1
|
Chen C, Tang X, Liao C, Huang X, Zhang M, Zhang Y, Wang P, Yang S, Li P, Chen C. Enhancing Lignocellulose Degradation and Mycotoxin Reduction in Co-Composting with Bacterial Inoculation. Microorganisms 2025; 13:677. [PMID: 40142569 PMCID: PMC11946631 DOI: 10.3390/microorganisms13030677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
The burgeoning global silage industry has precipitated challenges related to the sustainable utilization of mycotoxin-contaminated silage. To understand the effect of bio-enhancement on lignocellulose degradation and mycotoxin reduction, mycotoxin-contaminated silage and rape straw were co-composted without (CK) or with different bacterial agents and their combinations. Compared to CK, the inoculation of Weissella paramesenteroides and Bacillus subtilis could increase the degradation rate of cellulose by 39.24% and lignin by 22.31% after composting. Inoculation of W. paramesenteroides and Paenibacillus sp. significantly enhanced cellulose and lignin degradation rates by 26.75% and 15.48%, respectively. Furthermore, this treatment significantly reduced mycotoxin levels (p < 0.05), including Aflatoxin B1 (AFB1, 64.48% reduction), T-2 toxin (65.02%), Ochratoxin A (OTA, 61.30%), Zearalenone (ZEN, 67.67%), and Vomitoxin (DON, 48.33%). Inoculation with Paenibacillus sp. and other bacteria increased total nitrogen by 48.34-65.52% through enhancing microbiological activity. Therefore, Paenibacillus sp. in combination with other bacteria could increase compost efficiency and reduce mycotoxin presence for better and safer utilization of agricultural waste by-products, enabling faster conversion of contaminated silage into safe soil amendments, which could reduce agricultural waste management costs.
Collapse
Affiliation(s)
- Cheng Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China; (C.C.); (X.T.); (C.L.); (X.H.); (M.Z.); (Y.Z.); (P.W.); (S.Y.); (P.L.)
| | - Xiaolong Tang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (C.C.); (X.T.); (C.L.); (X.H.); (M.Z.); (Y.Z.); (P.W.); (S.Y.); (P.L.)
| | - Chaosheng Liao
- College of Animal Science, Guizhou University, Guiyang 550025, China; (C.C.); (X.T.); (C.L.); (X.H.); (M.Z.); (Y.Z.); (P.W.); (S.Y.); (P.L.)
| | - Xiaokang Huang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (C.C.); (X.T.); (C.L.); (X.H.); (M.Z.); (Y.Z.); (P.W.); (S.Y.); (P.L.)
| | - Mingjie Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (C.C.); (X.T.); (C.L.); (X.H.); (M.Z.); (Y.Z.); (P.W.); (S.Y.); (P.L.)
| | - Yubo Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (C.C.); (X.T.); (C.L.); (X.H.); (M.Z.); (Y.Z.); (P.W.); (S.Y.); (P.L.)
| | - Pan Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (C.C.); (X.T.); (C.L.); (X.H.); (M.Z.); (Y.Z.); (P.W.); (S.Y.); (P.L.)
| | - Siqi Yang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (C.C.); (X.T.); (C.L.); (X.H.); (M.Z.); (Y.Z.); (P.W.); (S.Y.); (P.L.)
| | - Ping Li
- College of Animal Science, Guizhou University, Guiyang 550025, China; (C.C.); (X.T.); (C.L.); (X.H.); (M.Z.); (Y.Z.); (P.W.); (S.Y.); (P.L.)
- Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China; (C.C.); (X.T.); (C.L.); (X.H.); (M.Z.); (Y.Z.); (P.W.); (S.Y.); (P.L.)
- Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Zhao S, Sun Y, Su L, Yan L, Lin X, Long Y, Zhang A, Zhao Q. Significant Enrichment of Potential Pathogenic Fungi in Soil Mediated by Flavonoids, Phenolic Acids, and Organic Acids. J Fungi (Basel) 2025; 11:154. [PMID: 39997448 PMCID: PMC11856650 DOI: 10.3390/jof11020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
It is well established that root exudates play a crucial role in shaping the assembly of plant rhizosphere microbial communities. Nonetheless, our understanding of how different types of exudates influence the abundance of potential pathogens in soil remains insufficient. Investigating the effects of root exudates on soil-dwelling pathogenic fungi is imperative for a comprehensive understanding of plant-fungal interactions within soil ecosystems and for maintaining soil health. This study aimed to elucidate the effects of the principal components of root exudates-flavonoids (FLA), phenolic acids (PA), and organic acids (OA)-on soil microbial communities and soil properties, as well as to investigate their mechanisms of action on soil potential pathogenic fungi. The results demonstrated that the addition of these components significantly modified the composition and diversity of soil microbial communities, with OA treatment notably altering the composition of dominant microbial taxa. Furthermore, the introduction of these substances facilitated the proliferation of saprophytic fungi. Additionally, the incorporation of flavonoids, phenolic acids, and organic acids led to an increased abundance of potential pathogenic fungi in the soil, particularly in the FLA and PA treatments. It was observed that the addition of these substances enhanced soil fertility, pH, and antioxidant enzyme activity. Specifically, FLA and PA treatments reduced the abundance of dominant microbial taxa, whereas OA treatment altered the composition of these taxa. These findings suggest that the inclusion of flavonoids, phenolic acids, and organic acids could potentially augment the enrichment of soil potential pathogenic fungi by modulating soil properties and enzymatic activities. These results offer valuable insights into the interactions between plants and fungal communities in soil ecosystems and provide a scientific foundation for the management and maintenance of soil health.
Collapse
Affiliation(s)
- Shaoguan Zhao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Genetic Resources Utilization of Aromatic Beverage Crops, Ministry of Agriculture and Rural Affairs/Hainan Key Laboratory of Genetic Improvement and Quality Control of Tropical Sweet and Spicy Beverage Crops, Wanning 571533, China; (S.Z.)
| | - Yan Sun
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Genetic Resources Utilization of Aromatic Beverage Crops, Ministry of Agriculture and Rural Affairs/Hainan Key Laboratory of Genetic Improvement and Quality Control of Tropical Sweet and Spicy Beverage Crops, Wanning 571533, China; (S.Z.)
| | - Lanxi Su
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Genetic Resources Utilization of Aromatic Beverage Crops, Ministry of Agriculture and Rural Affairs/Hainan Key Laboratory of Genetic Improvement and Quality Control of Tropical Sweet and Spicy Beverage Crops, Wanning 571533, China; (S.Z.)
| | - Lin Yan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Genetic Resources Utilization of Aromatic Beverage Crops, Ministry of Agriculture and Rural Affairs/Hainan Key Laboratory of Genetic Improvement and Quality Control of Tropical Sweet and Spicy Beverage Crops, Wanning 571533, China; (S.Z.)
| | - Xingjun Lin
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Genetic Resources Utilization of Aromatic Beverage Crops, Ministry of Agriculture and Rural Affairs/Hainan Key Laboratory of Genetic Improvement and Quality Control of Tropical Sweet and Spicy Beverage Crops, Wanning 571533, China; (S.Z.)
| | - Yuzhou Long
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Genetic Resources Utilization of Aromatic Beverage Crops, Ministry of Agriculture and Rural Affairs/Hainan Key Laboratory of Genetic Improvement and Quality Control of Tropical Sweet and Spicy Beverage Crops, Wanning 571533, China; (S.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| | - Ang Zhang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Genetic Resources Utilization of Aromatic Beverage Crops, Ministry of Agriculture and Rural Affairs/Hainan Key Laboratory of Genetic Improvement and Quality Control of Tropical Sweet and Spicy Beverage Crops, Wanning 571533, China; (S.Z.)
| | - Qingyun Zhao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Genetic Resources Utilization of Aromatic Beverage Crops, Ministry of Agriculture and Rural Affairs/Hainan Key Laboratory of Genetic Improvement and Quality Control of Tropical Sweet and Spicy Beverage Crops, Wanning 571533, China; (S.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China
| |
Collapse
|
3
|
Kerry R, Ingram B, Abbas HK, Ahlborn G. An Investigation of the Spatial Arrangement of Mycotoxin Build-Up in Corn Stored Under Different Environmental Conditions. Toxins (Basel) 2024; 16:508. [PMID: 39728766 PMCID: PMC11728487 DOI: 10.3390/toxins16120508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Mycotoxins are toxins produced by fungi that contaminate many key food crops as they grow in the field and during storage. Specific mycotoxins are produced by different fungi. Each type of fungus and mycotoxin have their own optimal temperatures and water activities for growth and production. The legislative limits for various mycotoxins in foodstuffs to protect human health vary between countries but all commodities have their levels evaluated based on the concentrations from one aggregated grain sample. This approach assumes that the variation in toxin levels is uniform and random without spatial trends. This study investigates the spatial distribution of four mycotoxins (aflatoxin, deoxynivalenol, fumonisin and zearalenone) in bins of clean and dirty corn when stored in an environmental cabinet for two months under different temperature and humidity conditions. The bins of clean and dirty corn each had 12 CO2/humidity/temperature sensors installed in three layers, and samples were extracted for mycotoxin analysis from locations close to each sensor following storage. Using Mann-Whitney U and Kruskal-Wallis H statistical tests, significant differences were found between mycotoxin levels attributable to the different environmental conditions and spatial locations of samples. Variations in aflatoxin and zearalenone concentrations were most pronounced for the range of temperature and humidity conditions chosen. By understanding the patterns of spatial variability in mycotoxin concentrations and identifying zones at high risk of contamination, as well as what conditions are favorable, targeted interventions could be implemented to reduce food waste. This work also has implications for how levels of mycotoxins in foodstuffs are sampled and measured.
Collapse
Affiliation(s)
- Ruth Kerry
- Department of Geography, Brigham Young University, Provo, UT 84602, USA
| | - Ben Ingram
- Facultad de Ingeniería, Universidad de Talca, Camino a Los Niches Km. 1, Curicó 3344158, Chile
| | | | - Gene Ahlborn
- Department of Nutrition, Dietetics & Food Science, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
4
|
Pócsi I, Dijksterhuis J, Houbraken J, de Vries RP. Biotechnological potential of salt tolerant and xerophilic species of Aspergillus. Appl Microbiol Biotechnol 2024; 108:521. [PMID: 39560743 DOI: 10.1007/s00253-024-13338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Xerophilic fungi occupy versatile environments owing to their rich arsenal helping them successfully adapt to water constraints as a result of low relative humidity, high-osmolarity, and high-salinity conditions. The general term xerophilic fungi relates to organisms that tolerate and/or require reduced water activity, while halophilic and osmophilic are applied to specialized groups that require high salt concentrations or increased osmotic pressure, respectively. Species belonging to the family Aspergillaceae, and especially those classified in Aspergillus subgenus Aspergillus (sections Restricti and Aspergillus) and Polypaecilum, are particularly enriched in the group of osmophilic and salt-tolerant filamentous fungi. They produce an unprecedently wide spectrum of salt tolerant enzymes including proteases, peptidases, glutaminases, γ-glutamyl transpeptidases, various glycosidases such as cellulose-decomposing and starch-degrading hydrolases, lipases, tannases, and oxidareductases. These extremophilic fungi also represent a huge untapped treasure chest of yet-to-be-discovered, highly valuable, biologically active secondary metabolites. Furthermore, these organisms are indispensable agents in decolorizing textile dyes, degrading xenobiotics and removing excess ions in high-salt environments. They could also play a role in fermentation processes at low water activity leading to the preparation of daqu, meju, and tea. Considering current and future agricultural applications, salt-tolerant and osmophilic Aspergilli may contribute to the biosolubilization of phosphate in soil and the amelioration salt stress in crops. Transgenes from halophile Aspergilli may find promising applications in the engineering of salt stress and drought-tolerant agricultural crops. Aspergilli may also spoil feed and food and raise mycotoxin concentrations above the permissible doses and, therefore, the development of novel feed and food preservation technologies against these Aspergillus spp. is also urgently needed. On the other hand, some xerophilic Aspergilli have been shown to be promising biological control agents against mites. KEY POINTS: • Salt tolerant and osmophilic Aspergilli can be found in versatile environments • These fungi are rich resources of valuable enzymes and secondary metabolites • Biotechnological and agricultural applications of these fungi are expanding.
