taken together, phage VL1 has genetic and biological properties that make it a potential candidate for phage therapy against P. aeruginosa infections.
Collapse
Affiliation(s)
- Varintip Lerdsittikul
- grid.10223.320000 0004 1937 0490Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Metawee Thongdee
- grid.10223.320000 0004 1937 0490The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- grid.10223.320000 0004 1937 0490The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Thassanant Atithep
- grid.494627.a0000 0004 4684 9800Frontier Research Center, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
| | - Sukanya Apiratwarrasakul
- grid.10223.320000 0004 1937 0490Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Patoo Withatanung
- grid.10223.320000 0004 1937 0490Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Martha R. J. Clokie
- grid.9918.90000 0004 1936 8411Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Sunee Korbsrisate
- grid.10223.320000 0004 1937 0490Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
19
|
Alsaadi A, Imam M, Alghamdi AA, Alghoribi MF. Towards promising antimicrobial alternatives: The future of bacteriophage research and development in Saudi Arabia. J Infect Public Health 2022; 15:1355-1362. [DOI: 10.1016/j.jiph.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/04/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
|
20
|
Wannasrichan W, Htoo HH, Suwansaeng R, Pogliano J, Nonejuie P, Chaikeeratisak V. Phage-resistant Pseudomonas aeruginosa against a novel lytic phage JJ01 exhibits hypersensitivity to colistin and reduces biofilm production. Front Microbiol 2022; 13:1004733. [PMID: 36274728 PMCID: PMC9583000 DOI: 10.3389/fmicb.2022.1004733] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa, a major cause of nosocomial infections, has been categorized by World Health Organization as a critical pathogen urgently in need of effective therapies. Bacteriophages or phages, which are viruses that specifically kill bacteria, have been considered as alternative agents for the treatment of bacterial infections. Here, we discovered a lytic phage targeting P. aeruginosa, designated as JJ01, which was classified as a member of the Myoviridae family due to the presence of an icosahedral capsid and a contractile tail under TEM. Phage JJ01 requires at least 10 min for 90% of its particles to be adsorbed to the host cells and has a latent period of 30 min inside the host cell for its replication. JJ01 has a relatively large burst size, which releases approximately 109 particles/cell at the end of its lytic life cycle. The phage can withstand a wide range of pH values (3–10) and temperatures (4–60°C). Genome analysis showed that JJ01 possesses a complete genome of 66,346 base pairs with 55.7% of GC content, phylogenetically belonging to the genus Pbunavirus. Genome annotation further revealed that the genome encodes 92 open reading frames (ORFs) with 38 functionally predictable genes, and it contains neither tRNA nor toxin genes, such as drug-resistant or lysogenic-associated genes. Phage JJ01 is highly effective in suppressing bacterial cell growth for 12 h and eradicating biofilms established by the bacteria. Even though JJ01-resistant bacteria have emerged, the ability of phage resistance comes with the expense of the bacterial fitness cost. Some resistant strains were found to produce less biofilm and grow slower than the wild-type strain. Among the resistant isolates, the resistant strain W10 which notably loses its physiological fitness becomes eight times more susceptible to colistin and has its cell membrane compromised, compared to the wild type. Altogether, our data revealed the potential of phage JJ01 as a candidate for phage therapy against P. aeruginosa and further supports that even though the use of phages would subsequently lead to the emergence of phage-resistant bacteria, an evolutionary trade-off would make them more sensitive to antibiotics.
Collapse
Affiliation(s)
- Wichanan Wannasrichan
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Htut Htut Htoo
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Rubsadej Suwansaeng
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Vorrapon Chaikeeratisak,
| |
Collapse
|
21
|
Rai P, Shetty SS, Prabell S, Kuntar A, Pinto D, Kumar BK, Divyashree M, Raj JRM, Premanath R, Deekshit VK, Karunasagar I, Karunasagar I. Characterisation of broad-spectrum phiKZ like jumbo phage and its utilisation in controlling multidrug-resistant Pseudomonas aeruginosa isolates. Microb Pathog 2022; 172:105767. [PMID: 36096457 DOI: 10.1016/j.micpath.2022.105767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022]
Abstract
The emergence of highly virulent multidrug-resistant P. aeruginosa has become increasingly evident among hospital-acquired infections and has raised the need for alternative therapies. Phage therapy can be one such alternative to antibiotic therapy to combat multidrug-resistant pathogenic bacteria, but this requires the availability of phages with a broad host range. In this study, isolation and molecular characterisation of P. aeruginosa specific phages were carried out. A total of 17 phages isolated showed different spectra of activity and efficiency of lysis against 82 isolates of P. aeruginosa obtained from clinical samples (n = 13), hospital effluent (n = 46) and fish processing plant effluent (n = 23). Antibiotic susceptibility test results revealed multi-drug resistance in 61 of the total 82 isolates. Three new jumbo lytic P. aeruginosa specific broad host range phages were isolated and characterised in this present study belonged to the family Myoviridae (order Caudovirales). The genetic analysis of ɸU5 revealed that phage has a genome size of 282.6 kbp with 373 putative open reading frames (ORFs), and its genetic architecture is similar to phiKZ like jumbo phages infecting P. aeruginosa. The bacteriophages isolated in this study had lytic ability against biofilm-forming and multidrug-resistant P. aeruginosa and could be candidates for further studies towards phage therapy.
