1
|
Bulgari D, Gobbi E, Cortesi P, Peron G. Bioconversion of Food and Green Waste into Valuable Compounds Using Solid-State Fermentation in Nonsterile Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:3494. [PMID: 39771192 PMCID: PMC11728819 DOI: 10.3390/plants13243494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
Agro-industrial residues have transitions from being an environmental problem to being a cost-effective source of biopolymers and value-added chemicals. However, the efficient extraction of the desired products from these residues requires pretreatments. Fungal biorefinery is a fascinating approach for the biotransformation of raw materials into multiple products in a single batch. In this study, the ability of Trichoderma asperellum R to convert fruit scrap and green waste into value-added chemicals was tested in solid-state and in nonsterile conditions. A solid-state fermentation protocol for a tray bioreactor was developed using spawn as the inoculum for nonsterile substrates. T. asperellum R drove the fermentation of both substrates, shaping the metabolites that were enriched in the secondary plant metabolites. Strain R showed cellulase activity only when inoculated on fruit scraps, resulting in increased amounts of polysaccharides in the crude extract. This extract was also enriched in vanillic acid and limonoid, which are intriguing compounds due to the increasing interest in their potential as biological nitrification inhibitors or food additives. Finally, trimethoxybenzaldehyde, an interesting chemical building block, was identified in the extracts of the Trichoderma-guided fermentation. The overall results showed that the application of T. asperellum R has potential as a driver to facilitate the extraction of bioactive substances from nonsterile recalcitrant substrates.
Collapse
Affiliation(s)
- Daniela Bulgari
- Department of Food Environmental and Nutritional Sciences, University of Milan, Via Celoria, 2, 20133 Milan, Italy; (D.B.); (P.C.)
| | - Emanuela Gobbi
- Agri-Food and Environmental Microbiology Platform, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Paolo Cortesi
- Department of Food Environmental and Nutritional Sciences, University of Milan, Via Celoria, 2, 20133 Milan, Italy; (D.B.); (P.C.)
| | - Gregorio Peron
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy;
| |
Collapse
|
2
|
Herrera Pérez GM, Castellano LE, Ramírez Valdespino CA. Trichoderma and Mycosynthesis of Metal Nanoparticles: Role of Their Secondary Metabolites. J Fungi (Basel) 2024; 10:443. [PMID: 39057328 PMCID: PMC11278454 DOI: 10.3390/jof10070443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024] Open
Abstract
Nanocompounds are widely used in many fields such as environmental, medicine, or agriculture. Nowadays, these nanocompounds are mainly synthesized by chemical methods, causing environmental pollution and potential health problems. Thus, microorganisms have been investigated as potential nanoparticle green biosynthesizers. The main research is focused on the synthesis of nanoparticles (NPs) using algae, yeast, bacteria, and fungi. Among them, fungi have been the most used, due to their simple and effective mycosynthesis. Fungi as well as other organisms involved in green synthesis of NPs use their secondary metabolites (SMs) to mediate and catalyze the reactions to produce metal nanoparticles (MNPs) as well as being able to act as capping agents producing different physicochemical characteristics and biological activities in the MNPs. Among the various fungi used for mycosynthesis are Trichoderma species, which mediate the production of Ag, Cu, CuO, Zn, ZnO, and other MNPs. Here, we review the main SMs from Trichoderma that have been reported or suggested to contribute to synthesize or act as capping agents and their applications, as well as present the main challenges faced by this type of synthesis.
Collapse
Affiliation(s)
- Guillermo M. Herrera Pérez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih., Mexico;
| | - Laura E. Castellano
- División de Ciencias e Ingenierías Campus León, Universidad de Guanajuato, Loma del Bosque #103, Lomas del Campestre, León de los Aldama 37150, Gto., Mexico;
| | - Claudia A. Ramírez Valdespino
- Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Av. Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih., Mexico
| |
Collapse
|
3
|
Gwinn KD, Leung MCK, Stephens AB, Punja ZK. Fungal and mycotoxin contaminants in cannabis and hemp flowers: implications for consumer health and directions for further research. Front Microbiol 2023; 14:1278189. [PMID: 37928692 PMCID: PMC10620813 DOI: 10.3389/fmicb.2023.1278189] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Medicinal and recreational uses of Cannabis sativa, commonly known as cannabis or hemp, has increased following its legalization in certain regions of the world. Cannabis and hemp plants interact with a community of microbes (i.e., the phytobiome), which can influence various aspects of the host plant. The fungal composition of the C. sativa phytobiome (i.e., mycobiome) currently consists of over 100 species of fungi, which includes phytopathogens, epiphytes, and endophytes, This mycobiome has often been understudied in research aimed at evaluating the safety of cannabis products for humans. Medical research has historically focused instead on substance use and medicinal uses of the plant. Because several components of the mycobiome are reported to produce toxic secondary metabolites (i.e., mycotoxins) that can potentially affect the health of humans and animals and initiate opportunistic infections in immunocompromised patients, there is a need to determine the potential health risks that these contaminants could pose for consumers. This review discusses the mycobiome of cannabis and hemp flowers with a focus on plant-infecting and toxigenic fungi that are most commonly found and are of potential concern (e.g., Aspergillus, Penicillium, Fusarium, and Mucor spp.). We review current regulations for molds and mycotoxins worldwide and review assessment methods including culture-based assays, liquid chromatography, immuno-based technologies, and emerging technologies for these contaminants. We also discuss approaches to reduce fungal contaminants on cannabis and hemp and identify future research needs for contaminant detection, data dissemination, and management approaches. These approaches are designed to yield safer products for all consumers.