Collapse
Affiliation(s)
- István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
- HUN-REN-UD Fungal Stress Biology Research Group, Debrecen, Egyetem tér 1., 4032, Debrecen, Hungary.
| | - Jan Dijksterhuis
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jos Houbraken
- Food and Indoor Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Uppsalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
5
|
El-Shahir AA, Alzamel NM, Abuzaid AO, Loutfy N, Alwaleed EA. Antifungal Properties of Sargassum cinereum and Padina boergesenii Extracts Against Fungi Associated with Strawberry Fruits Concerning Mycotoxin Production. PLANTS (BASEL, SWITZERLAND) 2024; 13:3115. [PMID: 39599324 PMCID: PMC11597142 DOI: 10.3390/plants13223115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024]
Abstract
Strawberries are susceptible to decay and destruction while being harvested and stored. This study had the following objectives: (1) the documentation of fungi and mycotoxin production associated with infected strawberry fruits; (2) the evaluation of the primary phytochemicals of Sargassum cinereum and Padina boergesenii by gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared (FT-IR) analysis to identify the active chemical composition of the seaweed extracts; and (3) the assessment of the antifungal activity of five extracts from brown seaweeds both in vitro and in vivo against fungal infections on fresh fruit under post-harvest conditions. The most common fungi were Aspergillus niger 14.36%, Botrytis cinerea 38.29%, and Mucor irregularis 16.88%. Padina boergesenii acetone extract had the highest in vitro antifungal activity. The methanol extracts of both S. cinereum and P. boergesenii were effective against the pathogenicity and aggressiveness (in vivo) on post-harvest strawberry fruits. B. cinerea could produce botrydial and dihydrobotrydial toxins with concentrations of 8.14 µg/mL and 4.26 µg/mL, respectively. A. niger could produce ochratoxin A with a concentration of 10.05 µg/mL. The present study demonstrates that the extracts of macroalgae S. cinereum and P. boergesenii contain secondary metabolites and antioxidants, indicating their potential utilization in antifungal applications.
Collapse
Affiliation(s)
- Amany A. El-Shahir
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt; (A.A.E.-S.); (N.L.); (E.A.A.)
| | - Nurah M. Alzamel
- Department of Biology, College of Sciences and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Amani Omar Abuzaid
- Biology Department, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia;
| | - Naglaa Loutfy
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt; (A.A.E.-S.); (N.L.); (E.A.A.)
| | - Eman A. Alwaleed
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt; (A.A.E.-S.); (N.L.); (E.A.A.)
| |
Collapse
|
6
|
Zakaria L. An Overview of Aspergillus Species Associated with Plant Diseases. Pathogens 2024; 13:813. [PMID: 39339004 PMCID: PMC11435247 DOI: 10.3390/pathogens13090813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The genus Aspergillus contains several species that are important plant pathogens. Plant pathogenic Aspergillus spp. affect agricultural crops in the field as well as after harvest, often associated with corn ear rot, cotton boll rot, peanut yellow mold, black mold of onion and garlic, fruit rot on grapes, pomegranates, olives, citrus, and apples. Coffee berries and coffee beans as well as tree nuts are also frequently infected by Aspergillus spp. Some of the plant pathogenic Aspergillus spp. are also mycotoxigenic, produced mycotoxin in the plant tissues leading to contamination of agricultural products. Over the years, reports of plant diseases caused by Aspergillus in various crops have increased, suggesting they are commonly encountered plant pathogens. This review focuses on agricultural crops or cultivated plants infected by Aspergillus spp. The compilation of plant pathogenic Aspergillus spp. provides information to mycologists, particularly those involved in plant pathology and crop protection, with updated information on plant diseases caused by various species of Aspergillus. The updated information also includes the locality or location, province, state and the country. The knowledge on the prevalence and geographic distribution of plant pathogenic Aspergillus spp. is beneficial in the application of crop protection.
Collapse
Affiliation(s)
- Latiffah Zakaria
- School of Biological Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia
| |
Collapse
|
7
|
Hu M, Wang L, Su D, Yuan Q, Xiao C, Guo L, Wang M, Kang C, Zhang J, Zhou T. Evaluation of mycotoxins, mycobiota and toxigenic fungi in the traditional medicine Radix Dipsaci. Front Microbiol 2024; 15:1454683. [PMID: 39372267 PMCID: PMC11452847 DOI: 10.3389/fmicb.2024.1454683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Medicinal herbs have been increasingly used for therapeutic purposes against a diverse range of human diseases worldwide. However, inevitable contaminants, including mycotoxins, in medicinal herbs can cause serious problems for humans despite their health benefits. The increasing consumption of medicinal plants has made their use a public health problem due to the lack of effective surveillance of the use, efficacy, toxicity, and quality of these natural products. Radix Dipsaci is commonly utilized in traditional Chinese medicine and is susceptible to contamination with mycotoxins. Here, we evaluated the mycotoxins, mycobiota and toxigenic fungi in the traditional medicine Radix Dipsaci. A total of 28 out of 63 Radix Dipsaci sample batches (44.4%) were found to contain mycotoxins. Among the positive samples, the contamination levels of AFB1, AFG1, AFG2, and OTA in the positive samples ranged from 0.52 to 32.13 μg/kg, 5.14 to 20.05 μg/kg, 1.52 to 2.33 μg/kg, and 1.81 to 19.43 μg/kg respectively, while the concentrations of ZEN and T-2 were found to range from 2.85 to 6.33 μg/kg and from 2.03 to 2.53 μg/kg, respectively. More than 60% of the contaminated samples were combined with multiple mycotoxins. Fungal diversity and community were altered in the Radix Dipsaci contaminated with various mycotoxins. The abundance of Aspergillus and Fusarium increased in the Radix Dipsaci contaminated with aflatoxins (AFs) and ZEN. A total of 95 strains of potentially toxigenic fungi were isolated from the Radix Dipsaci samples contaminated with mycotoxins, predominantly comprising Aspergillus (73.7%), Fusarium (20.0%), and Penicillium (6.3%). Through morphological identification, molecular identification, mycotoxin synthase gene identification and toxin production verification, we confirmed that AFB1 and AFG1 primarily derive from Aspergillus flavus, OTA primarily derives from Aspergillus westerdijkiae, ZEN primarily derives from Fusarium oxysporum, and T-2 primarily derives from Fusarium graminearum in Radix Dipsaci. These data can facilitate our comprehension of prevalent toxigenic fungal species and contamination levels in Chinese herbal medicine, thereby aiding the establishment of effective strategies for prevention, control, and degradation to mitigate the presence of fungi and mycotoxins in Chinese herbal medicine.
Collapse
Affiliation(s)
- Min Hu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lulu Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dapeng Su
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qingsong Yuan
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lanping Guo
- State Key Laboratory of Dao-di Herbs, Beijng, China
| | - Meidan Wang
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
8
|
Begum K, Hasan N, Shammi M. Selective biotic stressors' action on seed germination: A review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112156. [PMID: 38866107 DOI: 10.1016/j.plantsci.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
In the realm of plant biology and agriculture, seed germination serves as a fundamental process with far-reaching implications for crop production and environmental health. This comprehensive review seeks to unravel the intricate web of interactions between some biotic stressors and seed germination, addressing the pertinent issue of how these stressors influence seed germination. Different chemicals produced by interacting plants (different parts), fungi, bacteria, or insects can either promote or inhibit seed germination. Releasing chemicals that modulate signaling pathways and cellular processes significantly disrupt essential cellular functions. This disruption leads to diverse germination outcomes, introducing additional layers of complexity to this regulatory landscape. The chemicals perturb enzyme activity and membrane integrity, imposing unique challenges on the germination process. Understanding the mechanisms- how allelochemicals, mycotoxins, or bacterial toxins affect seed germination or the modes of action holds promise for more sustainable agricultural practices, enhanced pest control, and improved environmental outcomes. In sum, this review contributes to a fundamental exposition of the pivotal role of biotic stressors in shaping the germination of seeds.
Collapse
Affiliation(s)
- Kohinoor Begum
- Tropical Crop Improvement Laboratory, Saga University, Saga 840-8503, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Nazmul Hasan
- Tropical Crop Improvement Laboratory, Saga University, Saga 840-8503, Japan; United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan; Fruit Science Laboratory, Saga University, Saga 840-8502, Japan.
| | - Mashura Shammi
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| |
Collapse
|
9
|
Bento de Carvalho T, Silva BN, Tomé E, Teixeira P. Preventing Fungal Spoilage from Raw Materials to Final Product: Innovative Preservation Techniques for Fruit Fillings. Foods 2024; 13:2669. [PMID: 39272437 PMCID: PMC11394069 DOI: 10.3390/foods13172669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Spoilage fungi are a significant cause of financial loss in the food and beverage industry each year. These fungi thrive in challenging environments characterized by low acidity, low water activity and high sugar content, all of which are common in fruit fillings used in pastry products. Fruit fillings are therefore highly susceptible to fungal spoilage. Fungal growth can cause sensory defects in foods, such as changes in appearance, odor, flavor or texture, and can pose health risks due to the production of mycotoxins by certain mold species. To reduce food loss and waste and extend product shelf-life, it is critical that we prevent fungal spoilage. Synthetic chemicals such as sorbic acid and potassium sorbate are commonly used as preservatives to prevent fungal spoilage. However, with consumer demand for 'natural' and 'chemical-free' foods, research into clean-label preservative alternatives to replace chemical preservatives has increased. The objectives of this review are (i) to provide an overview of the sources of fungal contamination in fruit filling production systems, from pre-harvest of raw materials to storage of the final product, and to identify key control factors; and (ii) to discuss preservation techniques (both conventional and novel) that can prevent fungal growth and extend the shelf-life of fruit fillings.
Collapse
Affiliation(s)
- Teresa Bento de Carvalho
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Beatriz Nunes Silva
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Elisabetta Tomé
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
10
|
Wang S, Chen K, Guo J, Zhang P, Li Y, Xu Z, Cui L, Qiang Y. Identification of Pathogen Causing Bulb Rot in Fritillaria taipaiensis P. Y. Li and Establishment of Detection Methods. PLANTS (BASEL, SWITZERLAND) 2024; 13:2236. [PMID: 39204672 PMCID: PMC11360731 DOI: 10.3390/plants13162236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Fritillaria taipaiensis P. Y. Li (F. taipaiensis) is a traditional Chinese herbal medicine that has been used for over two millennia to treat cough and expectoration. However, the increasing cultivation of F. taipaiensis has led to the spread of bulb rot diseases. In this study, pathogens were isolated from rotten F. taipaiensis bulbs. Through molecular identification, pathogenicity testing, morphological assessment, and microscopy, Fusarium solani was identified as the pathogen causing bulb rot in F. taipaiensis. The colonization of F. solani in the bulbs was investigated through microscopic observation. The rapid and accurate detection of this pathogen will contribute to better disease monitoring and control. Loop-mediated isothermal amplification (LAMP) and qPCR methods were established to quickly and specifically identify this pathogen. These results provide valuable insights for further research on the prediction, rapid detection, and effective prevention and control of bulb rot in F. taipaiensis.