Collapse
Affiliation(s)
- Praveen Rai
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India.
| | - Shruthi Seetharam Shetty
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Sujana Prabell
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Akshatha Kuntar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Deepak Pinto
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Ballamoole Krishna Kumar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Mithoor Divyashree
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Juliet Roshini Mohan Raj
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Ramya Premanath
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Vijaya Kumar Deekshit
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Indrani Karunasagar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Infectious Diseases, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Iddya Karunasagar
- Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru, 575018, India
| |
Collapse
|
22
|
Yuanyuan N, Xiaobo Y, Shang W, Yutong Y, Hongrui Z, Chenyu L, Bin X, Xi Z, Chen Z, Zhiqiang S, Jingfeng W, Yun L, Pingfeng Y, Zhigang Q. Isolation and characterization of two homolog phages infecting Pseudomonas aeruginosa. Front Microbiol 2022; 13:946251. [PMID: 35935197 PMCID: PMC9348578 DOI: 10.3389/fmicb.2022.946251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Bacteriophages (phages) are capable of infecting specific bacteria, and therefore can be used as a biological control agent to control bacteria-induced animal, plant, and human diseases. In this study, two homolog phages (named PPAY and PPAT) that infect Pseudomonas aeruginosa PAO1 were isolated and characterized. The results of the phage plaque assay showed that PPAT plaques were transparent dots, while the PPAY plaques were translucent dots with a halo. Transmission electron microscopy results showed that PPAT (65 nm) and PPAY (60 nm) strains are similar in size and have an icosahedral head and a short tail. Therefore, these belong to the short-tailed phage family Podoviridae. One-step growth curves revealed the latent period of 20 min and burst time of 30 min for PPAT and PPAY. The burst size of PPAT (953 PFUs/infected cell) was higher than that of PPAY (457 PFUs/infected cell). Also, the adsorption rate constant of PPAT (5.97 × 10−7 ml/min) was higher than that of PPAY (1.32 × 10−7 ml/min) at 5 min. Whole-genome sequencing of phages was carried out using the Illumina HiSeq platform. The genomes of PPAT and PPAY have 54,888 and 50,154 bp, respectively. Only 17 of the 352 predicted ORFs of PPAT could be matched to homologous genes of known function. Likewise, among the 351 predicted ORFs of PPAY, only 18 ORFs could be matched to genes of established functions. Homology and evolutionary analysis indicated that PPAT and PPAY are closely related to PA11. The presence of tail fiber proteins in PPAY but not in PPAT may have contributed to the halo effect of its plaque spots. In all, PPAT and PPAY, newly discovered P. aeruginosa phages, showed growth inhibitory effects on bacteria and can be used for research and clinical purposes.