Collapse
Affiliation(s)
- Kimberly D. Gwinn
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Maxwell C. K. Leung
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Ariell B. Stephens
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ, United States
| | - Zamir K. Punja
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
4
|
Bulgari D, Alias C, Peron G, Ribaudo G, Gianoncelli A, Savino S, Boureghda H, Bouznad Z, Monti E, Gobbi E. Solid-State Fermentation of Trichoderma spp.: A New Way to Valorize the Agricultural Digestate and Produce Value-Added Bioproducts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3994-4004. [PMID: 36735958 PMCID: PMC9999421 DOI: 10.1021/acs.jafc.2c07388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In this study, the agricultural digestate from anaerobic biogas production mixed with food wastes was used as a substrate to grow Trichoderma reesei RUT-C30 and Trichoderma atroviride Ta13 in solid-state fermentation (SSF) and produce high-value bioproducts, such as bioactive molecules to be used as ingredients for biostimulants. The Trichoderma spp. reached their maximum growth after 6 and 3 SSF days, respectively. Both Trichoderma species were able to produce cellulase, esterase, and citric and malic acids, while T. atroviride also produced gibberellins and oxylipins as shown by ultraperformance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) profiling. Experimental evaluation of germination parameters highlighted a significant promotion of tomato seed germination and root elongation induced by T. atroviride crude extracts from SSF. This study suggests an innovative sustainable use of the whole digestate mixed with agro-food waste as a valuable substrate in fungal biorefineries. Here, it has been applied to produce plant growth-promoting fungi and bioactive molecules for sustainable agriculture.
Collapse
Affiliation(s)
- Daniela Bulgari
- Agri-Food
and Environmental Microbiology Platform, Department of Molecular and
Translational Medicine, University of Brescia, Viale Europa, 11, 25123Brescia, Italy
| | - Carlotta Alias
- Agri-Food
and Environmental Microbiology Platform, Department of Molecular and
Translational Medicine, University of Brescia, Viale Europa, 11, 25123Brescia, Italy
- B+LabNet-Environmental
Sustainability Lab, University of Brescia, Via Branze 45, 25123Brescia, Italy
| | - Gregorio Peron
- Proteomics
Platform, AgroFood Lab, Department of Molecular and Translational
Medicine, University of Brescia, Viale Europa, 11, 25123Brescia, Italy
| | - Giovanni Ribaudo
- Proteomics
Platform, AgroFood Lab, Department of Molecular and Translational
Medicine, University of Brescia, Viale Europa, 11, 25123Brescia, Italy
| | - Alessandra Gianoncelli
- Proteomics
Platform, AgroFood Lab, Department of Molecular and Translational
Medicine, University of Brescia, Viale Europa, 11, 25123Brescia, Italy
| | - Salvatore Savino
- Unit
of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123Brescia, Italy
| | - Houda Boureghda
- Department
of Botany, Laboratory of Phytopathology and Molecular Biology, Ecole Nationale Supérieure Agronomique (ENSA), El Harrach, Algiers16200, Algeria
| | - Zouaoui Bouznad
- Department
of Botany, Laboratory of Phytopathology and Molecular Biology, Ecole Nationale Supérieure Agronomique (ENSA), El Harrach, Algiers16200, Algeria
| | - Eugenio Monti
- Unit
of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123Brescia, Italy
| | - Emanuela Gobbi
- Agri-Food
and Environmental Microbiology Platform, Department of Molecular and
Translational Medicine, University of Brescia, Viale Europa, 11, 25123Brescia, Italy
| |
Collapse
|
5
|
