1
|
Abdallah-Ruiz A, Esteban-Perez C, White SB, Schilling W, Zhang X, Stafne ET, Rodríguez-Magaña A, Peña-Baracaldo F, Moreno-Ortiz CA, Silva JL. Baseline microbiota of blueberries, soil, and irrigation water from blueberry farms located in three geographical regions. Heliyon 2024; 10:e40762. [PMID: 39717570 PMCID: PMC11664272 DOI: 10.1016/j.heliyon.2024.e40762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Bacterial microbiota was determined in fruit, soil, and irrigation water from blueberry (Vaccinium spp.) farms located in Cundinamarca, Colombia; Mississippi, United States; and Jalisco, Mexico. Bacterial communities were studied using 16S ribosomal ribonucleic acid (rRNA) gene amplification by targeting the V3-V4 hypervariable region. The most abundant phylum in fruit was Proteobacteria in Colombia and the United States and Firmicutes in Mexico. The most abundant phylum in soil and water was Proteobacteria for all regions. The top three genera found in fruit were Heliorestis (9.2 %), Rhodanobacter (3.3 %), and Sphingomonas (2.8 %) for Colombia, Heliorestis (23.1 %), Thiomonas (8.5 %), and Methylobacterium (3.3 %) for the United States, and Heliorestis (47.4 %), Thiomonas (9.1 %), and Bacillus (4.6 %) for Mexico. Colombia reported the highest (Padj < 0.05) alpha diversity for blueberries, and United States and Mexico had similar (Padj > 0.05) results. Beta diversity revealed bacterial communities in fruit differed (P < 0.05) by region. Bacterial differences existed between Colombia, United States, and Mexico for soil and fruit (P = 0.021, 0.003, and 0.006, respectively) and water and fruit (P = 0.003, 0.003, and 0.033, respectively). Blueberries grown in the three different regions have unique microbiota. Fruit and fruit-environment microbial composition also differed by region. These results provide a more complete profile of the bacterial communities on blueberries and their agricultural environments and could contribute to better management and decision-making practices in terms of plant health, food quality, and food safety.
Collapse
Affiliation(s)
- Angelica Abdallah-Ruiz
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, 39762, USA
| | | | - Shecoya B. White
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Wes Schilling
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Xue Zhang
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Eric T. Stafne
- South Branch Experiment Station, Coastal Research and Extension Center, Mississippi State University, Poplarville, MS, 39470, USA
| | - Alejandro Rodríguez-Magaña
- Facultad de Ciencias Económicas y Empresariales, Universidad Panamericana de Guadalajara, Guadalajara, 45010, Mexico
| | - Fernando Peña-Baracaldo
- Facultad de Ciencias Agropecuarias, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A., Bogotá, 111166, Colombia
| | - Carlos A. Moreno-Ortiz
- Facultad de Ciencias Administrativas y Comerciales, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A., Bogotá, 111166, Colombia
| | - Juan L. Silva
- Department of Biochemistry, Nutrition, and Health Promotion, Mississippi State University, Mississippi State, MS, 39762, USA
| |
Collapse
|
2
|
Ashique S, Mukherjee T, Mohanty S, Garg A, Mishra N, Kaushik M, Bhowmick M, Chattaraj B, Mohanto S, Srivastava S, Taghizadeh-Hesary F. Blueberries in focus: Exploring the phytochemical potentials and therapeutic applications. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 18:101300. [DOI: 10.1016/j.jafr.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
|
3
|
Deng L, Zhang A, Wang A, Zhang H, Wang T, Song W, Yue H. Wheat domestication alters root metabolic functions to drive the assembly of endophytic bacteria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1263-1277. [PMID: 39137160 DOI: 10.1111/tpj.16972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
The domestication process progressively differentiated wild relatives from modern cultivars, thus impacting plant-associated microorganisms. Endophytic bacterial communities play vital roles in plant growth, development, and health, which contribute to the crop's sustainable development. However, how plant domestication impacts endophytic bacterial communities and relevant root exudates in wheat remains unclear. First, we have observed that the domestication process increased the root endophytic microbial community diversity of wheat while decreasing functional diversity. Second, domestication decreased the endophytic bacterial co-occurrence network stability, and it did significantly alter the abundances of core microorganisms or potential probiotics. Third, untargeted LC-MS metabolomics revealed that domestication significantly altered the metabolite profiles, and the abundances of various root exudates released were significantly correlated with keystone taxa including the Chryseobacterium, Massilia, and Lechevalieria. Moreover, we found that root exudates, especially L-tyrosine promote the growth of plant-beneficial bacteria, such as Chryseobacterium. Additionally, with L-tyrosine and Chryseobacterium colonized in the roots, the growth of wild wheat's roots was significantly promoted, while no notable effect could be found in the domesticated cultivars. Overall, this study suggested that wild wheat as a key germplasm material, and its native endophytic microbes may serve as a resource for engineering crop microbiomes to improve the morphological and physiological traits of crops in widely distributed poor soils.