Collapse
Affiliation(s)
- Niu Yuanyuan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yang Xiaobo
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wang Shang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yang Yutong
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhou Hongrui
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Li Chenyu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xue Bin
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhang Xi
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhao Chen
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shen Zhiqiang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wang Jingfeng
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ling Yun
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
- *Correspondence: Ling Yun,
| | - Yu Pingfeng
- College of Environment and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Qiu Zhigang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
- Qiu Zhigang,
| |
Collapse
|
23
|
Pan L, Li D, Sun Z, Lin W, Hong B, Qin W, Xu L, Liu W, Zhou Q, Wang F, Cai R, Qian M, Tong Y. First Characterization of a Hafnia Phage Reveals Extraordinarily Large Burst Size and Unusual Plaque Polymorphism. Front Microbiol 2022; 12:754331. [PMID: 35211099 PMCID: PMC8861465 DOI: 10.3389/fmicb.2021.754331] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/20/2021] [Indexed: 01/25/2023] Open
Abstract
A unique lytic phage infecting Hafnia paralvei was isolated and identified. Hafnia phage Ca belongs to the family Autographiviridae, possessing an icosahedral head with a diameter of 55 nm and a short non-contractile tail. Unusually, the burst size of Hafnia phage Ca of 10,292 ± 1,097 plaque-forming units (PFUs)/cell is much larger than other dsDNA phages reported before. Compared to the genome of the related phage, Hafnia phage Ca genome contains extra genes including DNA mimic ocr, dGTP triphosphohydrolase inhibitor, endonuclease, endonuclease VII, and HNH homing endonuclease gene. Extraordinarily, the phage developed different sizes of plaques when a single plaque was picked out and inoculated on a double-layer Luria broth agar plate with its host. Furthermore, varied packaging tightness for the tails of Hafnia phage Ca was observed (tail length: 4.35–45.92 nm). Most of the tails appeared to be like a cone with appendages, some were dot-like, bun-like, table tennis racket handle-like, and ponytail-like. Although the complete genome of Hafnia phage Ca is 40,286 bp, an incomplete genome with a deletion of a 397-bp fragment, containing one ORF predicted as HNH homing endonuclease gene (HEG), was also found by high throughput sequencing. Most of the genome of the virus particles in large plaques is complete (>98%), while most of the genome of the virus particles in small plaques is incomplete (>98%), and the abundance of both of them in medium-sized plaques is similar (complete, 40%; incomplete, 60%). In an experiment to see if the phage could be protective to brocade carps intramuscularly injected with H. paralvei LY-23 and phage Ca, the protection rate of Hafnia phage Ca to brocade carp (Cyprinus aka Koi) against H. paralvei was 33.38% (0.01 < p < 0.05). This study highlights some new insights into the peculiar biological and genomic characteristics of phage.
Collapse
Affiliation(s)
- Lingting Pan
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Dengfeng Li
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhitong Sun
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wei Lin
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China.,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Binxin Hong
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Weinan Qin
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Lihua Xu
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wencai Liu
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qin Zhou
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Fei Wang
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ruqian Cai
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Minhua Qian
- Key Laboratory of Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
24
|
Characterization of the Novel Phage vB_VpaP_FE11 and Its Potential Role in Controlling Vibrio parahaemolyticus Biofilms. Viruses 2022; 14:v14020264. [PMID: 35215857 PMCID: PMC8879856 DOI: 10.3390/v14020264] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Vibrio parahaemolyticus causes aquatic vibriosis. Its biofilm protects it from antibiotics; therefore, a new different method is needed to control V. parahaemolyticus for food safety. Phage therapy represents an alternative strategy to control biofilms. In this study, the lytic Vibrio phage vB_VpaP_FE11 (FE11) was isolated from the sewers of Guangzhou Huangsha Aquatic Market. Electron microscopy analysis revealed that FE11 has a typical podovirus morphology. Its optimal stability temperature and pH range were found to be 20–50 °C and 5–10 °C, respectively. It was completely inactivated following ultraviolet irradiation for 20 min. Its latent period is 10 min and burst size is 37 plaque forming units/cell. Its double-stranded DNA genome is 43,397 bp long, with a G + C content of 49.24% and 50 predicted protein-coding genes. As a lytic phage, FE11 not only prevented the formation of biofilms but also could destroy the formed biofilms effectively. Overall, phage vB_VpaP_FE11 is a potential biological control agent against V. parahaemolyticus and the biofilm it produces.
Collapse
|
25
|
Shen A, Millard A. Phage Genome Annotation: Where to Begin and End. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:183-193. [PMID: 36159890 PMCID: PMC9041514 DOI: 10.1089/phage.2021.0015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With the renewed interest in phage research, coupled with the rising accessibility to affordable sequencing, ever increasing numbers of phage genomes are being sequenced. Therefore, there is an increased need to assemble and annotate phage genomes. There is a plethora of tools and platforms that allow phage genomes to be assembled and annotated. The choice of tools can often be bewildering for those new to phage genome assembly. Here we provide an overview of the assembly and annotation process from obtaining raw reads to genome submission, with worked examples, providing those new to genome assembly and annotation with a guided pathway to genome submission. We focus on the use of open access tools that can be incorporated into workflows to allow easy repetition of steps, highlighting multiple tools that can be used and common pitfalls that may occur.