Collapse
Affiliation(s)
- Shijie Wang
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Keke Chen
- School of Biological and Environmental Engineering, Xi’an University, Xi’an 710065, China;
| | - Jiaqi Guo
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Panwang Zhang
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Yuchen Li
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Zhenghao Xu
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Langjun Cui
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Yi Qiang
- National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi’an 710119, China; (S.W.); (J.G.); (P.Z.); (Y.L.); (Z.X.)
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
11
|
Voloshchuk N, Irakoze Z, Kang S, Kellogg JJ, Wee J. Three Ecological Models to Evaluate the Effectiveness of Trichoderma spp. for Suppressing Aflatoxigenic Aspergillus flavus and Aspergillus parasiticus. Toxins (Basel) 2024; 16:314. [PMID: 39057954 PMCID: PMC11281256 DOI: 10.3390/toxins16070314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Chemical pesticides help reduce crop loss during production and storage. However, the carbon footprints and ecological costs associated with this strategy are unsustainable. Here, we used three in vitro models to characterize how different Trichoderma species interact with two aflatoxin producers, Aspergillus flavus and Aspergillus parasiticus, to help develop a climate-resilient biological control strategy against aflatoxigenic Aspergillus species. The growth rate of Trichoderma species is a critical factor in suppressing aflatoxigenic strains via physical interactions. The dual plate assay suggests that Trichoderma mainly suppresses A. flavus via antibiosis, whereas the suppression of A. parasiticus occurs through mycoparasitism. Volatile organic compounds (VOCs) produced by Trichoderma inhibited the growth of A. parasiticus (34.6 ± 3.3%) and A. flavus (20.9 ± 1.6%). The VOCs released by T. asperellum BTU and T. harzianum OSK-34 were most effective in suppressing A. flavus growth. Metabolites secreted by T. asperellum OSK-38, T. asperellum BTU, T. virens OSK-13, and T. virens OSK-36 reduced the growth of both aflatoxigenic species. Overall, T. asperellum BTU was the most effective at suppressing the growth and aflatoxin B1 production of both species across all models. This work will guide efforts to screen for effective biological control agents to mitigate aflatoxin accumulation.
Collapse
Affiliation(s)
- Nataliia Voloshchuk
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (N.V.); (Z.I.)
| | - Zilfa Irakoze
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (N.V.); (Z.I.)
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA;
- One Health Microbiome Center, HUCK Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Joshua J. Kellogg
- One Health Microbiome Center, HUCK Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Josephine Wee
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA; (N.V.); (Z.I.)
- One Health Microbiome Center, HUCK Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
12
|
Liu M, Xue R, Yang C, Han N, Hu Y, Gu K, Zhao J, Guan S, Su J, Jiang Y. Rotation with other crops slow down the fungal process in tobacco-growing soil. Sci Rep 2024; 14:14160. [PMID: 38898096 PMCID: PMC11187129 DOI: 10.1038/s41598-024-64735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
Continuous cultivation of tobacco could cause serious soil health problems, which could cause bacterial soil to change to fungal soil. In order to study the diversity and richness of fungal community in tobacco-growing soil under different crop rotation, three treatments were set up in this study: CK (tobacco continuous cropping); B (barley-tobacco rotation cropping) and R (oilseed rape-tobacco rotation cropping). The results of this study showed that rotation with other crops significantly decreased the soil fungal OTUs, and also decreased the community richness, evenness, diversity and coverage of fungal communities. Among them, B decreased the most. In the analysis of the composition and structure of the fungal community, it was found that the proportion of plant pathogens Nectriaceae decreased from 19.67% in CK to 5.63% in B, which greatly reduced the possibility of soil-borne diseases. In the analysis of the correlation between soil environmental factors and fungal communities, it was found that Filobasidiaceae had a strong correlation with TP and AP, and Erysiphaceae had a strong correlation with TK and AK. NO3--N and NH4+-N were the two environmental factors with the strongest correlation with fungal communities. The results of this study showed that rotation with other crops slowed down the process of soil fungi in tobacco-growing soil and changed the dominant species of soil fungi community. At the same time, crop rotation changed the diversity and richness of soil fungal community by changing the physical and chemical properties of soil.
Collapse
Affiliation(s)
- Ming Liu
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, 671000, Yunnan, China
- SouthWest University, Chongqing, 400715, China
| | - Rujun Xue
- Weishan City Branch of Yunnan Tobacco Company, Weishan, 672400, Yunnan, China
| | - Chengwei Yang
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, 671000, Yunnan, China
| | - Ningbo Han
- Weishan City Branch of Yunnan Tobacco Company, Weishan, 672400, Yunnan, China
| | - Yanxia Hu
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, 671000, Yunnan, China
| | - Kaiyuan Gu
- SouthWest University, Chongqing, 400715, China
| | - Jie Zhao
- SouthWest University, Chongqing, 400715, China
| | - Shuyue Guan
- SouthWest University, Chongqing, 400715, China
| | - Jiaen Su
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, 671000, Yunnan, China.
| | - Yonglei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China.
| |
Collapse
|
13
|
Plewa-Tutaj K, Krzyściak P, Dobrzycka A. Mycological air contamination level and biodiversity of airborne fungi isolated from the zoological garden air - preliminary research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43066-43079. [PMID: 38890249 PMCID: PMC11222260 DOI: 10.1007/s11356-024-33926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
The aim of this paper was to evaluate the degree of mycological air contamination and determine the taxonomic diversity of airborne fungi residing in the air of 20 different animal facilities in a zoological garden. The concentrations of fungi in the zoological garden were measured using a MAS-100 air sampler. The collected microorganisms were identified using the combination of molecular and morphological methods. The fungal concentration ranged from 50 to 3.65 × 104 CFU/m3 during the whole study. The quantitative analysis of the fungal aerosol showed that the obtained concentration values were lower than the recommended permissible limits (5 × 104 CFU/m3 for fungi). Environmental factors, including temperature and relative humidity, exerted a varying effect on the presence and concentration of isolated fungi. Relative humidity was shown to correlate positively with the concentration of fungal spores in the air of the facilities studied (rho = 0.57, p < 0.0021). In parallel, no significant correlation was established between temperature and total fungal concentration (rho = - 0.1, p < 0.2263). A total of 112 fungal strains belonging to 50 species and 10 genera were isolated. Penicillium was the dominant genera, including 58.9% of total fungal strains, followed by Aspergillus 25.89%, Cladosporium 3.57%, Talaromyces 3.57%, Mucor 1.78%, Schizophyllum 1.78%, Syncephalastrum 0.89%, Alternaria 0.89%, Absidia 0.89%, and Cunninghamella 0.89%. Our preliminary studies provide basic information about the fungal concentrations, as well as their biodiversity in zoological garden. Further studies are needed to generate additional data from long-term sampling in order to increase our understanding of airborne fungal composition in the zoological garden.
Collapse
Affiliation(s)
- Kinga Plewa-Tutaj
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wroclaw, Wrocław, 51-148, Poland.
| | - Paweł Krzyściak
- Department of Infection Control and Mycology, Chair of Microbiology, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| | - Aleksandra Dobrzycka
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wroclaw, Wrocław, 51-148, Poland
| |
Collapse
|
14
|
Yang Y, Zhong W, Wang Y, Yue Z, Zhang C, Sun M, Wang Z, Xue X, Gao Q, Wang D, Zhang Y, Zhang J. Isolation, identification, degradation mechanism and exploration of active enzymes in the ochratoxin A degrading strain Acinetobacter pittii AP19. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133351. [PMID: 38150759 DOI: 10.1016/j.jhazmat.2023.133351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Ochratoxin A (OTA) is a polyketide mycotoxin that commonly contaminates agricultural products and causes significant economic losses. In this study, the efficient OTA-degrading strain AP19 was isolated from vineyard soil and was identified as Acinetobacter pittii. Compared with growth in nutrient broth supplemented with OTA (OTA-NB), strain AP19 grew faster in nutrient broth (NB), but the ability of the resulting cell lysates to remove OTA was weaker. After cultivation in NB, the cell lysate of strain AP19 was able to remove 100% of 1 mg/L OTA within 18 h. The cell lysate fraction > 30 kDa degraded 100% of OTA within 12 h, while the fractions < 30 kDa were practically unable to degrade OTA. Further anion exchange chromatography of the > 30 kDa fraction yielded two peaks exhibiting significant OTA degradation activity. The degradation product was identified as OTα. Amino acid metabolism exhibited major transcriptional trends in the response of AP19 to OTA. The dacC gene encoding carboxypeptidase was identified as one of the contributors to OTA degradation. Soil samples inoculated with strain AP19 showed significant OTA degradation. These results provide significant insights into the discovery of novel functions in A. pittii, as well as its potential as an OTA decomposer.
Collapse
Affiliation(s)
- Yan Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Weitong Zhong
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanning Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhiwen Yue
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mi Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhao Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xianli Xue
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiang Gao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Depei Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ying Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jian Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
15
|
Bharose AA, Hajare ST, Narayanrao DR, Gajera HG, Prajapati HK, Singh SC, Upadhye V. Whole genome sequencing and annotation of Aspergillus flavus JAM-JKB-B HA-GG20. Sci Rep 2024; 14:18. [PMID: 38168670 PMCID: PMC10762212 DOI: 10.1038/s41598-023-50986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Groundnuts are mostly contaminated with the mold Aspergillus flavus which produces a carcinogenic mycotoxin called as aflatoxin. It is very important to understand the genetic factors underlying its pathogenicity, regulation, and biosynthesis of secondary metabolites and animal toxicities, but it still lacks useful information due to certain gaps in the era of modern technology. Therefore, the present study was considered to determine the key genes and metabolites involved in the biosynthesis of aflatoxin by using a molecular approach in a virulent strain of Aspergillus. The whole genome sequence of highly toxic and virulent Aspergillus isolates JAM-JKB-B HA-GG20 revealed 3,73,54,834 bp genome size, 2, 26, 257 number of contigs with N50 value of 49,272 bp, 12,400 genes and 48.1% of GC contained respectively. The genome sequence was compared with other known aflatoxin producing and non-producing genome of Aspergillus spp. and 61 secondary metabolite (SM) gene clusters were annotated with the toxic strain JAM-JKB-BHA-GG20 which showed similarity with other Aspergillus spp. A total number of eight genes (ver-1, AflR, pksA, uvm8, omt1, nor-1, Vha and aflP) were identified related to biosynthesis of aflatoxin and ochratoxin. Also, 69 SSR with forward and reverse primers and 137 di and tri nucleotide motifs were identified in the nucleotide sequence region related to aflatoxin gene pathway. The genes and putative metabolites identified in this study are potentially involved in host invasion and pathogenicity. As such, the genomic information obtained in this study is helpful in understanding aflatoxin gene producing pathway in comparison to other Aspergillus spp. and predicted presence of other secondary metabolites clusters viz. Nrps, T1pks etc. genes associated with a biosynthesis of OTA mycotoxin.