Collapse
Affiliation(s)
- Lixin Deng
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ali Zhang
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Anze Wang
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Zhang
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tingting Wang
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weining Song
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong Yue
- College of Agronomy, National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
4
|
Li X, Zhang Y, Zhou C, Li X, Zou X, Ou L, Tao Y. The changes of rhizosphere microbial communities in pepper varieties with different capsaicinoids. Front Microbiol 2024; 15:1430682. [PMID: 39252840 PMCID: PMC11381285 DOI: 10.3389/fmicb.2024.1430682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Capsaicinoids are produced uniquely in pepper fruits, and its level determines the commercial quality and health-promoting properties of pepper. So, it is particularly important to increase capsaicinoids content in pepper. Rhizosphere microbiota is critical to plant growth and performance, and affected by plant varieties. However, the impact of pepper varieties with different capsaicinoids yields on the rhizosphere microbiota is poorly understood. Using high-throughput sequencing of the 16S rRNA and internal transcribed spacer (ITS) region, we investigated the rhizosphere microbial community among five pepper varieties containing different capsaicinoids. Our results demonstrated that pepper variety significantly influenced the diversity and structure of rhizosphere microbial community. Bacterial diversity in varieties with high capsaicinoids content was significantly higher than in varieties with low capsaicinoids content, while fungal diversity was opposite to bacterial diversity. The correlation analysis revealed that 19 dominant bacterial genera (e.g., Chujaibacter, Rhodanobacter, and Gemmatimonas) were significantly correlated with capsaicinoids content, and nine of them were also significantly associated with soil nutrients, whereas only one fungal genus (Podospora) was significantly correlated with capsaicinoids content. Additionally, almost all genera which significantly correlated to capsaicinoids content were biomarkers of the five pepper varieties and the correlation was well corresponding to the capsaicinoids content. Overall, our results confirmed that the variety of pepper significantly affected the rhizosphere microbial community in the fields, and bacteria and fungi responded differently to capsaicinoids, which may affect the biosynthesis of capsaicinoids and contribute to further improvement of capsaicinoids production in pepper fruits.
Collapse
Affiliation(s)
- Xin Li
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yan Zhang
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Chi Zhou
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Xuefeng Li
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Xuexiao Zou
- Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Lijun Ou
- Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Yu Tao
- Institute of Vegetable, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| |
Collapse
|
5
|
Baba T, Hirose D. Two novel Archaeorhizomyces species isolated from ericoid mycorrhizal roots and their association with ericaceous plants in vitro. Fungal Biol 2024; 128:1939-1953. [PMID: 39059849 DOI: 10.1016/j.funbio.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024]
Abstract
Archaeorhizomyces is a diverse and ubiquitous genus of the subphylum Taphrinomycotina, which contains soil-inhabiting/root-associated fungi. Although ecological importance and root-associating lifestyles of Archaeorhizomyces can be postulated, morphological aspects of fungal body and root colonization are largely unknown due to the scarcity of cultures. We obtained three unidentified Archaeorhizomyces isolates from ericoid mycorrhizal (ErM) roots of Rhododendron scabrum and Rhododendron × obtusum collected in Japan. To advance our understanding of lifestyle of the genus, we investigated their general morphology, phylogeny, and in vitro root-colonizing ability in ericoid mycorrhizal hosts, Vaccinium virgatum and Rhododendron kaempferi. Some morphological characteristics, such as slow glowing white-to-creamy-colored colonies and formation of yeast-like or chlamydospore-like cells, were shared between our strains and two described species, Archaeorhizomycesfinlayi and Archaeorhizomyces borealis, but they were phylogenetically distant. Our strains were clearly distinguished as two undescribed species based on morphology and phylogenetic relationship. As seen in typical ErM fungi, both species frequently formed hyphal coils within vital rhizodermal cells of ErM plants in vitro. The morphology of hyphal coils was also different between species. Consequently, two novel species, Archaeorhizomyces notokirishimae sp. nov. and Archaeorhizomyces ryukyuensis sp. nov., were described.
