1
|
Chaib De Mares M, Arciniegas Castro E, Ulloa MA, Torres JM, Sierra MA, Butler DJ, Mason CE, Zambrano MM, Moncada B, Reyes Muñoz A. Distinct bacteria display genus and species-specific associations with mycobionts in paramo lichens in Colombia. FEMS Microbiol Ecol 2025; 101:fiaf010. [PMID: 39880798 PMCID: PMC11800485 DOI: 10.1093/femsec/fiaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 01/31/2025] Open
Abstract
Lichens are complex symbiotic systems where fungi interact with an extracellular arrangement of one or more photosynthetic partners and an indeterminate number of other microbes. Recently, specific lichen-microbial community associations have been proposed. In this study, we aimed to characterize the differences in bacteria associated with closely related lichens, under a defined set of environmental conditions in Colombian paramos. Our goal was to determine if there is a correlation between microbiota and host divergence in lichen species belonging to the genus Sticta. We found that specific microbiota are defined by their mycobiont at the genus level. Further, distinct bacterial families show differences among the three studied genera, and specific amplicon sequence variants further discriminate among lichen species within each genus. A geographic component also determines the composition of these microbial communities among lichen species. Our functional analysis revealed that fungal partners play a key role in synthesizing complex polysaccharides, while bacterial-derived antioxidants and photoprotective mechanisms contribute to desiccation tolerance in lichens. These insights highlight the complex interactions within lichen symbioses that could be relevant in environments such as the paramo ecosystem.
Collapse
Affiliation(s)
- Maryam Chaib De Mares
- Grupo de Biología Molecular Teórica y Evolutiva, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Corporación Corpogen, Bogotá 110311, Colombia
- Grupo de Max Planck Tándem en Biología Computacional y Ecología Microbiana, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá 111711, Colombia
| | - Emerson Arciniegas Castro
- Corporación Corpogen, Bogotá 110311, Colombia
- Grupo Colombiano de Liquenología, Licenciatura en Biología, Facultad de Ciencias y Educación, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| | - Maria Alejandra Ulloa
- Grupo de Max Planck Tándem en Biología Computacional y Ecología Microbiana, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá 111711, Colombia
| | - Jean Marc Torres
- Grupo Colombiano de Liquenología, Licenciatura en Biología, Facultad de Ciencias y Educación, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Laboratório de Ecologia e Biologia Evolutiva, Instituto de Biociĕncias, Universidade Federal de Mato Grosso do Sul, Av. Costa e Silva, S/N, Campo Grande, MS 79070-900, Brazil
| | - Maria A Sierra
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniel J Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Christopher E Mason
- Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | | | - Bibiana Moncada
- Grupo Colombiano de Liquenología, Licenciatura en Biología, Facultad de Ciencias y Educación, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Königin-Luise-Straße 6-8, 14195 Berlin, Germany
| | - Alejandro Reyes Muñoz
- Grupo de Max Planck Tándem en Biología Computacional y Ecología Microbiana, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá 111711, Colombia
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
2
|
Tagirdzhanova G, Saary P, Cameron ES, Allen CCG, Garber AI, Escandón DD, Cook AT, Goyette S, Nogerius VT, Passo A, Mayrhofer H, Holien H, Tønsberg T, Stein LY, Finn RD, Spribille T. Microbial occurrence and symbiont detection in a global sample of lichen metagenomes. PLoS Biol 2024; 22:e3002862. [PMID: 39509454 PMCID: PMC11542873 DOI: 10.1371/journal.pbio.3002862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/24/2024] [Indexed: 11/15/2024] Open
Abstract
In lichen research, metagenomes are increasingly being used for evaluating symbiont composition and metabolic potential, but the overall content and limitations of these metagenomes have not been assessed. We reassembled over 400 publicly available metagenomes, generated metagenome-assembled genomes (MAGs), constructed phylogenomic trees, and mapped MAG occurrence and frequency across the data set. Ninety-seven percent of the 1,000 recovered MAGs were bacterial or the fungal symbiont that provides most cellular mass. Our mapping of recovered MAGs provides the most detailed survey to date of bacteria in lichens and shows that 4 family-level lineages from 2 phyla accounted for as many bacterial occurrences in lichens as all other 71 families