Collapse
Affiliation(s)
| | | | | | - H G Gajera
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362001, Gujarat, India
| | | | | | | |
Collapse
|
16
|
Sipriyadi S, Khairina Y, Masrukhin M, Yulandi A, Wibowo RH, Nisa DT. Bacterial community structure in the rhizosphere of fungi-infected Amorphophallus titanum. Can J Microbiol 2023; 69:439-448. [PMID: 37364294 DOI: 10.1139/cjm-2022-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The rhizosphere is a narrow soil area directly affected by plant root exudates. Microbes inhabiting the rhizosphere have been widely studied for their beneficial effects on plant nutrition, growth, and disease prevention. Many factors affect the rhizosphere microbial composition, including plant pathogen infection. Here, we analyzed the bacterial community structure in the rhizosphere of fungi-infected Amorphophallus titanum. Soil samples were collected from rhizosphere and non-rhizosphere areas of fungi-infected A. titanum. The 16S metagenomic analysis was conducted to investigate the bacterial community of the samples by amplifying the V3-V4 region. The results showed that the phylum Firmicutes was prevalent in the rhizosphere, whereas the phyla Proteobacteria, Acidobacteria, and Actinobacteria were limited. Some major fungal genera were isolated from infected tubers and rhizosphere soil of A. titanum, including Trichoderma sp., Aspergillus sp., Perenniporia sp., and Cerrena sp. The fungal-isolate Aspergillus spp. is a well-known agricultural pest in several reports. While Cerrena sp. was reported to be pathogenic in plants, including the family of Arecaceae. Overall, the data revealed a potential relationship between fungal infections and the dominant bacterial community in the rhizosphere of A. titanum. Additionally, this research may contribute to the development of microbe-based technology to mitigate diseases in A. titanum.
Collapse
Affiliation(s)
- Sipriyadi Sipriyadi
- Department of Biology. Faculty of Mathematics and Natural Sciences, Bengkulu University, Bengkulu, Indonesia
| | - Yeni Khairina
- Research Center for Applied Microbiology, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor Km 46, Cibinong 16911, Indonesia
| | - Masrukhin Masrukhin
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor Km 46, Cibinong 16911, Indonesia
| | - Adi Yulandi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Risky Hadi Wibowo
- Department of Biology. Faculty of Mathematics and Natural Sciences, Bengkulu University, Bengkulu, Indonesia
| | - Dhiatama Tauhida Nisa
- Department of Biology. Faculty of Mathematics and Natural Sciences, Bengkulu University, Bengkulu, Indonesia
| |
Collapse
|
17
|
Giorni P, Zhang L, Bavaresco L, Lucini L, Battilani P. Metabolomics Insight into the Variety-Mediated Responses to Aspergillus carbonarius Infection in Grapevine Berries. ACS OMEGA 2023; 8:32352-32364. [PMID: 37720731 PMCID: PMC10500680 DOI: 10.1021/acsomega.3c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/03/2023] [Indexed: 09/19/2023]
Abstract
Limited knowledge regarding the susceptibility of grape varieties to ochratoxin A (OTA)-producing fungi is available to date. This study aimed to investigate the susceptibility of different grape varieties to Aspergillus carbonarius concerning OTA contamination and modulation at the metabolome level. Six grape varieties were selected, sampled at early veraison and ripening, artificially inoculated with A. carbonarius, and incubated at two temperature regimes. Significant differences were observed across cultivars, with Barbera showing the highest incidence of moldy berries (around 30%), while Malvasia and Ortrugo showed the lowest incidence (about 2%). OTA contamination was the lowest in Ortrugo and Malvasia, and the highest in Croatina, although it was not significantly different from Barbera, Merlot, and Sauvignon Blanc. Fungal development and mycotoxin production changed with grape variety; the sugar content in berries could also have played a role. Unsupervised multivariate statistical analysis from metabolomic fingerprints highlighted cultivar-specific responses, although a more generalized response was observed by supervised OPLS-DA modeling. An accumulation of nitrogen-containing compounds (alkaloids and glucosinolates), phenylpropanoids, and terpenoids, in addition to phytoalexins, was observed in all samples. A broader modulation of the metabolome was observed in white grapes, which were less contaminated by OTA. Jasmonates and oxylipins were identified as critical upstream modulators in metabolomic profiles. A direct correlation between the plant defense machinery and OTA was not observed, but the information was acquired and can contribute to optimizing preventive actions.
Collapse
Affiliation(s)
- Paola Giorni
- Department
of Sustainable Crop Production, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Leilei Zhang
- Department
for Sustainable Food Process, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Bavaresco
- Department
of Sustainable Crop Production, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department
for Sustainable Food Process, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Paola Battilani
- Department
of Sustainable Crop Production, Università
Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
18
|
Nji QN, Babalola OO, Mwanza M. Soil Aspergillus Species, Pathogenicity and Control Perspectives. J Fungi (Basel) 2023; 9:766. [PMID: 37504754 PMCID: PMC10381279 DOI: 10.3390/jof9070766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Five Aspergillus sections have members that are established agricultural pests and producers of different metabolites, threatening global food safety. Most of these pathogenic Aspergillus species have been isolated from almost all major biomes. The soil remains the primary habitat for most of these cryptic fungi. This review explored some of the ecological attributes that have contributed immensely to the success of the pathogenicity of some members of the genus Aspergillus over time. Hence, the virulence factors of the genus Aspergillus, their ecology and others were reviewed. Furthermore, some biological control techniques were recommended. Pathogenic effects of Aspergillus species are entirely accidental; therefore, the virulence evolution prediction model in such species becomes a challenge, unlike their obligate parasite counterparts. In all, differences in virulence among organisms involved both conserved and species-specific genetic factors. If the impacts of climate change continue, new cryptic Aspergillus species will emerge and mycotoxin contamination risks will increase in all ecosystems, as these species can metabolically adjust to nutritional and biophysical challenges. As most of their gene clusters are silent, fungi continue to be a source of underexplored bioactive compounds. The World Soil Charter recognizes the relevance of soil biodiversity in supporting healthy soil functions. The question of how a balance may be struck between supporting healthy soil biodiversity and the control of toxic fungi species in the field to ensure food security is therefore pertinent. Numerous advanced strategies and biocontrol methods so far remain the most environmentally sustainable solution to the control of toxigenic fungi in the field.
Collapse
Affiliation(s)
- Queenta Ngum Nji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
19
|
Nawaf A. Mycotoxin source and its exposure causing mycotoxicoses. Bioinformation 2023; 19:348-357. [PMID: 37822835 PMCID: PMC10563570 DOI: 10.6026/97320630019348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/30/2023] [Accepted: 04/30/2023] [Indexed: 10/13/2023] Open
Abstract
Mycotoxins are toxic compounds produced by fungi such as Aspergillus, Penicillium, Rhizopus, Fusarium spp., and mushrooms. They are present in the mycelium or in the spores of the fungus. They cause human health problems once ingested. This is common in countries with high ambient temperature and relative humidity such as in the tropical regions. The consumption of moldy food and feeds are injurious to people and animals. The linked acute and chronic diseases target organs in humans and animals. The clinical symptoms depend on the intrinsic toxic features of the mycotoxin, the quantity, and length of exposure. The diseases caused by ingesting mycotoxins are reffred as mycotoxicoses. Therefore, it is of interest to document known data on the mycotoxin source and its exposure causing human hazards leading to mycotoxicoses.
Collapse
Affiliation(s)
- Alshammari Nawaf
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
20
|
Pushparaj K, Meyyazhagan A, Bhotla HK, Arumugam VA, Pappuswamy M, Vadivalagan C, Hakeem KR, Balasubramanian B, Liu W, Mousavi Khaneghah A. The crux of bioactive metabolites in endophytic and thermophilic fungi and their proximal prospects in biotechnological and industrial domains. Toxicon 2023; 223:107007. [PMID: 36563862 DOI: 10.1016/j.toxicon.2022.107007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Fungi are ubiquitous in distribution and are found in grasses to hot springs. Their mode of nutrition provides sustenance for living and propagation. Ironically, varied fungal species have developed customized strategies for protection and survival by producing diverse secondary metabolites. The review aimed to project the contrasting potential features of the endophytic and thermophilic fungi groups. The metabolites and the enzymes of endophytic and thermophilic fungi served as the backbone to thrive and adapt within-host and in extreme conditions like higher pH, heat, and salinity, respectively. Identification, knowledge of their biochemistry and pathway, exploration, production, and utilization of these bioactive molecules in various commercial, industrial, and pharmaceutical domains were briefly discussed. The uniqueness of endophytes includes stress management and improved biomass production of the host, green fuel production, omnipresence, selected triple-symbiosis with the virus, synthesis of polyketides, and other active metabolites are widely used in biomedical applications and agriculture management. This review attempted to limelight the specific applications of thermophilic fungal metabolites and the roles of thermo-stable enzymes in bioprospecting. Moreover, probing the metabolites of thermophiles rendered novel antibiotic compounds, which were proven effective against multi-drug resistant bacteria and harboured the potential to curtail infectious diseases.
Collapse
Affiliation(s)
- Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to Be University), Bengaluru, Karnataka, 560076, India
| | - Haripriya Kuchi Bhotla
- Department of Life Science, CHRIST (Deemed to Be University), Bengaluru, Karnataka, 560076, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Manikantan Pappuswamy
- Department of Life Science, CHRIST (Deemed to Be University), Bengaluru, Karnataka, 560076, India
| | | | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | | | - Wenchao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. WacławDąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland; Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan.
| |
Collapse
|
21
|
Boguś MI, Wrońska AK, Kaczmarek A, Drozdowski M, Laskowski Z, Myczka A, Cybulska A, Gołębiowski M, Chwir-Gołębiowska A, Siecińska L, Mokijewska E. A comprehensive analysis of chemical and biological pollutants (natural and anthropogenic origin) of soil and dandelion (Taraxacum officinale) samples. PLoS One 2023; 18:e0280810. [PMID: 36662824 PMCID: PMC9858760 DOI: 10.1371/journal.pone.0280810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/08/2023] [Indexed: 01/21/2023] Open
Abstract
A range of analytical methods (GC-MS, LC-MS, voltammetry, microbiological and microscopic techniques, PCR) was used to assay a range of potential chemical and biological contaminants in soil and dandelion samples. The results provide the first comprehensive safety analysis of dandelion as a herbal product. Samples were collected from three different sites in Poland where the local population collects dandelion plants for their own consumption: Rudenka (a mountain meadow in the European Ecological Network of Natura 2000 protection area, free of agrotechnical treatments for over 30 years), Warszawa 1 (dense single-family housing with heavy traffic), and Warszawa 2 (recreation area with heavy traffic near a coal-fired heat and power plant). The assays of heavy metals and other chemical pollutants (PAHs, PCBs, dioxins, pesticides, mycotoxins) confirm that all collected soil and dandelion samples were chemically pure; however, 95 species of pathogenic bacteria were detected, including "carnivorous" Vibrio vulnificus, zoonotic Pasteurella pneumotropica, Pasteurella canis, Staphylococcus pseudintermedius, Staphylococcus lentus and Francisella tularensis as well as 14 species of pathogenic fungi and one protozoan parasite (Giardia intestinalis). The discovery of septicemia agents V. vulnificus, Fusobacterium mortiferum and Rahnella aquatilis in the soil surrounding dandelion roots and in the flowers, G. intestinalis in dandelion leaves and roots samples, all collected in Warsaw, is highly disturbing. This finding underlines the need for increased caution when collecting dandelion in densely populated areas with a large population of pets. Thorough washing of the harvested plants is necessary before using them for consumption, especially in the case of making salads from fresh dandelion leaves, which is becoming increasingly popular among people leading healthy and an environmentally friendly lifestyle.