Collapse
Affiliation(s)
- Takashi Baba
- Division of Fruit Tree Production Research, Institute of Fruit Tree and Tea Science, NARO, 92-24 Shimokuriyagawa, Morioka, Iwate 020-0123, Japan
| | - Dai Hirose
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan.
| |
Collapse
|
6
|
Gorzelany J, Kapusta I, Pluta S, Belcar J, Pentoś K, Basara O. Effect of Gaseous Ozone and Storage Time on Polyphenolic Profile and Sugar Content in Fruits of Selected Vaccinium corymbosum L. Genotypes. Molecules 2023; 28:8106. [PMID: 38138592 PMCID: PMC10745583 DOI: 10.3390/molecules28248106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
One of the best sources of antioxidant and health-promoting bioactive substances is the fruit of V. corymbosum. A potent oxidizing agent, ozone (O3), can effectively eliminate bacteria. The application of ozone gas to V. corymbosum fruit during storage had a favorable impact on the fruit's phenolic component and sugar content in the current investigation. After 7 days of storage, phenolic content in all highbush blueberry cultivars and clones tested increased on average by 28.60%, including anthocyanins by 34%. After 14 days of storage, an average increase of 16.50% in phenolic compounds was observed, including a 20.53% increase in anthocyanins. Among all the tested varieties, clone BOR-21 treated with a dose of 0.01 mL·L-1 ozone for 30 min after 14 days had the highest TPC-143.73 mg·100 g-1 f.w. The sugar content of berries treated with a dose of 0.01 mL·L-1 ozone for 30 min, on day 7 and day 14 of storage increased by 9.2% and 6.3%, respectively. On day 7, the highest amount of total sugar (22.74 g·100 g-1) was observed in Duke cultivar after being exposed to 0.01 mL·L-1 ozone for 15 min. The ozonation treatments enhanced the fruit's saturation with nutrients, which raises the fruit's value as food.
Collapse
Affiliation(s)
- Józef Gorzelany
- Department of Food and Agriculture Production Engineering, University of Rzeszów, St. Zelwerowicza 4, 35-601 Rzeszow, Poland; (J.G.); (J.B.); (O.B.)
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, University of Rzeszów, St. Zelwerowicza 4, 35-601 Rzeszow, Poland
| | - Stanisław Pluta
- Department of Horticultural Crop Breeding, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3 Street, 96-100 Skierniewice, Poland;
| | - Justyna Belcar
- Department of Food and Agriculture Production Engineering, University of Rzeszów, St. Zelwerowicza 4, 35-601 Rzeszow, Poland; (J.G.); (J.B.); (O.B.)
| | - Katarzyna Pentoś
- Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, 37b Chełmonskiego Street, 51-630 Wroclaw, Poland
| | - Oskar Basara
- Department of Food and Agriculture Production Engineering, University of Rzeszów, St. Zelwerowicza 4, 35-601 Rzeszow, Poland; (J.G.); (J.B.); (O.B.)
| |
Collapse
|
7
|
Ye Y, Zhan X, Wang K, Zhong J, Liao F, Chen W, Guo W. A Symbiotic Fungus Sistotrema Benefits Blueberry Rejuvenation and Abiotic Stress Tolerance. J Fungi (Basel) 2023; 9:779. [PMID: 37504767 PMCID: PMC10381331 DOI: 10.3390/jof9070779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Blueberry (Vaccinium spp.) rhizosphere microorganisms can significantly increase the absorption area and improve the efficiency of rhizospheric nutrient uptake. However, there has been little research on blueberry rhizosphere microorganisms, especially those that can complement root function deficiency. In this study, we analyzed the rhizosphere fungi of 'O'Neal,' 'Sharpblue,' and 'Premier' blueberry cultivars and found that 'Premier' blueberries showed strong growth potential and relatively high root regulation ability. The dominant symbiotic fungus Sistotrema was correlated with the strong growth of 'Premier' and was directionally screened and isolated based on conserved gene structures and COG function analysis. This fungus was reinoculated onto the roots of 'Gulfcoast' and 'Star' blueberry cultivars. Sistotrema promoted the growth of blueberries and improved their ability to resist stress and grow under adverse conditions, as indicated by maintained or increased chlorophyll content under such conditions. Further analyses showed that Sistotrema has certain functional characteristics such as the ability to dissolve iron in its insoluble form and then release it, to fix nitrogen, and to inhibit nitrification in soil. Thus, it effectively doubled the soil nitrogen content and increased the soluble iron content in soil by 50%. This investigation indicates sistotrema inoculation as an approach to increase blueberry stress tolerance and complete their root nutrition deficiency.