from 16 phyla combined. Annotation of highly complete bacterial, fungal, and algal MAGs reveals functional profiles that suggest interdigitated vitamin prototrophies and auxotrophies, with most lichen fungi auxotrophic for biotin, most bacteria auxotrophic for thiamine and the few annotated algae with partial or complete pathways for both, suggesting a novel dimension of microbial cross-feeding in lichen symbioses. Contrary to longstanding hypotheses, we found no annotations consistent with nitrogen fixation in bacteria other than known cyanobacterial symbionts. Core lichen symbionts such as algae were recovered as MAGs in only a fraction of the lichen symbioses in which they are known to occur. However, the presence of these and other microbes could be detected at high frequency using small subunit rRNA analysis, including in many lichens in which they are not otherwise recognized to occur. The rate of MAG recovery correlates with sequencing depth, but is almost certainly influenced by biological attributes of organisms that affect the likelihood of DNA extraction, sequencing and successful assembly, including cellular abundance, ploidy and strain co-occurrence. Our results suggest that, though metagenomes are a powerful tool for surveying microbial occurrence, they are of limited use in assessing absence, and their interpretation should be guided by an awareness of the interacting effects of microbial community complexity and sequencing depth.
Collapse
Affiliation(s)
| | - Paul Saary
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI); Hinxton, United Kingdom
| | - Ellen S. Cameron
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI); Hinxton, United Kingdom
- Wellcome Sanger Institute; Hinxton, United Kingdom
| | - Carmen C. G. Allen
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Arkadiy I. Garber
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University; Tempe, Arizona, United States of America
| | | | - Andrew T. Cook
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Spencer Goyette
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- University of British Columbia Herbarium, University of British Columbia, Vancouver, Canada
| | | | - Alfredo Passo
- Instituto de Investigaciones en Biodiversidad y Medioambiente, CONICET—Universidad Nacional de Comahue, Bariloche, Argentina
| | | | - Håkon Holien
- Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Tor Tønsberg
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway
| | - Lisa Y. Stein
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Robert D. Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI); Hinxton, United Kingdom
| | - Toby Spribille
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Cho U, Jeon J, Kim W, Hong SG, Lee H, Lee YM. Acidisoma cladoniae sp. nov., an acidotolerant bacterium isolated from an Antarctic lichen. Antonie Van Leeuwenhoek 2024; 118:10. [PMID: 39320523 DOI: 10.1007/s10482-024-02021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024]
Abstract
Gram-staining-negative, aerobic, white-cream-pearly colony, coccobacilli, and non-motile bacterial strain, PAMC 29798T was isolated from an Antarctic lichen. The strain was acidotolerant and psychrotolerant growing at pH 4.0-7.5 (optimally at pH 4.0-6.5) and 0-25 °C (optimally at 10-20 °C). The major fatty acids are Summed Feature 8, C18:1 2OH, and C19:0 cyclo ω8c. The major respiratory quinone was Q-10. Phylogenetic and phylogenomic analyses indicated that strain PAMC 29798T belonged to the genus Acidisoma and 16S rRNA gene sequences of PAMC 29798T were closely related to Acidisoma silvae (97.7% sequence similarity), Acidisoma cellulosilyticum (96.5%), Acidisoma tundrae (96.5%), and Acidisoma sibiricum (96.3%). Genomic relatedness analyses showed that strain PAMC 29798T was clearly distinguished from type strains of the genus Acidisoma based on values of average nucleotide identity (< 75%) and the digital DNA-DNA hybridization (< 19.6%). Genome analysis revealed that the genome size of PAMC 29798T is approximately 5.0 Mb with a G+C content of 63.4%. The complete genome comprises 5 contigs containing 4636 protein-coding genes, 46 tRNA genes, and 2 rRNA operons. The genome possesses genes for light-harvesting complexes, type-II photosynthetic reaction center, and C-P lyase to solubilize organic phosphates, while genes encoding nitrogenase iron protein involved in the nitrogen fixation were not present. Based on the results of phylogenetic, genome-based relatedness, and physiological and genomic analyses, strain PAMC 29798T is proposed to represent a novel species of the genus Acidisoma, with the name Acidisoma cladoniae. The type strain is PAMC 29798T (= KCTC 82159T = JCM 35634T).