Collapse
Affiliation(s)
- Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warszawa, Poland
- BIOMIBO, Warszawa, Poland
| | - Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warszawa, Poland
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warszawa, Poland
| | - Mikołaj Drozdowski
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warszawa, Poland
| | - Zdzisław Laskowski
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warszawa, Poland
| | - Anna Myczka
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warszawa, Poland
| | - Aleksandra Cybulska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warszawa, Poland
| | - Marek Gołębiowski
- Department of Environmental Analysis, Laboratory of Analysis of Natural Compounds, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | | | | |
Collapse
|
22
|
Tsers I, Marenina E, Meshcherov A, Petrova O, Gogoleva O, Tkachenko A, Gogoleva N, Gogolev Y, Potapenko E, Muraeva O, Ponomareva M, Korzun V, Gorshkov V. First genome-scale insights into the virulence of the snow mold causal fungus Microdochium nivale. IMA Fungus 2023; 14:2. [PMID: 36627722 PMCID: PMC9830731 DOI: 10.1186/s43008-022-00107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Pink snow mold, caused by a phytopathogenic and psychrotolerant fungus, Microdochium nivale, is a severe disease of winter cereals and grasses that predominantly occurs under snow cover or shortly after its melt. Snow mold has significantly progressed during the past decade, often reaching epiphytotic levels in northern countries and resulting in dramatic yield losses. In addition, M. nivale gradually adapts to a warmer climate, spreading to less snowy territories and causing different types of plant diseases throughout the growing period. Despite its great economic importance, M. nivale is poorly investigated; its genome has not been sequenced and its crucial virulence determinants have not been identified or even predicted. In our study, we applied a hybrid assembly based on Oxford Nanopore and Illumina reads to obtain the first genome sequence of M. nivale. 11,973 genes (including 11,789 protein-encoding genes) have been revealed in the genome assembly. To better understand the genetic potential of M. nivale and to obtain a convenient reference for transcriptomic studies on this species, the identified genes were annotated and split into hierarchical three-level functional categories. A file with functionally classified M. nivale genes is presented in our study for general use. M. nivale gene products that best meet the criteria for virulence factors have been identified. The genetic potential to synthesize human-dangerous mycotoxins (fumonisin, ochratoxin B, aflatoxin, and gliotoxin) has been revealed for M. nivale. The transcriptome analysis combined with the assays for extracellular enzymatic activities (conventional virulence factors of many phytopathogens) was carried out to assess the effect of host plant (rye) metabolites on the M. nivale phenotype. In addition to disclosing plant-metabolite-upregulated M. nivale functional gene groups (including those related to host plant protein destruction and amino acid metabolism, xenobiotic detoxication (including phytoalexins benzoxazinoids), cellulose destruction (cellulose monooxygenases), iron transport, etc.), the performed analysis pointed to a crucial role of host plant lipid destruction and fungal lipid metabolism modulation in plant-M. nivale interactions.
Collapse
Affiliation(s)
- Ivan Tsers
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Ekaterina Marenina
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Azat Meshcherov
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Olga Petrova
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Olga Gogoleva
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Alexander Tkachenko
- grid.35915.3b0000 0001 0413 4629Laboratory of Computer Technologies, ITMO University, Saint Petersburg, Russia 197101
| | - Natalia Gogoleva
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Yuri Gogolev
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Evgenii Potapenko
- grid.18098.380000 0004 1937 0562Institute of Evolution, University of Haifa, 3498838 Haifa, Israel ,grid.18098.380000 0004 1937 0562Department of Evolutionary and Environmental Biology, University of Haifa, 3498838 Haifa, Israel
| | - Olga Muraeva
- grid.512700.1Bioinformatics Institute, Saint Petersburg, Russia 197342
| | - Mira Ponomareva
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Viktor Korzun
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111 ,grid.425691.dKWS SAAT SE & Co. KGaA, 37555 Einbeck, Germany
| | - Vladimir Gorshkov
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| |
Collapse
|
23
|
Loi M, Logrieco AF, Pusztahelyi T, Leiter É, Hornok L, Pócsi I. Advanced mycotoxin control and decontamination techniques in view of an increased aflatoxin risk in Europe due to climate change. Front Microbiol 2023; 13:1085891. [PMID: 36762096 PMCID: PMC9907446 DOI: 10.3389/fmicb.2022.1085891] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Aflatoxins are toxic secondary metabolites produced by Aspergillus spp. found in staple food and feed commodities worldwide. Aflatoxins are carcinogenic, teratogenic, and mutagenic, and pose a serious threat to the health of both humans and animals. The global economy and trade are significantly affected as well. Various models and datasets related to aflatoxins in maize have been developed and used but have not yet been linked. The prevention of crop loss due to aflatoxin contamination is complex and challenging. Hence, the set-up of advanced decontamination is crucial to cope with the challenge of climate change, growing population, unstable political scenarios, and food security problems also in European countries. After harvest, decontamination methods can be applied during transport, storage, or processing, but their application for aflatoxin reduction is still limited. Therefore, this review aims to investigate the effects of environmental factors on aflatoxin production because of climate change and to critically discuss the present-day and novel decontamination techniques to unravel gaps and limitations to propose them as a tool to tackle an increased aflatoxin risk in Europe.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Bari, Italy,*Correspondence: Martina Loi, ✉
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary,ELRN-UD Fungal Stress Biology Research Group, University of Debrecen, Debrecen, Hungary
| | - László Hornok
- Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary,ELRN-UD Fungal Stress Biology Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
24
|
Crandall SG, Spychalla J, Crouch UT, Acevedo FE, Naegele RP, Miles TD. Rotting Grapes Don't Improve with Age: Cluster Rot Disease Complexes, Management, and Future Prospects. PLANT DISEASE 2022; 106:2013-2025. [PMID: 35108071 DOI: 10.1094/pdis-04-21-0695-fe] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cluster rots can be devastating to grape production around the world. There are several late-season rots that can affect grape berries, including Botrytis bunch rot, sour rot, black rot, Phomopsis fruit rot, bitter rot, and ripe rot. Tight-clustered varieties such as 'Pinot gris', 'Pinot noir', and 'Vignoles' are particularly susceptible to cluster rots. Symptoms or signs for these rots range from discolored berries or gray-brown sporulation in Botrytis bunch rot to sour rot, which smells distinctly of vinegar due to the presence of acetic acid bacteria. This review discusses the common symptoms and disease cycles of these different cluster rots. It also includes useful updates on disease diagnostics and management practices, including cultural practices in commercial vineyards and future prospects for disease management. By understanding what drives the development of different cluster rots, researchers will be able to identify new avenues for research to control these critical pathogens.
Collapse
Affiliation(s)
- Sharifa G Crandall
- Pennsylvania State University, Department of Plant Pathology & Environmental Microbiology, University Park, PA 16802
| | - Jamie Spychalla
- Pennsylvania State University, Department of Plant Pathology & Environmental Microbiology, University Park, PA 16802
| | - Uma T Crouch
- Pennsylvania State University, Department of Plant Pathology & Environmental Microbiology, University Park, PA 16802
| | - Flor E Acevedo
- Pennsylvania State University, Department of Entomology, University Park, PA 16802
| | - Rachel P Naegele
- United States Department of Agriculture-Agricultural Research Station, Parlier, CA 93648
| | - Timothy D Miles
- Michigan State University, Department of Plant, Soil and Microbial Sciences, East Lansing, MI 48824
| |
Collapse
|
25
|
Jiang L, Li S, Wu D, Jiang A, Liu Z, Zhu X, Zhang Y, Xu J, Gao X, Liu W, Yang Z, Wei Z. Chicken heterophils extracellular traps act as early effectors against cyclopiazonic acid dependent upon NADPH oxidase, ROS and glycolysis. Arch Toxicol 2022; 96:2113-2122. [PMID: 35508807 DOI: 10.1007/s00204-022-03277-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/14/2022] [Indexed: 01/07/2023]
Abstract
Cyclopiazonic acid (CPA) is a secondary metabolite produced by Aspergillus and Penicillium, which is present in contaminated crops and food, causing severe toxicity to humans and animals. Heterophil extracellular traps (HETs) are a novel host innate immune mechanism of chicken heterophils against pathogen infection. However, whether CPA can cause immunotoxicity of heterophils on HETs release remains unclear. Here, we attempt to detect the effects of CPA on HETs release, and further investigate the molecular mechanisms underlying these processes. We exposed heterophils to 2.5, 5, 10 μM CPA for 90 min. The results showed that CPA induced the release of HETs in heterophils, consisting of DNA-modified citrullinated histone 3 and elastase. The quantitative analysis of HETs content was positively correlated with CPA concentration. CPA also promoted reactive oxygen species production and phosphorylation of ERK1/2 and p38. In addition, CPA-triggered HETs formation was reduced by NADPH oxidase, ERK1/2, and p38 signaling pathway and glycolysis inhibitors, indicating that CPA-induced HETs were related to the production of ROS dependent on NADPH oxidase, ERK1/2, and p38 signaling pathways, as well as glycolysis. Our study describes the underlying mechanism of CPA-induced HETs release, which may provide a further understanding of the immunotoxicology of CPA poisoning.
Collapse
Affiliation(s)
- Liqiang Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China
| | - Shuangqiu Li
- College of Life Sciences and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Di Wu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Aimin Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Ziyi Liu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Xingyi Zhu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Yong Zhang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, People's Republic of China
| | - Jingnan Xu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China
| | - Xinxin Gao
- College of Life Sciences and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China
| | - Wei Liu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, 528231, Guangdong, People's Republic of China.
| |
Collapse
|
26
|
Garcia-Cela E, Sulyok M, Verheecke-Vaessen C, Medina A, Krska R, Magan N. Interacting Environmental Stress Factors Affect Metabolomics Profiles in Stored Naturally Contaminated Maize. Microorganisms 2022; 10:853. [PMID: 35630299 PMCID: PMC9144858 DOI: 10.3390/microorganisms10050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
There is interest in understanding the relationship between naturally contaminated commodities and the potential for the production of different useful and toxic secondary metabolites (SMs). This study examined the impact of interacting abiotic stress parameters of water availability and temperature of stored naturally contaminated maize on the SM production profiles. Thus, the effect of steady-state storage water activity (aw; 0.80−0.95) and temperature (20−35 °C) conditions on SM production patterns in naturally contaminated maize was examined. The samples were analysed using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) to evaluate (a) the total number of known SMs, (b) their concentrations, and (c) changes under two-way interacting environmental stress conditions. A total of 151 metabolites were quantified. These included those produced by species of the Aspergillus, Fusarium and Penicillium genera and other unspecified ones by other fungi or bacteria. There were significant differences in the numbers of SMs produced under different sets of interacting environmental conditions. The highest total number of SMs (80+) were present in maize stored at 20−25 °C and 0.95 aw. In addition, there was a gradation of SM production with the least number of SMs (20−30) produced under the driest conditions of 0.80 aw at 20−30 °C. The only exception was at 35 °C, where different production patterns occurred. There were a total of 38 Aspergillus-related SMs, with most detected at >0.85 aw, regardless of the temperature in the 50−500 ng/g range. For Fusarium-related SMs, the pattern was different, with approx. 10−12 SMs detected under all aw × temperature conditions with >50% produced at 500 ng/g. A total of 40−45 Penicillium-related SMs (50−500 ng/g) were detected in the stored maize but predominantly at 20−25 °C and 0.95 aw. Fewer numbers of SMs were found under marginal interacting abiotic stress storage conditions in naturally contaminated maize. There were approx. eight other known fungal SM present, predominantly in low concentrations (<50 ng/g), regardless of interacting abiotic conditions. Other unspecified SMs present consisted of <20 in low concentrations. The effect of interacting abiotic stress factors for the production of different suites of SMs to take account of the different ecological niches of fungal genera may be beneficial for identifying biotechnologically useful SMs.