Collapse
Affiliation(s)
- Yu Ye
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xufang Zhan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Kai Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo 315211, China
| | - Jingya Zhong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Fanglei Liao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Wenrong Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Weidong Guo
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
8
|
Saati-Santamaría Z, Vicentefranqueira R, Kolařik M, Rivas R, García-Fraile P. Microbiome specificity and fluxes between two distant plant taxa in Iberian forests. ENVIRONMENTAL MICROBIOME 2023; 18:64. [PMID: 37481564 PMCID: PMC10363313 DOI: 10.1186/s40793-023-00520-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Plant-associated microbial communities play important roles in host nutrition, development and defence. In particular, the microbes living within internal plant tissues can affect plant metabolism in a more intimate way. Understanding the factors that shape plant microbial composition and discovering enriched microbes within endophytic compartments would thus be valuable to gain knowledge on potential plant-microbial coevolutions. However, these interactions are usually studied through reductionist approaches (in vitro models or crop controlled systems). Here, we investigate these ecological factors in wild forest niches using proximally located plants from two distant taxa (blueberry and blackberry) as a model. RESULTS Although the microbial communities were quite similar in both plants, we found that sampling site had a high influence on them; specifically, its impact on the rhizosphere communities was higher than that on the roots. Plant species and sample type (root vs. rhizosphere) affected the bacterial communities more than the fungal communities. For instance, Xanthobacteraceae and Helotiales taxa were more enriched in roots, while the abundance of Gemmatimonadetes was higher in rhizospheres. Acidobacteria abundance within the endosphere of blueberry was similar to that in soil. Several taxa were significantly associated with either blackberry or blueberry samples regardless of the sampling site. For instance, we found a significant endospheric enrichment of Nevskia in blueberry and of Sphingobium, Novosphingobium and Steroidobacter in blackberry. CONCLUSIONS There are selective enrichment and exclusion processes in the roots of plants that shapes a differential composition between plant species and sample types (root endosphere-rhizosphere). The special enrichment of some microbial taxa in each plant species might suggest the presence of ancient selection and/or speciation processes and might imply specific symbiosis. The selection of fungi by the host is more pronounced when considering the fungal trait rather than the taxonomy. This work helps to understand plant-microbial interactions in natural ecosystems and the microbiome features of plants.
Collapse
Affiliation(s)
- Zaki Saati-Santamaría
- Departamento de Microbiología y Genética, Universidad de Salamanca, 37007, Salamanca, Spain.
- Institute for Agribiotechnology Research (CIALE), Villamayor, 37185, Salamanca, Spain.
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic.
| | - Rocío Vicentefranqueira
- Departamento de Microbiología y Genética, Universidad de Salamanca, 37007, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, 37185, Salamanca, Spain
| | - Miroslav Kolařik
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Raúl Rivas
- Departamento de Microbiología y Genética, Universidad de Salamanca, 37007, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, 37185, Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, USAL-CSIC (IRNASA), 37008, Salamanca, Spain
| | - Paula García-Fraile
- Departamento de Microbiología y Genética, Universidad de Salamanca, 37007, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, 37185, Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, USAL-CSIC (IRNASA), 37008, Salamanca, Spain
| |
Collapse
|
9
|
Gomes A, Narciso R, Regalado L, Pinheiro MC, Barros F, Sario S, Santos C, Mendes RJ. Disclosing the native blueberry rhizosphere community in Portugal-an integrated metagenomic and isolation approach. PeerJ 2023; 11:e15525. [PMID: 37397024 PMCID: PMC10312161 DOI: 10.7717/peerj.15525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023] Open
Abstract
Backgorund The production of red fruits, such as blueberry, has been threatened by several stressors from severe periods of drought, nutrient scarcity, phytopathogens, and costs with fertilization programs with adverse consequences. Thus, there is an urgent need to increase this crop's resilience whilst promoting sustainable agriculture. Plant growth-promoting microorganisms (PGPMs) constitute not only a solution to tackle water and nutrient deficits in soils, but also as a control against phytopathogens and as green compounds for agricultural practices. Methods In this study, a metagenomic approach of the local fungal and bacterial community of the rhizosphere of Vaccinium corymbosum plants was performed. At the same time, both epiphytic and endophytic microorganisms were isolated in order to disclose putative beneficial native organisms. Results Results showed a high relative abundance of Archaeorhizomyces and Serendipita genera in the ITS sequencing, and Bradyrhizobium genus in the 16S sequencing. Diversity analysis disclosed that the fungal community presented a higher inter-sample variability than the bacterial community, and beta-diversity analysis further corroborated this result. Trichoderma spp., Bacillus spp., and Mucor moelleri were isolated from the V. corymbosum plants. Discussion This work revealed a native microbial community capable of establishing mycorrhizal relationships, and with beneficial physiological traits for blueberry production. It was also possible to isolate several naturally-occurring microorganisms that are known to have plant growth-promoting activity and confer tolerance to hydric stress, a serious climate change threat. Future studies should be performed with these isolates to disclose their efficiency in conferring the needed resilience for this and several crops.