Collapse
Affiliation(s)
- Anastasiya Shen
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, United Kingdom
| |
Collapse
|
26
|
Nazir A, Ali A, Qing H, Tong Y. Emerging Aspects of Jumbo Bacteriophages. Infect Drug Resist 2021; 14:5041-5055. [PMID: 34876823 PMCID: PMC8643167 DOI: 10.2147/idr.s330560] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/30/2021] [Indexed: 01/21/2023] Open
Abstract
The bacteriophages have been explored at a huge scale as a model system for their applications in many biological-related fields. Jumbo phages with a large genome size from 200 to 500 kbp were not previously assigned a great value, and characterized by complex structures coupled with large virions with a wide variety of hosts. The origin of most of the jumbo phages was not well understood; however, many other prominent features have been discovered recently. In the current review, we strive to unearth the most advanced characteristics of jumbo phages, particularly their significance and structural organization that holds immense value to the viral life cycle. The unique characteristics of jumbo phages are the basis of variations in different types of phages concerning their organization at the genomic level, virion structure, evolution, and progeny propagation. The presence of tRNA and additional translation-related genes along with chaperonin genes mark the ability of these phages for being independent of host molecular machinery enabling them to have wide host options. A large number of jumbo phages have been isolated from various sources through advanced standard screening methods. The current review has summarized the available data on jumbo phages and discussed the genome orientation of jumbo phages, translational machinery, diversity and evolution of jumbo phages. In the studies conducted, jumbo phages possessed special additional genes that helps to reduce the dependence of jumbo phages on their hosts. Furthermore, their genomes might have evolved from smaller genome phages.
Collapse
Affiliation(s)
- Amina Nazir
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, People’s Republic of China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Azam Ali
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| |
Collapse
|
27
|
Erickson S, Paulson J, Brown M, Hahn W, Gil J, Barron-Montenegro R, Moreno-Switt AI, Eisenberg M, Nguyen MM. Isolation and engineering of a Listeria grayi bacteriophage. Sci Rep 2021; 11:18947. [PMID: 34556683 PMCID: PMC8460666 DOI: 10.1038/s41598-021-98134-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/03/2021] [Indexed: 01/02/2023] Open
Abstract
The lack of bacteriophages capable of infecting the Listeria species, Listeria grayi, is academically intriguing and presents an obstacle to the development of bacteriophage-based technologies for Listeria. We describe the isolation and engineering of a novel L. grayi bacteriophage, LPJP1, isolated from farm silage. With a genome over 200,000 base pairs, LPJP1 is the first and only reported jumbo bacteriophage infecting the Listeria genus. Similar to other Gram-positive jumbo phages, LPJP1 appeared to contain modified base pairs, which complicated initial attempts to obtain genomic sequence using standard methods. Following successful sequencing with a modified approach, a recombinant of LPJP1 encoding the NanoLuc luciferase was engineered using homologous recombination. This luciferase reporter bacteriophage successfully detected 100 stationary phase colony forming units of both subspecies of L. grayi in four hours. A single log phase colony forming unit was also sufficient for positive detection in the same time period. The recombinant demonstrated complete specificity for this particular Listeria species and did not infect 150 non-L. grayi Listeria strains nor any other bacterial genus. LPJP1 is believed to be the first reported lytic bacteriophage of L. grayi as well as the only jumbo bacteriophage to be successfully engineered into a luciferase reporter.
Collapse
Affiliation(s)
- Stephen Erickson
- Laboratory Corporation of America Holdings, New Brighton, MN, 55112, USA.
| | - John Paulson
- Laboratory Corporation of America Holdings, New Brighton, MN, 55112, USA
| | - Matthew Brown
- Laboratory Corporation of America Holdings, Burlington, NC, 27215, USA
| | - Wendy Hahn
- Laboratory Corporation of America Holdings, New Brighton, MN, 55112, USA
| | - Jose Gil
- Laboratory Corporation of America Holdings, Los Angeles, CA, 90062, USA
| | - Rocío Barron-Montenegro
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Initiative for Collaborative Research on Bacteria Resistance (MICROB-R), Santiago, Chile
| | - Andrea I Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Initiative for Collaborative Research on Bacteria Resistance (MICROB-R), Santiago, Chile
| | - Marcia Eisenberg
- Laboratory Corporation of America Holdings, Burlington, NC, 27215, USA
| | - Minh M Nguyen
- Laboratory Corporation of America Holdings, New Brighton, MN, 55112, USA
| |
Collapse
|
28
|
Isolation and Characterization of Bacteriophage ZCSE6 against Salmonella spp.: Phage Application in Milk. Biologics 2021. [DOI: 10.3390/biologics1020010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Food safety is very important in the food industry as most pathogenic bacteria can cause food-borne diseases and negatively affect public health. In the milk industry, contamination with Salmonella has always been a challenge, but the risks have dramatically increased as almost all bacteria now show resistance to a wide range of commercial antibiotics. This study aimed to isolate a bacteriophage to be used as a bactericidal agent against Salmonella in milk and dairy products. Here, phage ZCSE6 has been isolated from raw milk sample sand molecularly and chemically characterized. At different multiplicities of infection (MOIs) of 0.1, 0.01, and 0.001, the phage–Salmonella interaction was studied for 6 h at 37 °C and 24 h at 8 °C. In addition, ZCSE6 was tested against Salmonella contamination in milk to examine its lytic activity for 3 h at 37 °C. The results showed that ZCSE6 has a small genome size (<48.5 kbp) and belongs to the Siphovirus family. Phage ZCSE6 revealed a high thermal and pH stability at various conditions that mimic milk manufacturing and supply chain conditions. It also demonstrated a significant reduction in Salmonella concentration in media at various MOIs, with higher bacterial eradication at higher MOI. Moreover, it significantly reduced Salmonella growth (MOI 1) in milk, manifesting a 1000-fold decrease in bacteria concentration following 3 h incubation at 37 °C. The results highlighted the strong ability of ZCSE6 to kill Salmonella and control its growth in milk. Thus, ZCSE6 is recommended as a biocontrol agent in milk to limit bacterial growth and increase the milk shelf-life.