Collapse
Affiliation(s)
- Esther Garcia-Cela
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK; (E.G.-C.); (C.V.-V.); (A.M.)
- Clinical, Pharmacology and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Michael Sulyok
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.S.); (R.K.)
| | - Carol Verheecke-Vaessen
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK; (E.G.-C.); (C.V.-V.); (A.M.)
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK; (E.G.-C.); (C.V.-V.); (A.M.)
| | - Rudolf Krska
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.S.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, University Road, Belfast BT7 1NN, UK
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield MK43 0AL, UK; (E.G.-C.); (C.V.-V.); (A.M.)
| |
Collapse
|
27
|
Bartolić D, Mojović M, Prokopijević M, Djikanović D, Kalauzi A, Mutavdžić D, Baošić R, Radotić K. Lignin and organic free radicals in maize (Zea mays L.) seeds in response to aflatoxin B 1 contamination: an optical and EPR spectroscopic study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2500-2505. [PMID: 34676551 DOI: 10.1002/jsfa.11591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Aflatoxin B1 (AFB1 ) is the most dangerous of the mycotoxins that contaminate cereal seeds naturally. A stress lignin formation is linked with the accumulation of reactive oxygen species causing a change in the redox status and formation of stable organic radicals, constituting the first layer of defense. The relationship between AFB1 and changes in lignin organic free radicals in seeds is not known, nor is the part of the seed that is more targeted. Using optical and electron paramagnetic resonance spectroscopy, we investigated AFB1 -induced changes in lignin and organic free radicals in seeds, and whether the inner and outer seed fractions differ in response to increasing AFB1 . RESULTS Different changes in the content of lignin and free radicals with increasing AFB1 concentrations were observed in the two seed fractions. There was a significant positive linear correlation (R = 0.9923, P = 0.00005) between lignin content and AFB1 concentration in the outer fraction, and no correlation between the lignin content and the AFB1 concentration in the inner fraction. We found a positive correlation between the area of the green spectral emission component (C4) and the AFB1 concentration in the outer fraction. CONCLUSIONS To the best of our knowledge, the results showed, for the first time, that maize seed fractions respond differently to aflatoxin with regard to their lignin and organic free radical content. Lignin content and (C4) area may be reliable indicators for the screening of lignin changes against AFB1 content in the seeds, and thus for seed protection capacity. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dragana Bartolić
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Miloš Mojović
- Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Miloš Prokopijević
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Daniela Djikanović
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Kalauzi
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Dragosav Mutavdžić
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Rada Baošić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Ksenija Radotić
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
28
|
Juraschek LM, Kappenberg A, Amelung W. Mycotoxins in soil and environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152425. [PMID: 34952071 DOI: 10.1016/j.scitotenv.2021.152425] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Mycotoxins are secondary metabolites produced by specific fungi that have harmful effects on animals and humans. Worldwide more than 300 different mycotoxins are already known, frequently with concentrations in harvest products exceeding acceptable limits. Nevertheless, although these compounds have extensively been studied in food and feed, only little is known about their occurrence and fate in soil and agro-environmental matrices, such as manure, sewage sludge, drainage water and sediments. Therefore, the aim of this review was to (i) resume available methods for quantifying mycotoxins in soil, (ii) describe the occurrence and quantities of mycotoxins in soil and related agro-environmental matrices, and (iii) discuss the environmental fate of these target compounds with specific focus on their leaching potential into groundwater. The safest and most reliable method for mycotoxin quantification relies on mass spectrometry, while the extraction method and solvent composition differ depending on the compound under investigation. Mycotoxin levels detected in soils to date were in the μg range, reaching maximum amounts of 72.1 μg kg-1 for zearalenone, 32.1 μg kg-1 for deoxynivalenol, 23.7 μg kg-1 for ochratoxin A, 6.7 μg kg-1 for nivalenol, and 5.5 μg kg-1 for aflatoxin. Different compartments in the agroecosystem (cereals, corn, rice, water, manure, sewage sludge) each contained at least one mycotoxin. Mycotoxin retention in soils is controlled by texture, with significant adsorption of the compounds to clays but leaching potentials in sandy soils. We did not find any reports detecting mycotoxins in sediments, although there are increasing reports of mycotoxins in freshwater samples. Overall, it appears that soils and sediments are still underrepresented in research on potential environmental contamination with mycotoxins.
Collapse
Affiliation(s)
- Lena Marie Juraschek
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany.
| | - Arne Kappenberg
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany.
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany.
| |
Collapse
|
29
|
Al-Askar AA, Ghoneem KM, Hafez EE, Saber WIA. A Case Study in Saudi Arabia: Biodiversity of Maize Seed-Borne Pathogenic Fungi in Relation to Biochemical, Physiological, and Molecular Characteristics. PLANTS (BASEL, SWITZERLAND) 2022; 11:829. [PMID: 35336711 PMCID: PMC8954539 DOI: 10.3390/plants11060829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 05/02/2023]
Abstract
Microbiodiversity is usually correlated with environmental conditions. This investigation is a case study to cover the lack of knowledge on the correlation of biochemical, physiological, and molecular attributes with the distribution of seed-borne pathogenic fungi of maize under the environmental conditions of the Kingdom of Saudi Arabia to help forecast any destructive epidemics. Forty-one fungal species belonging to 24 genera were detected using standard moist blotter (SMB), deep freezing blotter (DFB), and agar plate (AP) techniques. SMB was superior in detecting the maximum numbers (36 species) of seed-borne mycoflora. The pathogenicity assay revealed that, among 18 seed-borne fungal pathogens used, 12 isolates caused high percentages of rotted seeds and seedling mortality symptoms, which were identified molecularly using an internal transcribed spacer sequence. Two Curvularia spp. and Sarocladium zeae were reported for the first time in KSA. The strains showed various enzymatic activities and amino acid profiles under different environmental setups. Temperature and humidity were the environmental variables influencing the fungal pathogenicity. The highest pathogenicity was correlated with the presence and concentration of threonine, alanine, glutamic, aspartic acids, and protein. The study concluded with the discovery of four new phytopathogens in KSA and, further, evidenced a marked correlation among the investigated variables. Nevertheless, more studies are encouraged to include additional physiological properties of the phytopathogens, such as toxigenic activity, as well as extend the fungal biodiversity study to other plants.
Collapse
Affiliation(s)
- Abdulaziz A. Al-Askar
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid M. Ghoneem
- Seed Pathology Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt;
| | - Elsayed E. Hafez
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City 21934, Egypt;
| | - WesamEldin I. A. Saber
- Microbial Activity Unit, Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
30
|
Witasari LD, Wahyu KW, Anugrahani BJ, Kurniawan DC, Haryanto A, Nandika D, Karlinasari L, Arinana A, Batubara I, Santoso D, Rachmayanti Y, Firmansyah D, Sudiana IK, Hertanto DM. Antimicrobial activities of fungus comb extracts isolated from Indomalayan termite (Macrotermes gilvus Hagen) mound. AMB Express 2022; 12:14. [PMID: 35142937 PMCID: PMC8831673 DOI: 10.1186/s13568-022-01359-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/01/2022] [Indexed: 11/19/2022] Open
Abstract
Incorporating antimicrobial components into food packaging materials can prevent microbial contamination. Fungus combs could be an alternative source of natural antimicrobial agents. In this study, n-hexane, ethyl acetate, methanol, and water extracts were obtained from fungus combs isolated from Indomalayan termite (Macrotermes gilvus Hagen) mound. Their antibacterial and antifungal activities against food spoilage microorganisms including Escherichia coli ATCC 25922, Pseudomonas aeruginosaATCC 27853, Staphylococcus aureus ATCC 25923, Aspergillus flavus, and Aspergillus niger were evaluated by Kirby–Bauer disc diffusion and microdilution. Results showed that ethyl acetate extract formed the largest diameter inhibition zone for all tested bacteria and fungi, exhibited antibacterial activity against all tested bacteria with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 0.39 and 0.78 mg/mL, respectively, and suppressed A. flavus and A. niger with an MIC value of 0.78 mg/mL. This extract contained guaiacol and syringol, which were predicted as the main antimicrobial components in fungus comb. n-Hexane extract only inhibited Gram-positive bacteria. S. aureus ATCC 25923 was the most sensitive to all the extracts, and A. flavus was more sensitive than A. niger. All these fungus comb extracts exhibited antimicrobial activity against E. coli ATCC 25922, P. aeruginosa ATCC 27853, S. aureus ATCC 25923, A. flavus, and A. niger. This study revealed that fungus comb extracts, especially ethyl acetate, could be considered as a new antimicrobial agent. Ethyl acetate extract from fungus combs exhibited high antimicrobial activity against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 2785, Aspergillus flavus FNCC 6181, and Aspergillus niger FNCC 6114. Ethyl acetate extract from fungus combs contained phenolic compounds such asguaiacol and syringol, which are predicted as the main antimicrobial substances. Staphylococcus aureus ATCC 25923 was the most sensitive against n-hexane, ethyl acetate, methanol, and water extracts from fungus comb
Collapse
|
31
|
Márquez-Benavides L, Saucedo-Martínez BC, Sánchez-Yáñez JM. Detección de Aspergillus fumigatus en Hordeum vulgare comercializado en Morelia, Mich, México con potencial para sintetizar ocratoxina A. JOURNAL OF THE SELVA ANDINA RESEARCH SOCIETY 2022. [DOI: 10.36610/j.jsars.2022.130100016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Banfalvi G. Janus-Faced Molecules against Plant Pathogenic Fungi. Int J Mol Sci 2021; 22:12323. [PMID: 34830204 PMCID: PMC8623416 DOI: 10.3390/ijms222212323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
The high cytotoxicity of the secondary metabolites of mycotoxins is capable of killing microbes and tumour cells alike, similarly to the genotoxic effect characteristic of Janus-faced molecules. The "double-edged sword" effect of several cytotoxins is known, and these agents have, therefore, been utilized only reluctantly against fungal infections. In this review, consideration was given to (a) toxins that could be used against plant and human pathogens, (b) animal models that measure the effect of antifungal agents, (c) known antifungal agents that have been described and efficiently prevent the growth of fungal cells, and (d) the chemical interactions that are characteristic of antifungal agents. The utilization of apoptotic effects against tumour growth by agents that, at the same time, induce mutations may raise ethical issues. Nevertheless, it deserves consideration despite the mutagenic impact of Janus-faced molecules for those patients who suffer from plant pathogenic fungal infections and are older than their fertility age, in the same way that the short-term cytotoxicity of cancer treatment is favoured over the long-term mutagenic effect.