Gliotoxin, an Immunosuppressive Fungal Metabolite, Primes Plant Immunity: Evidence from Trichoderma virens-Tomato Interaction. mBio 2022; 13:e0038922. [PMID: 35862794 PMCID: PMC9426506 DOI: 10.1128/mbio.00389-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Beneficial interaction of members of the fungal genus Trichoderma with plant roots primes the plant immune system, promoting systemic resistance to pathogen infection. Some strains of Trichoderma virens produce gliotoxin, a fungal epidithiodioxopiperazine (ETP)-type secondary metabolite that is toxic to animal cells. It induces apoptosis, prevents NF-κB activation via the inhibition of the proteasome, and has immunosuppressive properties. Gliotoxin is known to be involved in the antagonism of rhizosphere microorganisms. To investigate whether this metabolite has a role in the interaction of Trichoderma with plant roots, we compared gliotoxin-producing and nonproducing T. virens strains. Both colonize the root surface and outer layers, but they have differential effects on root growth and architecture. The responses of tomato plants to a pathogen challenge were followed at several levels: lesion development, levels of ethylene, and reactive oxygen species. The transcriptomic signature of the shoot tissue in response to root interaction with producing and nonproducing T. virens strains was monitored. Gliotoxin producers provided stronger protection against foliar pathogens, compared to nonproducing strains. This was reflected in the transcriptomic signature, which showed the induction of defense-related genes. Two markers of plant defense response, PR1 and Pti-5, were differentially induced in response to pure gliotoxin. Gliotoxin thus acts as a microbial signal, which the plant immune system recognizes, directly or indirectly, to promote a defense response. IMPORTANCE A single fungal metabolite induces far-reaching transcriptomic reprogramming in the plant, priming immune responses and defense, in contrast to its immunosuppressive effect on animal cells. While the negative effects of gliotoxin-producing Trichoderma strains on growth may be observed only under a particular set of laboratory conditions, gliotoxin-linked molecular patterns, including the potential for limited cell death, could strongly prime plant defense, even in mature soil-grown plants in which the same Trichoderma strain promotes growth.
Collapse
|
6
|
|
7
|
Vicente I, Baroncelli R, Hermosa R, Monte E, Vannacci G, Sarrocco S. Role and genetic basis of specialised secondary metabolites in Trichoderma ecophysiology. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2021.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
It Works! Organic-Waste-Assisted Trichoderma spp. Solid-State Fermentation on Agricultural Digestate. Microorganisms 2022; 10:microorganisms10010164. [PMID: 35056614 PMCID: PMC8780502 DOI: 10.3390/microorganisms10010164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed at valorizing digestate through Trichoderma spp. solid-state fermentation (SSF) to produce a potentially ameliorated fertilizer combined with fungal biomass as a value-added bioproduct. Plant-growth-promoting Trichoderma atroviride Ta13, T. reesei RUT-C30, T. asperellum R, and T. harzianum T-22 were tested on different SSF substrates: whole digestate (WD), digestate dried up with wood sawdust (SSF1), and digestate enriched with food waste and dried up with wood sawdust (SSF2). The fungal biomass was quantified by using a qPCR assay. The growth of the four Trichoderma spp. was only observed on the SSF2 substrate. The highest quantity of mycelium was produced by T. reesei RUT-30 (689.80 ± 80.53 mg/g substrate), followed by T. atroviride Ta13, and T. asperellum R (584.24 ± 13.36 and 444.79 ± 91.02 mg/g substrate). The germination of Lepidium sativum seeds was evaluated in order to assess the phytoxicity of the Trichoderma-enriched substrate. The treatments with 7.5% SSF2-R, 3.75% SSF2-T-22, and 1.8% SSF2-Ta13 equally enhanced the root elongation in comparison to the non-fermented SSF-2. This study demonstrated that digestate, mixed with agro-food waste, was able to support the cultivation of Trichoderma spp., paving the way to the valorization of fermented digestate as a proper biofertilizer.