Collapse
Affiliation(s)
- Un Cho
- Division of Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Jehyun Jeon
- Division of Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Woohyun Kim
- Division of Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Soon Gyu Hong
- Division of Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Hyoungseok Lee
- Division of Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea
| | - Yung Mi Lee
- Division of Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea.
| |
Collapse
|
4
|
Blázquez M, Ortiz-Álvarez R, Gasulla F, Pérez-Vargas I, Pérez-Ortega S. Bacterial communities associated with an island radiation of lichen-forming fungi. PLoS One 2024; 19:e0298599. [PMID: 38498492 PMCID: PMC10947700 DOI: 10.1371/journal.pone.0298599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/28/2024] [Indexed: 03/20/2024] Open
Abstract
Evolutionary radiations are one of the most striking processes biologists have studied in islands. A radiation is often sparked by the appearance of ecological opportunity, which can originate in processes like trophic niche segregation or the evolution of key innovations. Another recently proposed mechanism is facilitation mediated by the bacterial communities associated with the radiating species. Here we explore the role of the bacterial communities in a radiation of lichen-forming fungi endemic to Macaronesia. Bacterial diversity was quantified by high throughput sequencing of the V1-V2 hyper-variable region of 172 specimens. We characterized the taxonomic and phylogenetic diversity of the bacterial communities associated with the different species, tested for compositional differences between these communities, carried out a functional prediction, explored the relative importance of different factors in bacterial community structure, searched for phylosymbiosis and tried to identify the origin of this pattern. The species of the radiation differed in the composition of their bacterial communities, which were mostly comprised of Alphaproteobacteria and Acidobacteriia, but not in the functionality of those communities. A phylosimbiotic pattern was detected, but it was probably caused by environmental filtering. These findings are congruent with the combined effect of secondary chemistry and mycobiont identity being the main driver of bacterial community structure. Altogether, our results suggest that the associated bacterial communities are not the radiation's main driver. There is one possible exception, however, a species that has an abnormally diverse core microbiome and whose bacterial communities could be subject to a specific environmental filter at the functional level.
Collapse
Affiliation(s)
| | | | - Francisco Gasulla
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Israel Pérez-Vargas
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | |
Collapse
|
5
|
He Z, Naganuma T, Melville HIAS. Bacteriomic Profiles of Rock-Dwelling Lichens from the Venezuelan Guiana Shield and the South African Highveld Plateau. Microorganisms 2024; 12:290. [PMID: 38399694 PMCID: PMC10892498 DOI: 10.3390/microorganisms12020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Lichens are not only fungal-algal symbiotic associations but also matrices for association with bacteria, and the bacterial diversity linked to lichens has been receiving more attention in studies. This study compares the diversity and possible metabolism of lichen-associated bacteria from saxicolous foliose and fruticose taxa Alectoria, Canoparmelia, Crocodia, Menegazzia, Usnea, and Xanthoparmelia from the Venezuelan Guiana Shield and the South African Highveld Plateau. We used DNA extractions from the lichen thalli to amplify the eukaryotic 18S rRNA gene (rDNA) and the V3-V4 region of the bacterial 16S rDNA, of which amplicons were then Sanger- and MiSeq-sequenced, respectively. The V3-V4 sequences of the associated bacteria were grouped into operational taxonomic units (OTUs) ascribed to twelve bacterial phyla previously found in the rock tripe Umbilicaria lichens. The bacterial OTUs emphasized the uniqueness of each region, while, at the species and higher ranks, the regional microbiomes were shown to be somewhat similar. Nevertheless, regional biomarker OTUs were screened to predict relevant metabolic pathways, which implicated different regional metabolic features.