Collapse
|
29
|
Naknaen A, Suttinun O, Surachat K, Khan E, Pomwised R. A Novel Jumbo Phage PhiMa05 Inhibits Harmful Microcystis sp. Front Microbiol 2021; 12:660351. [PMID: 33959116 PMCID: PMC8093824 DOI: 10.3389/fmicb.2021.660351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022] Open
Abstract
Microcystis poses a concern because of its potential contribution to eutrophication and production of microcystins (MCs). Phage treatment has been proposed as a novel biocontrol method for Microcystis. Here, we isolated a lytic cyanophage named PhiMa05 with high efficiency against MCs-producing Microcystis strains. Its burst size was large, with approximately 127 phage particles/infected cell, a short latent period (1 day), and high stability to broad salinity, pH and temperature ranges. The PhiMa05 structure was composed of an icosahedral capsid (100 nm) and tail (120 nm), suggesting that the PhiMa05 belongs to the Myoviridae family. PhiMa05 inhibited both planktonic and aggregated forms of Microcystis in a concentration-dependent manner. The lysis of Microcystis resulted in a significant reduction of total MCs compared to the uninfected cells. A genome analysis revealed that PhiMa05 is a double-stranded DNA virus with a 273,876 bp genome, considered a jumbo phage. Out of 254 predicted open reading frames (ORFs), only 54 ORFs were assigned as putative functional proteins. These putative proteins are associated with DNA metabolisms, structural proteins, host lysis and auxiliary metabolic genes (AMGs), while no lysogenic, toxin and antibiotic resistance genes were observed in the genome. The AMGs harbored in the phage genome are known to be involved in energy metabolism [photosynthesis and tricarboxylic acid cycle (TCA)] and nucleotide biosynthesis genes. Their functions suggested boosting and redirecting host metabolism during viral infection. Comparative genome analysis with other phages in the database indicated that PhiMa05 is unique. Our study highlights the characteristics and genome analysis of a novel jumbo phage, PhiMa05. PhiMa05 is a potential phage for controlling Microcystis bloom and minimizing MC occurrence.
Collapse
Affiliation(s)
- Ampapan Naknaen
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Thailand
| | - Oramas Suttinun
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand
| | - Komwit Surachat
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
- Molecular Evolution and Computational Biology Research Unit, Prince of Songkla University, Hat Yai, Thailand
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, United States
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
30
|
Lee Y, Son B, Cha Y, Ryu S. Characterization and Genomic Analysis of PALS2, a Novel Staphylococcus Jumbo Bacteriophage. Front Microbiol 2021; 12:622755. [PMID: 33763042 PMCID: PMC7982418 DOI: 10.3389/fmicb.2021.622755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/09/2021] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus is an important human pathogen that can be frequently encountered in clinical and food-processing surroundings. Among the various countermeasures, bacteriophages have been considered to be promising alternatives to antibiotics. In this study, the bacteriophage PALS2 was isolated from bird feces, and the genomic and biological characteristics of this phage were investigated. PALS2 was determined to belong to the Myoviridae family and exhibited extended host inhibition that persisted for up to 24 h with repeated bursts of 12 plaque-forming units/cell. The complete genome of PALS2 measured 268,746 base pairs (bp), indicating that PALS2 could be classified as a jumbo phage. The PALS2 genome contained 279 ORFs and 1 tRNA covering asparagine, and the majority of predicted PALS2 genes encoded hypothetical proteins. Additional genes involved in DNA replication and repair, nucleotide metabolism, and genes encoding multisubunit RNA polymerase were identified in the PALS2 genome, which is a common feature of typical jumbo phages. Comparative genomic analysis indicated that PALS2 is a phiKZ-related virus and is more similar to typical jumbo phages than to staphylococcal phages. Additionally, the effective antimicrobial activities of phage PALS2 suggest its possible use as a biocontrol agent in various clinical and food processing environments.