Collapse
Affiliation(s)
- Anicia Gomes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rodrigo Narciso
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Laura Regalado
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Margarida Cardeano Pinheiro
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Filipa Barros
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Sara Sario
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Conceição Santos
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rafael J. Mendes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Kawash J, Oudemans PV, Erndwein L, Polashock JJ. Assessment and comparison of rhizosphere communities in cultivated Vaccinium spp. provide a baseline for study of causative agents in decline. FRONTIERS IN PLANT SCIENCE 2023; 14:1173023. [PMID: 37441173 PMCID: PMC10333580 DOI: 10.3389/fpls.2023.1173023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/29/2023] [Indexed: 07/15/2023]
Abstract
It has long been recognized that the community of organisms associated with plant roots is a critical component of the phytobiome and can directly or indirectly contribute to the overall health of the plant. The rhizosphere microbial community is influenced by a number of factors including the soil type, the species of plants growing in those soils, and in the case of cultivated plants, the management practices associated with crop production. Vaccinium species, such as highbush blueberry and American cranberry, are woody perennials that grow in sandy, acidic soils with low to moderate levels of organic matter and a paucity of nutrients. When properly maintained, fields planted with these crops remain productive for many years. In some cases, however, yields and fruit quality decline over time, and it is suspected that degenerating soil health and/or changes in the rhizosphere microbiome are contributing factors. Determining the assemblage of bacterial and fungal microorganisms typically associated with the rhizosphere of these crops is a critical first step toward addressing the complex issue of soil health. We hypothesized that since blueberry and cranberry are in the same genus and grow in similar soils, that their associated rhizosphere microbial communities would be similar to each other. We analyzed the eukaryotic (primarily fungal) and bacterial communities from the rhizosphere of representative blueberry and cranberry plants growing in commercial fields in New Jersey. The data presented herein show that while the bacterial communities between the crops is very similar, the fungal communities associated with each crop are quite different. These results provide a framework for examining microbial components that might contribute to the health of Vaccinium spp. crops in New Jersey and other parts of the northeastern U.S.
Collapse
Affiliation(s)
- Joseph Kawash
- USDA-ARS, Genetic Improvement of Fruits and Vegetables Laboratory, Chatsworth, NJ, United States
| | - Peter V. Oudemans
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| | - Lindsay Erndwein
- Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Scholar, USDA-ARS, Genetic Improvement of Fruits and Vegetables Laboratory, Chatsworth, NJ, United States
| | - James J. Polashock
- USDA-ARS, Genetic Improvement of Fruits and Vegetables Laboratory, Chatsworth, NJ, United States
| |
Collapse
|
11
|
Che J, Wu Y, Yang H, Wang S, Wu W, Lyu L, Wang X, Li W. Root Niches of Blueberry Imprint Increasing Bacterial-Fungal Interkingdom Interactions along the Soil-Rhizosphere-Root Continuum. Microbiol Spectr 2023; 11:e0533322. [PMID: 37222589 PMCID: PMC10269492 DOI: 10.1128/spectrum.05333-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Plant root-associated microbiomes play critical roles in promoting plant health, productivity, and tolerance to biotic/abiotic stresses. Blueberry (Vaccinium spp.) is adapted to acidic soils, while the interactions of the root-associated microbiomes in this specific habitat under various root microenvironments remain elusive. Here, we investigated the diversity and community composition of bacterial and fungal communities in various blueberry root niches (bulk soil, rhizosphere soil, and root endosphere). The results showed that blueberry root niches significantly affected root-associated microbiome diversity and community composition compared to those of the three host cultivars. Deterministic processes gradually increased along the soil-rhizosphere-root continuum in both bacterial and fungal communities. The co-occurrence network topological features showed that both bacterial and fungal community complexity and intensive interactions decreased along the soil-rhizosphere-root continuum. Different compartment niches clearly influenced bacterial-fungal interkingdom interactions, which were significantly higher in the rhizosphere, and positive interactions gradually dominated the co-occurrence networks from the bulk soil to the endosphere. The functional predictions showed that rhizosphere bacterial and fungal communities may have higher cellulolysis and saprotrophy capacities, respectively. Collectively, the root niches not only affected microbial diversity and community composition but also enhanced the positive interkingdom interactions between bacterial and fungal communities along the soil-rhizosphere-root continuum. This provides an essential basis for manipulating synthetic microbial communities for sustainable agriculture. IMPORTANCE The blueberry root-associated microbiome plays an essential role in its adaptation to acidic soils and in limiting the uptake of soil nutrients by its poor root system. Studies on the interactions of the root-associated microbiome in the various root niches may deepen our understanding of the beneficial effects in this particular habitat. Our study extended the research on the diversity and composition of microbial communities in different blueberry root compartment niches. Root niches dominated the root-associated microbiome compared to that of the host cultivar, and deterministic processes increased from the bulk soil to the endosphere. In addition, bacterial-fungal interkingdom interactions were significantly higher in the rhizosphere, and those positive interactions progressively dominated the co-occurrence network along the soil-rhizosphere-root continuum. Collectively, root niches dominantly affected the root-associated microbiome and the positive interkingdom interactions increased, potentially providing benefits for the blueberry.