Collapse
Affiliation(s)
- Zichen He
- Graduate School of Integrated Science for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima 739-8528, Japan
| | - Takeshi Naganuma
- Graduate School of Integrated Science for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima 739-8528, Japan
| | - Haemish I. A. S. Melville
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, 0-41 Calabash Building, Unisa Science Campus, cnr Pioneer Avenue and Christiaan de Wet Road, Florida 1710, Gauteng, South Africa;
| |
Collapse
|
6
|
Somphong A, Weeraphan T, Poengsungnoen V, Suriyachadkun C, Sripreechasak P, Chaotham C, Tanasupawat S, Phongsopitanun W. Actinoplanes pyxinae sp. nov., a new lichen-derived rare actinobacterium exhibiting antimicrobial and anticancer activity. Int J Syst Evol Microbiol 2024; 74. [PMID: 38180333 DOI: 10.1099/ijsem.0.006215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
A novel lichen-derived actinobacterium, designated Pm04-4T, was isolated from Pyxine cocoes (Sw.) Nyl. lichen collected from Chaiyaphum, Thailand. A polyphasic approach was used to describe the taxonomic position of the strain. The strain had morphological and chemotaxonomic properties similar to members of the genus Actinoplanes. It produced sporangia on the substrate mycelia. Meso-diaminopimelic acid, galactose, glucose and mannose were detected in the whole-cell hydrolysate of the strain. The major menaquinone was MK-9(H4). The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. The predominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. Strain Pm04-4T showed the highest 16S rRNA gene sequence similarity to Actinoplanes akusuensis TRM 8003T (99.0 %). In the phylogenomic tree, strain Pm04-4T was positioned close to A. aksuensis TRM88003T, A. maris M416T, A. polyasparticus TRM66264T, A. hotanensis TRM88002T, A. abujensis DSM 45518T, A. bogorensis NBRC 110975T, A. brasiliensis DSM 43805T, A. lichenicola LDG1-01T and A. ovalisporus LDG1-06T. The average nucleotide identity and digital DNA-DNA hybridization values between strain Pm04-4T and its closely related neighbours were below the threshold values for describing new species. Moreover, the strain could be distinguished from its closely related type strains by phenotypic properties. Based on genotypic and phenotypic evidence, it can be concluded that strain Pm04-4T is a representative of a new Actinoplanes species for which the name Actinoplanes pyxinae sp. nov. is proposed. The type strain is Pm04-4T (=TBRC 16207T=NBRC 115836T). The type strain exhibited activity against Staphylococcus aureus ATCC 25923 as well as four yeast strains, namely Candida albicans TISTR 5554, Candida glabrata TISTR 5006, Candida krusei TISTR 5351 and Candida parapsilosis TISTR 5007. It also showed cytotoxicity against Caco-2, MNT-1 and MCF-7 cancer cells.