Collapse
Affiliation(s)
- Yoona Lee
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Bokyung Son
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yoyeon Cha
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
31
|
Abstract
Since their discovery more than 100 years ago, the viruses that infect bacteria (bacteriophages) have been widely studied as model systems. Largely overlooked, however, have been "jumbo phages," with genome sizes ranging from 200 to 500 kbp. Jumbo phages generally have large virions with complex structures and a broad host spectrum. While the majority of jumbo phage genes are poorly functionally characterized, recent work has discovered many unique biological features, including a conserved tubulin homolog that coordinates a proteinaceous nucleus-like compartment that houses and segregates phage DNA. The tubulin spindle displays dynamic instability and centers the phage nucleus within the bacterial host during phage infection for optimal reproduction. The shell provides robust physical protection for the enclosed phage genomes against attack from DNA-targeting bacterial immune systems, thereby endowing jumbo phages with broad resistance. In this review, we focus on the current knowledge of the cytoskeletal elements and the specialized nuclear compartment derived from jumbo phages, and we highlight their importance in facilitating spatial and temporal organization over the viral life cycle. Additionally, we discuss the evolutionary relationships between jumbo phages and eukaryotic viruses, as well as the therapeutic potential and drawbacks of jumbo phages as antimicrobial agents in phage therapy.
Collapse
|
32
|
Misol GN, Kokkari C, Katharios P. Biological and Genomic Characterization of a Novel Jumbo Bacteriophage, vB_VhaM_pir03 with Broad Host Lytic Activity against Vibrio harveyi. Pathogens 2020; 9:E1051. [PMID: 33333990 PMCID: PMC7765460 DOI: 10.3390/pathogens9121051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Vibrio harveyi is a Gram-negative marine bacterium that causes major disease outbreaks and economic losses in aquaculture. Phage therapy has been considered as a potential alternative to antibiotics however, candidate bacteriophages require comprehensive characterization for a safe and practical phage therapy. In this work, a lytic novel jumbo bacteriophage, vB_VhaM_pir03 belonging to the Myoviridae family was isolated and characterized against V. harveyi type strain DSM19623. It had broad host lytic activity against 31 antibiotic-resistant strains of V. harveyi, V. alginolyticus, V. campbellii and V. owensii. Adsorption time of vB_VhaM_pir03 was determined at 6 min while the latent-phase was at 40 min and burst-size at 75 pfu/mL. vB_VhaM_pir03 was able to lyse several host strains at multiplicity-of-infections (MOI) 0.1 to 10. The genome of vB_VhaM_pir03 consists of 286,284 base pairs with 334 predicted open reading frames (ORFs). No virulence, antibiotic resistance, integrase encoding genes and transducing potential were detected. Phylogenetic and phylogenomic analysis showed that vB_VhaM_pir03 is a novel bacteriophage displaying the highest similarity to another jumbo phage, vB_BONAISHI infecting Vibrio coralliilyticus. Experimental phage therapy trial using brine shrimp, Artemia salina infected with V. harveyi demonstrated that vB_VhaM_pir03 was able to significantly reduce mortality 24 h post infection when administered at MOI 0.1 which suggests that it can be an excellent candidate for phage therapy.
Collapse
Affiliation(s)
- Gerald N. Misol
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; (G.N.M.J.); (C.K.)
- Department of Biology, University of Crete, 71003 Heraklion, Crete, Greece
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; (G.N.M.J.); (C.K.)