Collapse
Affiliation(s)
- Jilu Che
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Hao Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Shaoyi Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Xiaomin Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
12
|
Untangling the Effects of Plant Genotype and Soil Conditions on the Assembly of Bacterial and Fungal Communities in the Rhizosphere of the Wild Andean Blueberry ( Vaccinium floribundum Kunth). Microorganisms 2023; 11:microorganisms11020399. [PMID: 36838364 PMCID: PMC9961955 DOI: 10.3390/microorganisms11020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Microbial communities in the rhizosphere influence nutrient acquisition and stress tolerance. How abiotic and biotic factors impact the plant microbiome in the wild has not been thoroughly addressed. We studied how plant genotype and soil affect the rhizosphere microbiome of Vaccinium floribundum, an endemic species of the Andean region that has not been domesticated or cultivated. Using high-throughput sequencing of the 16S rRNA and ITS region, we characterized 39 rhizosphere samples of V. floribundum from four plant genetic clusters in two soil regions from the Ecuadorian Highlands. Our results showed that Proteobacteria and Acidobacteria were the most abundant bacterial phyla and that fungal communities were not dominated by any specific taxa. Soil region was the main predictor for bacterial alpha diversity, phosphorous and lead being the most interesting edaphic factors explaining this diversity. The interaction of plant genotype and altitude was the most significant factor associated with fungal diversity. This study highlights how different factors govern the assembly of the rhizosphere microbiome of a wild plant. Bacterial communities depend more on the soil and its mineral content, while plant genetics influence the fungal community makeup. Our work illustrates plant-microbe associations and the drivers of their variation in a unique unexplored ecosystem from the Ecuadorian Andes.
Collapse
|
13
|
Wang M, Sun H, Xu Z. Analysis of Blueberry Plant Rhizosphere Bacterial Diversity and Selection of Plant Growth Promoting Rhizobacteria. Curr Microbiol 2022; 79:331. [DOI: 10.1007/s00284-022-03031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022]
|
14
|
Che J, Wu Y, Yang H, Wang S, Wu W, Lyu L, Li W. Long-term cultivation drives dynamic changes in the rhizosphere microbial community of blueberry. FRONTIERS IN PLANT SCIENCE 2022; 13:962759. [PMID: 36212276 PMCID: PMC9539842 DOI: 10.3389/fpls.2022.962759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Rhizosphere microbial communities profoundly affect plant health, productivity, and responses to environmental stress. Thus, it is of great significance to comprehensively understand the response of root-associated microbes to planting years and the complex interactions between plants and rhizosphere microbes under long-term cultivation. Therefore, four rabbiteye blueberries (Vaccinium ashei Reade) plantations established in 1988, 2004, 2013, and 2017 were selected to obtain the dynamic changes and assembly mechanisms of rhizosphere microbial communities with the increase in planting age. Rhizosphere bacterial and fungal community composition and diversity were determined using a high-throughput sequencing method. The results showed that the diversity and structure of bacterial and fungal communities in the rhizosphere of blueberries differed significantly among planting ages. A total of 926 operational taxonomic units (OTUs) in the bacterial community and 219 OTUs in the fungal community were identified as the core rhizosphere microbiome of blueberry. Linear discriminant analysis effect size (LEfSe) analysis revealed 36 and 56 distinct bacterial and fungal biomarkers, respectively. Topological features of co-occurrence network analysis showed greater complexity and more intense interactions in bacterial communities than in fungal communities. Soil pH is the main driver for shaping bacterial community structure, while available potassium is the main driver for shaping fungal community structure. In addition, the VPA results showed that edaphic factors and blueberry planting age contributed more to fungal community variations than bacterial community. Notably, ericoid mycorrhizal fungi were observed in cultivated blueberry varieties, with a marked increase in relative abundance with planting age, which may positively contribute to nutrient uptake and coping with environmental stress. Taken together, our study provides a basis for manipulating rhizosphere microbial communities to improve the sustainability of agricultural production during long-term cultivation.