Collapse
Affiliation(s)
- Gaspar Banfalvi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 1 Egyetem Square, 4010 Debrecen, Hungary
| |
Collapse
|
33
|
The concentration of aflatoxin M1 in raw and pasteurized milk: A worldwide systematic review and meta-analysis. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
A review of mycotoxin biosynthetic pathways: associated genes and their expressions under the influence of climatic factors. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Fragola M, Perrone MR, Alifano P, Talà A, Romano S. Seasonal Variability of the Airborne Eukaryotic Community Structure at a Coastal Site of the Central Mediterranean. Toxins (Basel) 2021; 13:518. [PMID: 34437389 PMCID: PMC8402549 DOI: 10.3390/toxins13080518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/23/2022] Open
Abstract
The atmosphere represents an underexplored temporary habitat for airborne microbial communities such as eukaryotes, whose taxonomic structure changes across different locations and/or regions as a function of both survival conditions and sources. A preliminary dataset on the seasonal dependence of the airborne eukaryotic community biodiversity, detected in PM10 samples collected from July 2018 to June 2019 at a coastal site representative of the Central Mediterranean, is provided in this study. Viridiplantae and Fungi were the most abundant eukaryotic kingdoms. Streptophyta was the prevailing Viridiplantae phylum, whilst Ascomycota and Basidiomycota were the prevailing Fungi phyla. Brassica and Panicum were the most abundant Streptophyta genera in winter and summer, respectively, whereas Olea was the most abundant genus in spring and autumn. With regards to Fungi, Botrytis and Colletotrichum were the most abundant Ascomycota genera, reaching the highest abundance in spring and summer, respectively, while Cryptococcus and Ustilago were the most abundant Basidiomycota genera, and reached the highest abundance in winter and spring, respectively. The genus community structure in the PM10 samples varied day-by-day, and mainly along with the seasons. The impact of long-range transported air masses on the same structure was also proven. Nevertheless, rather few genera were significantly correlated with meteorological parameters and PM10 mass concentrations. The PCoA plots and non-parametric Spearman's rank-order correlation coefficients showed that the strongest correlations generally occurred between parameters reaching high abundances/values in the same season or PM10 sample. Moreover, the screening of potential pathogenic fungi allowed us to detect seven potential pathogenic genera in our PM10 samples. We also found that, with the exception of Panicum and Physcomitrella, all of the most abundant and pervasive identified Streptophyta genera could serve as potential sources of aeroallergens in the studied area.
Collapse
Affiliation(s)
- Mattia Fragola
- Department of Mathematics and Physics, University of Salento, Via per Arnesano, 73100 Lecce, Italy; (M.F.); (M.R.P.)
| | - Maria Rita Perrone
- Department of Mathematics and Physics, University of Salento, Via per Arnesano, 73100 Lecce, Italy; (M.F.); (M.R.P.)
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; (P.A.); (A.T.)
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; (P.A.); (A.T.)
| | - Salvatore Romano
- Department of Mathematics and Physics, University of Salento, Via per Arnesano, 73100 Lecce, Italy; (M.F.); (M.R.P.)
| |
Collapse
|
36
|
Ackerman A, Wenndt A, Boyles R. The Sorghum Grain Mold Disease Complex: Pathogens, Host Responses, and the Bioactive Metabolites at Play. FRONTIERS IN PLANT SCIENCE 2021; 12:660171. [PMID: 34122480 PMCID: PMC8192977 DOI: 10.3389/fpls.2021.660171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Grain mold is a major concern in sorghum [Sorghum bicolor (L.) Moench] production systems, threatening grain quality, safety, and nutritional value as both human food and livestock feed. The crop's nutritional value, environmental resilience, and economic promise poise sorghum for increased acreage, especially in light of the growing pressures of climate change on global food systems. In order to fully take advantage of this potential, sorghum improvement efforts and production systems must be proactive in managing the sorghum grain mold disease complex, which not only jeopardizes agricultural productivity and profitability, but is also the culprit of harmful mycotoxins that warrant substantial public health concern. The robust scholarly literature from the 1980s to the early 2000s yielded valuable insights and key comprehensive reviews of the grain mold disease complex. Nevertheless, there remains a substantial gap in understanding the complex multi-organismal dynamics that underpin the plant-pathogen interactions involved - a gap that must be filled in order to deliver improved germplasm that is not only capable of withstanding the pressures of climate change, but also wields robust resistance to disease and mycotoxin accumulation. The present review seeks to provide an updated perspective of the sorghum grain mold disease complex, bolstered by recent advances in the understanding of the genetic and the biochemical interactions among the fungal pathogens, their corresponding mycotoxins, and the sorghum host. Critical components of the sorghum grain mold disease complex are summarized in narrative format to consolidate a collection of important concepts: (1) the current state of sorghum grain mold in research and production systems; (2) overview of the individual pathogens that contribute to the grain mold complex; (3) the mycotoxin-producing potential of these pathogens on sorghum and other substrates; and (4) a systems biology approach to the understanding of host responses.
Collapse
Affiliation(s)
- Arlyn Ackerman
- Cereal Grains Breeding and Genetics, Pee Dee Research and Education Center, Department of Plant & Environmental Sciences, Clemson University, Florence, SC, United States
| | - Anthony Wenndt
- Plant Pathology and Plant-Microbe Biology, The School of Integrated Plant Sciences, Cornell University, Ithaca, NY, United States
| | - Richard Boyles
- Cereal Grains Breeding and Genetics, Pee Dee Research and Education Center, Department of Plant & Environmental Sciences, Clemson University, Florence, SC, United States
| |
Collapse
|
37
|
Son SH, Jang SY, Park HS. Functions of PUF Family RNA-Binding Proteins in Aspergillus nidulans. J Microbiol Biotechnol 2021; 31:676-685. [PMID: 33746193 PMCID: PMC9706018 DOI: 10.4014/jmb.2101.01011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
RNA-binding proteins are involved in RNA metabolism and posttranscriptional regulation of various fundamental biological processes. The PUF family of RNA-binding proteins is highly conserved in eukaryotes, and its members regulate gene expression, mitochondrial biogenesis, and RNA processing. However, their biological functions in Aspergillus species remain mostly unknown in filamentous fungi. Here we have characterized the puf genes in the model organism Aspergillus nidulans. We generated deletion mutant strains for the five putative puf genes present in the A. nidulans genome and investigated their developmental phenotypes. Deletion of pufA or pufE affected fungal growth and asexual development. pufA mutants exhibited decreased production of asexual spores and reduced mRNA expression of genes regulating asexual development. The pufE deletion reduced colony growth, increased formation of asexual spores, and delayed production of sexual fruiting bodies. In addition, the absence of pufE reduced both sterigmatocystin production and the mRNA levels of genes in the sterigmatocystin cluster. Finally, pufE deletion mutants showed reduced trehalose production and lower resistance to thermal stress. Overall, these results demonstrate that PufA and PufE play roles in the development and sterigmatocystin metabolism in A. nidulans.
Collapse
Affiliation(s)
- Sung-Hun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seo-Yeong Jang
- Department of Integrative Biology, Kyungpook National University; Daegu 41566, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea,Department of Integrative Biology, Kyungpook National University; Daegu 41566, Republic of Korea,Corresponding author Phone: +82-53-950-5751 Fax: +82-53-950-6750 E-mail:
| |
Collapse
|
38
|
Microevolution in the pansecondary metabolome of Aspergillus flavus and its potential macroevolutionary implications for filamentous fungi. Proc Natl Acad Sci U S A 2021; 118:2021683118. [PMID: 34016748 DOI: 10.1073/pnas.2021683118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fungi produce a wealth of pharmacologically bioactive secondary metabolites (SMs) from biosynthetic gene clusters (BGCs). It is common practice for drug discovery efforts to treat species' secondary metabolomes as being well represented by a single or a small number of representative genomes. However, this approach misses the possibility that intraspecific population dynamics, such as adaptation to environmental conditions or local microbiomes, may harbor novel BGCs that contribute to the overall niche breadth of species. Using 94 isolates of Aspergillus flavus, a cosmopolitan model fungus, sampled from seven states in the United States, we dereplicate 7,821 BGCs into 92 unique BGCs. We find that more than 25% of pangenomic BGCs show population-specific patterns of presence/absence or protein divergence. Population-specific BGCs make up most of the accessory-genome BGCs, suggesting that different ecological forces that maintain accessory genomes may be partially mediated by population-specific differences in secondary metabolism. We use ultra-high-performance high-resolution mass spectrometry to confirm that these genetic differences in BGCs also result in chemotypic differences in SM production in different populations, which could mediate ecological interactions and be acted on by selection. Thus, our results suggest a paradigm shift that previously unrealized population-level reservoirs of SM diversity may be of significant evolutionary, ecological, and pharmacological importance. Last, we find that several population-specific BGCs from A. flavus are present in Aspergillus parasiticus and Aspergillus minisclerotigenes and discuss how the microevolutionary patterns we uncover inform macroevolutionary inferences and help to align fungal secondary metabolism with existing evolutionary theory.
Collapse
|
39
|
Brudzynski K. Honey as an Ecological Reservoir of Antibacterial Compounds Produced by Antagonistic Microbial Interactions in Plant Nectars, Honey and Honey Bee. Antibiotics (Basel) 2021; 10:551. [PMID: 34065141 PMCID: PMC8151657 DOI: 10.3390/antibiotics10050551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 04/08/2023] Open
Abstract
The fundamental feature of "active honeys" is the presence and concentration of antibacterial compounds. Currently identified compounds and factors have been described in several review papers without broader interpretation or links to the processes for their formation. In this review, we indicate that the dynamic, antagonistic/competitive microbe-microbe and microbe-host interactions are the main source of antibacterial compounds in honey. The microbial colonization of nectar, bees and honey is at the center of these interactions that in consequence produce a range of defence molecules in each of these niches. The products of the microbial interference and exploitive competitions include antimicrobial peptides, antibiotics, surfactants, inhibitors of biofilm formation and quorum sensing. Their accumulation in honey by horizontal transfer might explain honey broad-spectrum, pleiotropic, antibacterial activity. We conclude that honey is an ecological reservoir of antibacterial compounds produced by antagonistic microbial interactions in plant nectars, honey and honey bee. Thus, refocusing research on secondary metabolites resulting from these microbial interactions might lead to discovery of new antibacterial compounds in honey that are target-specific, i.e., acting on specific cellular components or inhibiting the essential cellular function.