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, 71500 Heraklion, Crete, Greece; (G.N.M.J.); (C.K.)
| |
Collapse
|
33
|
Li C, Yuan X, Li N, Wang J, Yu S, Zeng H, Zhang J, Wu Q, Ding Y. Isolation and Characterization of Bacillus cereus Phage vB_BceP-DLc1 Reveals the Largest Member of the Φ29-Like Phages. Microorganisms 2020; 8:E1750. [PMID: 33171789 PMCID: PMC7695010 DOI: 10.3390/microorganisms8111750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Bacillus phage φ29 and its relatives have been considered as one of the most important model organisms for DNA replication, transcription, morphogenesis, DNA packaging studies, and nanotechnology applications. Here, we isolated and characterized a new member of the φ29-like phage, named Bacillus cereus phage vB_BceP-DLc1. This phage, with a unique inserted gene cluster, has the largest genome among known φ29-like phages. DLc1 can use the surface carbohydrate structures of the host cell as receptors and only infects the most related B. cereus strains, showing high host-specificity. The adsorption rate constant and life cycle of DLc1 under experimental conditions were also determined. Not only stable under temperatures below 55 °C and pH range from 5 to 11, the new phage also showed tolerance to high concentrations of NaCl, 75% ethanol, chloroform, and mechanical vortex, which is preferable for practical use in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Chun Li
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (C.L.); (X.Y.); (N.L.)
| | - Xiaoming Yuan
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (C.L.); (X.Y.); (N.L.)
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Na Li
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (C.L.); (X.Y.); (N.L.)
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Shubo Yu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; (C.L.); (X.Y.); (N.L.)
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.Y.); (H.Z.); (J.Z.); (Q.W.)
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
34
|
Clokie MR, Blasdel BG, Demars BO, Sicheritz-Pontén T. Rethinking Phage Ecology by Rooting it Within an Established Plant Framework. PHAGE (NEW ROCHELLE, N.Y.) 2020; 1:121-136. [PMID: 36147824 PMCID: PMC9041459 DOI: 10.1089/phage.2020.0015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Despite the abundance and significance of bacteriophages to microbial ecosystems, no broad ecological frameworks exist within which to determine "bacteriophage types" that reflect their ecological strategies and ways in which they interact with bacterial cells. To address this, we repurposed the well-established Grime's triangular CSR framework, which classifies plants according to three axes: competitiveness (C), ability to tolerate stress (S), and capacity to cope with disturbance (R). This framework is distinguished from other accepted schemes, as it seeks to identify individual characteristics of plants to understand their biological strategies and roles within an ecosystem. Our repurposing of the CSR triangle is based on phage transcription and the observation that typically phages have three major distinguishable transcription phases: early, middle, and late. We hypothesize that the proportion of genes expressed in these phases reflects key information about the phage "ecological strategy," namely the C, S, and R strategies, allowing us to examine phages in a similar way to how plants are projected onto the triangle. In the "phage version" of this scheme, we suggest: (1) that some phages prioritize the early phase of transcription that shuts off host defense mechanisms, which reflects competitiveness; (2) other phages prioritize tuning resource management mechanisms in the cell such as nucleotide metabolism during their "mid" expression profile to tolerate stress; and (3) a further subset of phages (termed Ruderals) survive disturbance by investing significant resources into regeneration so they express a higher proportion of their genes during late infection. We examined 42 published phage transcriptomes and show that they fall into discrete CSR categories according to their expression profiles. We discuss these positions in the context of their biology, which is largely consistent with our predictions of specific phage characteristics. In this opinion article, we suggest a starting point to ascribe phages into different functional types and thus understand them in an ecological framework. We suggest that this may have far-reaching implications for the application of phages in therapy and their exploitation to manipulate bacterial communities. We invite further use of this framework via our online tool; www.PhageCSR.ml.
Collapse
Affiliation(s)
- Martha R.J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Address correspondence to: Martha R.J. Clokie, PhD, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | | | | | - Thomas Sicheritz-Pontén
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- Address correspondence to: Thomas Sicheritz Pontén, PhD, Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5, Bygning 7, Copenhagen 1353, Denmark
| |
Collapse
|
35
|
Evseev P, Sykilinda N, Gorshkova A, Kurochkina L, Ziganshin R, Drucker V, Miroshnikov K. Pseudomonas Phage PaBG-A Jumbo Member of an Old Parasite Family. Viruses 2020; 12:E721. [PMID: 32635178 PMCID: PMC7412058 DOI: 10.3390/v12070721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 11/17/2022] Open
Abstract
Bacteriophage PaBG is a jumbo Myoviridae phage isolated from water of Lake Baikal. This phage has limited diffusion ability and thermal stability and infects a narrow range of Pseudomonas aeruginosa strains. Therefore, it is hardly suitable for phage therapy applications. However, the analysis of the genome of PaBG presents a number of insights into the evolutionary history of this phage and jumbo phages in general. We suggest that PaBG represents an ancient group distantly related to all known classified families of phages.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| | - Nina Sykilinda
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| | - Anna Gorshkova
- Limnological Institute, Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.G.); (V.D.)
| | - Lidia Kurochkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Rustam Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| | - Valentin Drucker
- Limnological Institute, Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia; (A.G.); (V.D.)