Collapse
Affiliation(s)
- Jilu Che
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Hao Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Shaoyi Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
15
|
Dong M, Wang B, Tian Y, Chen L, Li Y, Sun H. Diversity of fungal assemblages in rhizosphere and endosphere of blueberry (Vaccinium spp.) under field conditions revealed by culturing and culture-independent molecular methods. Can J Microbiol 2022; 68:622-632. [PMID: 35926235 DOI: 10.1139/cjm-2022-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mycorrhizae are important to plants in improving nutrient absorption and stress resistance. To study mycorrhizal fungal diversity in blueberry, we combined culture method and culture-independent molecular method to analyze the root endosphere and rhizosphere fungi in three different cultivars. We obtained 212 isolates with a culture method and classified them into 40 types according to their morphological characteristics. Then, we amplified the internal transcribed spacer (ITS) sequence and found rich species diversity. With high-throughput sequencing, 561 operational taxonomic units (OTUs) were annotated based on a 97% similarity level cutoff. The alpha diversity index revealed that the fungal abundance and diversity in the rhizosphere were higher than in the endosphere. The dominant phyla were Ascomycota and Basidiomycota and the dominant genus was Oidiodendron. We also constructed the plant-fungus symbiotic system by inoculating in vitro stock shoots, which lays a theoretical foundation for further research to develop and utilize the dominant mycorrhizal fungi of blueberry.
Collapse
Affiliation(s)
- Mei Dong
- Jilin Agricultural University, 85112, Changchun, Jilin, China;
| | - Bowei Wang
- Jilin Agricultural University, 85112, Changchun, Jilin, China;
| | - Youwen Tian
- Jilin Agricultural University, 85112, Changchun, Jilin, China;
| | - Li Chen
- Jilin Agricultural University, 85112, Changchun, Jilin, China;
| | - Yadong Li
- Jilin Agricultural University, 85112, Changchun, Jilin, China;
| | - Haiyue Sun
- Jilin Agricultural University, 85112, Changchun, China;
| |
Collapse
|
16
|
Metabarcoding of fungal assemblages in Vaccinium myrtillus endosphere suggests colonization of above-ground organs by some ericoid mycorrhizal and DSE fungi. Sci Rep 2022; 12:11013. [PMID: 35773465 PMCID: PMC9246922 DOI: 10.1038/s41598-022-15154-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Plants harbor in their external surfaces and internal tissues a highly diverse and finely structured microbial assembly, the microbiota. Each plant compartment usually represents a unique ecological niche hosting a distinct microbial community and niche differentiation, which may mirror distinct functions of a specialized microbiota, has been mainly investigated for bacteria. Far less is known for the fungal components of the plant-associated microbiota. Here, we applied a metabarcoding approach to describe the fungal assemblages in different organs of Vaccinium myrtillus plants (Ericaceae) collected in a subalpine meadow in North-West Italy, and identified specific taxa enriched in internal tissues of roots, stems, leaves and flowers. We also traced the distribution of some important fungi commonly associated with plants of the family Ericaceae, namely the ericoid mycorrhizal (ErM) fungi and the dark septate endophytes (DSE), both playing important roles in plant growth and health. Operational taxonomic units attributed to established ErM fungal species in the genus Hyaloscypha and to DSE species in the Phialocephala-Acephala applanata complex (PAC) were found in all the plant organs. Mycorrhizal fungi are thought to be strictly associated with the plant roots, and this first observation of ErM fungi in the above-ground organs of the host plant may be explained by the evolutionary closeness of ErM fungi in the genus Hyaloscypha with non mycorrhizal fungal endophytes. This is also witnessed by the closer similarities of the ErM fungal genomes with the genomes of plant endophytes than with those of other mycorrhizal fungi, such as arbuscular or ectomycorrhizal fungi.