Collapse
Affiliation(s)
- Katrina Brudzynski
- Department of Drug Discovery, Bee-Biomedicals Inc., St. Catharines, ON L2T 3T4, Canada;
- Formerly Department of Biological Sciences, Brock University, St. Catharines, ON L2T 3T4, Canada
| |
Collapse
|
40
|
Campos-Avelar I, Colas de la Noue A, Durand N, Cazals G, Martinez V, Strub C, Fontana A, Schorr-Galindo S. Aspergillus flavus Growth Inhibition and Aflatoxin B 1 Decontamination by Streptomyces Isolates and Their Metabolites. Toxins (Basel) 2021; 13:toxins13050340. [PMID: 34066812 PMCID: PMC8151643 DOI: 10.3390/toxins13050340] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/02/2022] Open
Abstract
Aflatoxin B1 is a potent carcinogen produced by Aspergillus flavus, mainly during grain storage. As pre-harvest methods are insufficient to avoid mycotoxin presence during storage, diverse curative techniques are being investigated for the inhibition of fungal growth and aflatoxin detoxification. Streptomyces spp. represent an alternative as they are a promising source of detoxifying enzymes. Fifty-nine Streptomyces isolates and a Streptomyces griseoviridis strain from the commercial product Mycostop®, evaluated against Penicillium verrucosum and ochratoxin A during previous work, were screened for their ability to inhibit Aspergillus flavus growth and decrease the aflatoxin amount. The activities of bacterial cells and cell-free extracts (CFEs) from liquid cultures were also evaluated. Fifty-eight isolates were able to inhibit fungal growth during dual culture assays, with a maximal reduction going down to 13% of the control. Aflatoxin-specific production was decreased by all isolates to at least 54% of the control. CFEs were less effective in decreasing fungal growth (down to 40% and 55% for unheated and heated CFEs, respectively) and aflatoxin-specific production, with a few CFEs causing an overproduction of mycotoxins. Nearly all Streptomyces isolates were able to degrade AFB1 when growing in solid and liquid media. A total degradation of AFB1 was achieved by Mycostop® on solid medium, as well as an almost complete degradation by IX20 in liquid medium (6% of the control). CFE maximal degradation went down to 37% of the control for isolate IX09. The search for degradation by-products indicated the presence of a few unknown molecules. The evaluation of residual toxicity of the tested isolates by the SOS chromotest indicated a detoxification of at least 68% of AFB1’s genotoxicity.
Collapse
Affiliation(s)
- Ixchel Campos-Avelar
- UMR Qualisud, University of Montpellier, 34095 Montpellier, France; (N.D.); (V.M.); (C.S.); (A.F.); (S.S.-G.)
- Correspondence: (I.C.-A.); (A.C.d.l.N.)
| | - Alexandre Colas de la Noue
- UMR Qualisud, University of Montpellier, 34095 Montpellier, France; (N.D.); (V.M.); (C.S.); (A.F.); (S.S.-G.)
- Correspondence: (I.C.-A.); (A.C.d.l.N.)
| | - Noël Durand
- UMR Qualisud, University of Montpellier, 34095 Montpellier, France; (N.D.); (V.M.); (C.S.); (A.F.); (S.S.-G.)
- CIRAD, UMR Qualisud, 34398 Montpellier, France
| | - Guillaume Cazals
- IBMMUMR5247, University of Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France;
| | - Véronique Martinez
- UMR Qualisud, University of Montpellier, 34095 Montpellier, France; (N.D.); (V.M.); (C.S.); (A.F.); (S.S.-G.)
| | - Caroline Strub
- UMR Qualisud, University of Montpellier, 34095 Montpellier, France; (N.D.); (V.M.); (C.S.); (A.F.); (S.S.-G.)
| | - Angélique Fontana
- UMR Qualisud, University of Montpellier, 34095 Montpellier, France; (N.D.); (V.M.); (C.S.); (A.F.); (S.S.-G.)
| | - Sabine Schorr-Galindo
- UMR Qualisud, University of Montpellier, 34095 Montpellier, France; (N.D.); (V.M.); (C.S.); (A.F.); (S.S.-G.)
| |
Collapse
|
41
|
Physical and Chemical Methods for Reduction in Aflatoxin Content of Feed and Food. Toxins (Basel) 2021; 13:toxins13030204. [PMID: 33808964 PMCID: PMC7999035 DOI: 10.3390/toxins13030204] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
Aflatoxins (AFs) are among the most harmful fungal secondary metabolites imposing serious health risks on both household animals and humans. The more frequent occurrence of aflatoxins in the feed and food chain is clearly foreseeable as a consequence of the extreme weather conditions recorded most recently worldwide. Furthermore, production parameters, such as unadjusted variety use and improper cultural practices, can also increase the incidence of contamination. In current aflatoxin control measures, emphasis is put on prevention including a plethora of pre-harvest methods, introduced to control Aspergillus infestations and to avoid the deleterious effects of aflatoxins on public health. Nevertheless, the continuous evaluation and improvement of post-harvest methods to combat these hazardous secondary metabolites are also required. Already in-use and emerging physical methods, such as pulsed electric fields and other nonthermal treatments as well as interventions with chemical agents such as acids, enzymes, gases, and absorbents in animal husbandry have been demonstrated as effective in reducing mycotoxins in feed and food. Although most of them have no disadvantageous effect either on nutritional properties or food safety, further research is needed to ensure the expected efficacy. Nevertheless, we can envisage the rapid spread of these easy-to-use, cost-effective, and safe post-harvest tools during storage and food processing.
Collapse
|
42
|
Peles F, Sipos P, Kovács S, Győri Z, Pócsi I, Pusztahelyi T. Biological Control and Mitigation of Aflatoxin Contamination in Commodities. Toxins (Basel) 2021; 13:toxins13020104. [PMID: 33535580 PMCID: PMC7912779 DOI: 10.3390/toxins13020104] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Aflatoxins (AFs) are toxic secondary metabolites produced mostly by Aspergillus species. AF contamination entering the feed and food chain has been a crucial long-term issue for veterinarians, medicals, agroindustry experts, and researchers working in this field. Although different (physical, chemical, and biological) technologies have been developed, tested, and employed to mitigate the detrimental effects of mycotoxins, including AFs, universal methods are still not available to reduce AF levels in feed and food in the last decades. Possible biological control by bacteria, yeasts, and fungi, their excretes, the role of the ruminal degradation, pre-harvest biocontrol by competitive exclusion or biofungicides, and post-harvest technologies and practices based on biological agents currently used to alleviate the toxic effects of AFs are collected in this review. Pre-harvest biocontrol technologies can give us the greatest opportunity to reduce AF production on the spot. Together with post-harvest applications of bacteria or fungal cultures, these technologies can help us strictly reduce AF contamination without synthetic chemicals.
Collapse
Affiliation(s)
- Ferenc Peles
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary;
| | - Péter Sipos
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary; (P.S.); (Z.G.)
| | - Szilvia Kovács
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary;
| | - Zoltán Győri
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary; (P.S.); (Z.G.)
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary;
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary;
- Correspondence: ; Tel.: +36-20-210-9491
| |
Collapse
|
43
|
Roy A, Ahuja S, Garg S. Fungal Secondary Metabolites: Biological Activity and Potential Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Pickova D, Ostry V, Malir J, Toman J, Malir F. A Review on Mycotoxins and Microfungi in Spices in the Light of the Last Five Years. Toxins (Basel) 2020; 12:E789. [PMID: 33322380 PMCID: PMC7763258 DOI: 10.3390/toxins12120789] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Spices are imported worldwide mainly from developing countries with tropical and/or subtropical climate. Local conditions, such as high temperature, heavy rainfall, and humidity, promote fungal growth leading to increased occurrence of mycotoxins in spices. Moreover, the lack of good agricultural practice (GAP), good manufacturing practice (GMP), and good hygienic practice (GHP) in developing countries are of great concern. This review summarizes recent data from a total of 56 original papers dealing with mycotoxins and microfungi in various spices in the last five years. A total of 38 kinds of spices, 17 mycotoxins, and 14 microfungi are discussed in the review. Worldwide, spices are rather overlooked in terms of mycotoxin regulations, which usually only cover aflatoxins (AFs) and ochratoxin A (OTA). In this paper, an extensive attention is devoted to the limits on mycotoxins in spices in the context of the European Union (EU) as well as other countries. As proven in this review, the incidence of AFs and OTA, as well as other mycotoxins, is relatively high in many spices; thus, the preparation of new regulation limits is advisable.
Collapse
Affiliation(s)
- Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Vladimir Ostry
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
- Center for Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Palackeho 3a, CZ-61242 Brno, Czech Republic
| | - Jan Malir
- Department of Public Law, Institute of State and Law, Czech Academy of Sciences, Narodni 18, CZ-11600 Prague, Czech Republic;
| | - Jakub Toman
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (J.T.); (F.M.)
| |
Collapse
|
45
|
Pennerman KK, Yin G, Glenn AE, Bennett JW. Identifying candidate Aspergillus pathogenicity factors by annotation frequency. BMC Microbiol 2020; 20:342. [PMID: 33176679 PMCID: PMC7661267 DOI: 10.1186/s12866-020-02031-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Members of the genus Aspergillus display a variety of lifestyles, ranging from saprobic to pathogenic on plants and/or animals. Increased genome sequencing of economically important members of the genus permits effective use of "-omics" comparisons between closely related species and strains to identify candidate genes that may contribute to phenotypes of interest, especially relating to pathogenicity. Protein-coding genes were predicted from 216 genomes of 12 Aspergillus species, and the frequencies of various structural aspects (exon count and length, intron count and length, GC content, and codon usage) and functional annotations (InterPro, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes terms) were compared. RESULTS Using principal component analyses, the three sets of functional annotations for each strain were clustered by species. The species clusters appeared to separate by pathogenicity on plants along the first dimensions, which accounted for over 20% of the variance. More annotations for genes encoding pectinases and secondary metabolite biosynthetic enzymes were assigned to phytopathogenic strains from species such as Aspergillus flavus. In contrast, Aspergillus fumigatus strains, which are pathogenic to animals but not plants, were assigned relatively more terms related to phosphate transferases, and carbohydrate and amino-sugar metabolism. Analyses of publicly available RNA-Seq data indicated that one A. fumigatus protein among 17 amino-sugar processing candidates, a hexokinase, was up-regulated during co-culturing with human immune system cells. CONCLUSION Genes encoding hexokinases and other proteins of interest may be subject to future manipulations to further refine understanding of Aspergillus pathogenicity factors.
Collapse
Affiliation(s)
- Kayla K Pennerman
- United States Department of Agriculture, Toxicology and Mycotoxin Research Unit, Athens, GA, 30605, USA.
| | - Guohua Yin
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Anthony E Glenn
- United States Department of Agriculture, Toxicology and Mycotoxin Research Unit, Athens, GA, 30605, USA
| | - Joan W Bennett
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
46
|
Uka V, Cary JW, Lebar MD, Puel O, De Saeger S, Diana Di Mavungu J. Chemical repertoire and biosynthetic machinery of the Aspergillus flavus secondary metabolome: A review. Compr Rev Food Sci Food Saf 2020; 19:2797-2842. [PMID: 33337039 DOI: 10.1111/1541-4337.12638] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
Filamentous fungi represent a rich source of extrolites, including secondary metabolites (SMs) comprising a great variety of astonishing structures and interesting bioactivities. State-of-the-art techniques in genome mining, genetic manipulation, and secondary metabolomics have enabled the scientific community to better elucidate and more deeply appreciate the genetic and biosynthetic chemical arsenal of these microorganisms. Aspergillus flavus is best known as a contaminant of food and feed commodities and a producer of the carcinogenic family of SMs, aflatoxins. This fungus produces many SMs including polyketides, ribosomal and nonribosomal peptides, terpenoids, and other hybrid molecules. This review will discuss the chemical diversity, biosynthetic pathways, and biological/ecological role of A. flavus SMs, as well as their significance concerning food safety and security.
Collapse
Affiliation(s)
- Valdet Uka
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Division of Pharmacy, Faculty of Medicine, University of Pristina, Pristina, Kosovo
| | - Jeffrey W Cary
- Southern Regional Research Center, USDA-ARS, New Orleans, Louisiana
| | - Matthew D Lebar
- Southern Regional Research Center, USDA-ARS, New Orleans, Louisiana
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sarah De Saeger
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - José Diana Di Mavungu
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|