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.E.); (N.S.); (R.Z.)
| |
Collapse
|
36
|
Lood C, Danis‐Wlodarczyk K, Blasdel BG, Jang HB, Vandenheuvel D, Briers Y, Noben J, van Noort V, Drulis‐Kawa Z, Lavigne R. Integrative omics analysis of Pseudomonas aeruginosa virus PA5oct highlights the molecular complexity of jumbo phages. Environ Microbiol 2020; 22:2165-2181. [PMID: 32154616 PMCID: PMC7318152 DOI: 10.1111/1462-2920.14979] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 03/06/2020] [Indexed: 11/28/2022]
Abstract
Pseudomonas virus vB_PaeM_PA5oct is proposed as a model jumbo bacteriophage to investigate phage-bacteria interactions and is a candidate for phage therapy applications. Combining hybrid sequencing, RNA-Seq and mass spectrometry allowed us to accurately annotate its 286,783 bp genome with 461 coding regions including four non-coding RNAs (ncRNAs) and 93 virion-associated proteins. PA5oct relies on the host RNA polymerase for the infection cycle and RNA-Seq revealed a gradual take-over of the total cell transcriptome from 21% in early infection to 93% in late infection. PA5oct is not organized into strictly contiguous regions of temporal transcription, but some genomic regions transcribed in early, middle and late phases of infection can be discriminated. Interestingly, we observe regions showing limited transcription activity throughout the infection cycle. We show that PA5oct upregulates specific bacterial operons during infection including operons pncA-pncB1-nadE involved in NAD biosynthesis, psl for exopolysaccharide biosynthesis and nap for periplasmic nitrate reductase production. We also observe a downregulation of T4P gene products suggesting mechanisms of superinfection exclusion. We used the proteome of PA5oct to position our isolate amongst other phages using a gene-sharing network. This integrative omics study illustrates the molecular diversity of jumbo viruses and raises new questions towards cellular regulation and phage-encoded hijacking mechanisms.
Collapse
Affiliation(s)
- Cédric Lood
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
- Department of Microbial and Molecular Systems, Laboratory of Computational Systems Biology, KU LeuvenLeuvenBelgium
| | - Katarzyna Danis‐Wlodarczyk
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
- Department of Pathogen Biology and ImmunologyInstitute of Genetics and Microbiology, University of WroclawWroclawPoland
| | - Bob G. Blasdel
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Ho Bin Jang
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Dieter Vandenheuvel
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Yves Briers
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| | - Jean‐Paul Noben
- Biomedical Research Institute and Transnational University LimburgHasselt UniversityDiepenbeekBelgium
| | - Vera van Noort
- Department of Microbial and Molecular Systems, Laboratory of Computational Systems Biology, KU LeuvenLeuvenBelgium
- Institute of Biology, Leiden UniversityLeidenThe Netherlands
| | - Zuzanna Drulis‐Kawa
- Department of Pathogen Biology and ImmunologyInstitute of Genetics and Microbiology, University of WroclawWroclawPoland
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU LeuvenLeuvenBelgium
| |
Collapse
|
37
|
Serwer P, Wright ET. In-Gel Isolation and Characterization of Large (and Other) Phages. Viruses 2020; 12:v12040410. [PMID: 32272774 PMCID: PMC7232213 DOI: 10.3390/v12040410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022] Open
Abstract
We review some aspects of the rapid isolation of, screening for and characterization of jumbo phages, i.e., phages that have dsDNA genomes longer than 200 Kb. The first aspect is that, as plaque-supporting gels become more concentrated, jumbo phage plaques become smaller. Dilute agarose gels are better than conventional agar gels for supporting plaques of both jumbo phages and, prospectively, the even larger (>520 Kb genome), not-yet-isolated mega-phages. Second, dilute agarose gels stimulate propagation of at least some jumbo phages. Third, in-plaque techniques exist for screening for both phage aggregation and high-in-magnitude, negative average electrical surface charge density. The latter is possibly correlated with high phage persistence in blood. Fourth, electron microscopy of a thin section of a phage plaque reveals phage type, size and some phage life cycle information. Fifth, in-gel propagation is an effective preparative technique for at least some jumbo phages. Sixth, centrifugation through sucrose density gradients is a relatively non-destructive jumbo phage purification technique. These basics have ramifications in the development of procedures for (1) use of jumbo phages for phage therapy of infectious disease, (2) exploration of genomic diversity and evolution and (3) obtaining accurate metagenomic analyses.
Collapse
|