Collapse
|
17
|
Towards sustainable agriculture: rhizosphere microbiome engineering. Appl Microbiol Biotechnol 2021; 105:7141-7160. [PMID: 34508284 DOI: 10.1007/s00253-021-11555-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/26/2022]
Abstract
Soil microbiomes are extremely complex, with dense networks of interconnected microbial species underpinning vital functions for the ecosystem. In advanced agricultural research, rhizosphere microbiome engineering is gaining much attention, as the microbial community has been acknowledged to be a crucial partner of associated plants for their health fitness and yield. However, single or combined effects of a wide range of soil biotic and abiotic factors impact the success of engineered microbiomes, as these microbial communities exhibit uneven structural and functional networks in diverse soil conditions. Therefore, once a deep understanding of major influential factors and corresponding microbial responses is developed, the microbiome can be more effectively manipulated and optimized for cropping benefits. In this mini-review, we propose the concept of a microbiome-mediated smart agriculture system (MiMSAS). We summarize some of the advanced strategies for engineering the rhizosphere microbiome to withstand the stresses imposed by dominant abiotic and biotic factors. This work will help the scientific community gain more clarity about engineered microbiome technologies for increasing crop productivity and environmental sustainability.Key points• Individual or combined effects of soil biotic and abiotic variables hamper the implementation of engineered microbiome technologies in the field.• As a traditional approach, reduced-tillage practices coinciding with biofertilization can promote a relatively stable functional microbiome.• Increasing the complexity and efficiency of the synthetic microbiome is one way to improve its field-application success rate.• Plant genome editing/engineering is a promising approach for recruiting desired microbiomes for agricultural benefit.
Collapse
|
18
|
Zhang Y, Wang W, Shen Z, Wang J, Chen Y, Wang D, Liu G, Han M. Comparison and interpretation of characteristics of Rhizosphere microbiomes of three blueberry varieties. BMC Microbiol 2021; 21:30. [PMID: 33482726 PMCID: PMC7821519 DOI: 10.1186/s12866-021-02092-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Background Studies on the rhizosphere microbiome of various plants proved that rhizosphere microbiota carries out various vital functions and can regulate the growth and improve the yield of plants. However, the rhizosphere microbiome of commercial blueberry was only reported by a few studies and remains elusive. Comparison and interpretation of the characteristics of the rhizosphere microbiome of blueberry are critical important to maintain its health. Results In this study, a total of 20 rhizosphere soil samples, including 15 rhizosphere soil samples from three different blueberry varieties and five bulk soil samples, were sequenced with a high-throughput sequencing strategy. Based on these sequencing datasets, we profiled the taxonomical, functional, and phenotypic compositions of rhizosphere microbial communities for three different blueberry varieties and compared our results with a previous study focused on the rhizosphere microbiome of blueberry varieties. Our results demonstrated significant differences in alpha diversity and beta diversity of rhizosphere microbial communities of different blueberry varieties and bulk soil. The distribution patterns of taxonomical, functional, and phenotypic compositions of rhizosphere microbiome differ across the blueberry varieties. The rhizosphere microbial communities of three different blueberry varieties could be distinctly separated, and 28 discriminative biomarkers were selected to distinguish these three blueberry varieties. Core rhizosphere microbiota for blueberry was identified, and it contained 201 OTUs, which were mainly affiliated with Proteobacteria, Actinobacteria, and Acidobacteria. Moreover, the interactions between OTUs of blueberry rhizosphere microbial communities were explored by a co-occurrence network of OTUs from an ecological perspective. Conclusions This pilot study explored the characteristics of blueberry’s rhizosphere microbial community, such as the beneficial microorganisms and core microbiome, and provided an integrative perspective on blueberry’s rhizosphere microbiome, which beneficial to blueberry health and production. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02092-7.
Collapse
Affiliation(s)
- Yan Zhang
- School of Life Sciences, Hefei Normal University, Hefei, 230601, Anhui, China
| | - Wei Wang
- School of Life Sciences, Hefei Normal University, Hefei, 230601, Anhui, China
| | - Zhangjun Shen
- School of Life Sciences, Hefei Normal University, Hefei, 230601, Anhui, China
| | - Jingjing Wang
- School of Life Sciences, Hefei Normal University, Hefei, 230601, Anhui, China
| | - Yajun Chen
- School of Life Sciences, Hefei Normal University, Hefei, 230601, Anhui, China
| | - Dong Wang
- School of Life Sciences, Hefei Normal University, Hefei, 230601, Anhui, China
| | - Gang Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Maozhen Han
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|