Collapse
|
9
|
Complete Genome Sequences and Genome-Wide Characterization of Trichoderma Biocontrol Agents Provide New Insights into their Evolution and Variation in Genome Organization, Sexual Development, and Fungal-Plant Interactions. Microbiol Spectr 2021; 9:e0066321. [PMID: 34908505 PMCID: PMC8672877 DOI: 10.1128/spectrum.00663-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Trichoderma spp. represent one of the most important fungal genera to mankind and in natural environments. The genus harbors prolific producers of wood-decaying enzymes, biocontrol agents against plant pathogens, plant-growth-promoting biofertilizers, as well as model organisms for studying fungal-plant-plant pathogen interactions. Pursuing highly accurate, contiguous, and chromosome-level reference genomes has become a primary goal of fungal research communities. Here, we report the chromosome-level genomic sequences and whole-genome annotation data sets of four strains used as biocontrol agents or biofertilizers (Trichoderma virens Gv29-8, Trichoderma virens FT-333, Trichoderma asperellum FT-101, and Trichoderma atroviride P1). Our results provide comprehensive categorization, correct positioning, and evolutionary detail of both nuclear and mitochondrial genomes, including telomeres, AT-rich blocks, centromeres, transposons, mating-type loci, nuclear-encoded mitochondrial sequences, as well as many new secondary metabolic and carbohydrate-active enzyme gene clusters. We have also identified evolutionarily conserved core genes contributing to plant-fungal interactions, as well as variations potentially linked to key behavioral traits such as sex, genome defense, secondary metabolism, and mycoparasitism. The genomic resources we provide herein significantly extend our knowledge not only of this economically important fungal genus, but also fungal evolution and basic biology in general. IMPORTANCE Telomere-to-telomere and gapless reference genome assemblies are necessary to ensure that all genomic variants are studied and discovered, including centromeres, telomeres, AT-rich blocks, mating type loci, biosynthetic, and metabolic gene clusters. Here, we applied long-range sequencing technologies to determine the near-completed genome sequences of four widely used biocontrol agents or biofertilizers: Trichoderma virens Gv29-8 and FT-333, Trichoderma asperellum FT-101, and Trichoderma atroviride P1. Like those of three Trichoderma reesei wild isolates [QM6a, CBS999.97(MAT1-1) and CBS999.97(MAT1-2)] we reported previously, these four biocontrol agent genomes each contain seven nuclear chromosomes and a circular mitochondrial genome. Substantial intraspecies and intragenus diversities are also discovered, including single nucleotide polymorphisms, chromosome shuffling, as well as genomic relics derived from historical transposition events and repeat-induced point (RIP) mutations.
Collapse
|
10
|
Jayalakshmi R, Oviya R, Premalatha K, Mehetre ST, Paramasivam M, Kannan R, Theradimani M, Pallavi MS, Mukherjee PK, Ramamoorthy V. Production, stability and degradation of Trichoderma gliotoxin in growth medium, irrigation water and agricultural soil. Sci Rep 2021; 11:16536. [PMID: 34400690 PMCID: PMC8367996 DOI: 10.1038/s41598-021-95907-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022] Open
Abstract
Gliotoxin produced by Trichoderma virens is inhibitory against various phytopathogenic fungi and bacteria. However, its stability in soil-ecosystem has not yet been well-defined. This study aimed to decipher its persistence and behaviour in growth media, irrigation water and soil ecosystems. Gliotoxin production was noticed at logarithmic growth phase and converted into bis-thiomethyl gliotoxin at late stationary growth phase of T. virens in acidic growth medium. But, no gliotoxin production was observed in neutral and alkaline growth medium. Gliotoxin was stable for several days in acidic water but degraded in alkaline water. Degradation of gliotoxin was more in unsterile soil than sterile soil and also that was higher under wet soil than dry soil. Degradation of gliotoxin was hastened by alkaline pH in wet soil but not in dry soil. Under unsterile soil conditions, high soil moisture increased the degradation of gliotoxin and the degradation of gliotoxin occurred quickly in alkaline soil (in 5 days) compared to acidic soil (in 10 days). Under sterile soil conditions, high soil moisture also enhanced the degradation of gliotoxin but level of degradation was less compared to unsterile conditions. Thus, gliotoxin stability is influenced mainly by the soil wetness, soil microbial community and pH conditions.
Collapse
Affiliation(s)
- R Jayalakshmi
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu, India
| | - R Oviya
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu, India
| | - K Premalatha
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu, India
| | - S T Mehetre
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - M Paramasivam
- Pesticide Toxicology Laboratory, Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - R Kannan
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Killikulam, Tamil Nadu, India
| | - M Theradimani
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu, India
| | - M S Pallavi
- Pesticide Residue and Food Quality Analysis Laboratory, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Prasun K Mukherjee
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - V Ramamoorthy
- Department of Plant Pathology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu, India.
| |
Collapse
|
11
|
Shenouda ML, Cox RJ. Molecular methods unravel the biosynthetic potential of Trichoderma species. RSC Adv 2021; 11:3622-3635. [PMID: 35424278 PMCID: PMC8694227 DOI: 10.1039/d0ra09627j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022] Open
Abstract
Members of the genus Trichoderma are a well-established and studied group of fungi, mainly due to their efficient protein production capabilities and their biocontrol activities. Despite the immense interest in the use of different members of this species as biopesticides and biofertilizers, the study of their active metabolites and their biosynthetic gene clusters has not gained significant attention until recently. Here we review the challenges and opportunities in exploiting the full potential of Trichoderma spp. for the production of natural products and new metabolic engineering strategies used to overcome some of these challenges.
Collapse
Affiliation(s)
- Mary L Shenouda
- OCI, BMWZ, Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University 21521 Egypt
| | - Russell J Cox
- OCI, BMWZ, Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
| |
Collapse
|