Collapse
Affiliation(s)
- Achiraya Somphong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Trinset Weeraphan
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vasun Poengsungnoen
- Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Chanwit Suriyachadkun
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, Pathumthani 12120, Thailand
| | - Paranee Sripreechasak
- Office of Educational Affairs, Faculty of Science, Burapha University, Chonburi 20131, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
7
|
Rolshausen G, Dal Grande F, Otte J, Schmitt I. Lichen holobionts show compositional structure along elevation. Mol Ecol 2023; 32:6619-6630. [PMID: 35398946 DOI: 10.1111/mec.16471] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/25/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
Holobionts are dynamic ecosystems that may respond to abiotic drivers with compositional changes. Uncovering elevational diversity patterns within these microecosystems can further our understanding of community-environment interactions. Here, we assess how the major components of lichen holobionts-fungal hosts, green algal symbionts, and the bacterial community-collectively respond to an elevational gradient. We analyse populations of two lichen symbioses, Umbilicaria pustulata and U. hispanica, along an elevational gradient spanning 2100 altitudinal metres and covering three major biomes. Our study shows (i) discontinuous genomic variation in fungal hosts with one abrupt genomic differentiation within each of the two host species, (ii) altitudinally structured bacterial communities with pronounced turnover within and between hosts, and (iii) altitude-specific presence of algal symbionts. Alpha diversity of bacterial communities decreased with increasing elevation. A marked turnover in holobiont diversity occurred across two altitudinal belts: at 11°C-13°C average annual temperature (here: 800-1200 m a.s.l.), and at 7°C-9°C average annual temperature (here: 1500-1800 m a.s.l.). The two observed zones mark a clustering of distribution limits and community shifts. The three ensuing altitudinal classes, that is, the most frequent combinations of species in holobionts, approximately correspond to the Mediterranean, cool-temperate, and alpine climate zones. We conclude that multitrophic microecosystems, such as lichen holobionts, respond with concerted compositional changes to climatic factors that also structure communities of macroorganisms, for example, vascular plants.
Collapse
Affiliation(s)
- Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- Center for Wildlife Genetics, Senckenberg Research Institute, Gelnhausen, Germany
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
- Departement of Biological Sciences, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Abstract
Antibiotic resistance genes predate the therapeutic uses of antibiotics. However, the current antimicrobial resistance crisis stems from our extensive use of antibiotics and the generation of environmental stressors that impose new selective pressure on microbes and drive the evolution of resistant pathogens that now threaten human health. Similar to climate change, this global threat results from human activities that change habitats and natural microbiomes, which in turn interact with human-associated ecosystems and lead to adverse impacts on human health. Human activities that alter our planet at global scales exacerbate the current resistance crisis and exemplify our central role in large-scale changes in which we are both protagonists and architects of our success but also casualties of unanticipated collateral outcomes. As cognizant participants in this ongoing planetary experiment, we are driven to understand and find strategies to curb the ongoing crises of resistance and climate change.
Collapse
Affiliation(s)
- María Mercedes Zambrano
- Corpogen Research Center, Bogotá, Colombia;
- Dirección de Investigaciones y Transferencia de Conocimiento, Universidad Central, Bogotá, Colombia
| |
Collapse
|
9
|
Taylor JA, Fourie T, Powell M, Chianella I. Evidence for some antimicrobial properties of English churchyard lichens. Access Microbiol 2023; 5:acmi000536.v4. [PMID: 37424569 PMCID: PMC10323803 DOI: 10.1099/acmi.0.000536.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/24/2023] [Indexed: 07/11/2023] Open
Abstract
The emergence of multidrug-resistant bacteria has driven the need for novel antibiotics. Our investigations have focussed on lichens as they naturally produce a wide range of unique and very effective defence chemicals. The aim of this study was to evaluate some of the antimicrobial properties of ten common British churchyard lichens. The lichen material was sampled from ten species, namely Caloplaca flavescens, Diploicia canescens, Cladonia fimbriata, Psilolechia lucida, Lecanora campestris subsp. Campestris, Lecanora sulphurea, Pertusaria amara f.amara, Lepraria incana, Porpidia tuberculosa and Xanthoria calcicola. Crude acetone extracts of these lichens were tested against six bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonela typhimurium, Listeria monocytogenes and Lactobacillus acidophilus ) and two fungi (Trichophyton interdigitale and Aspergillus flavus) by the disc-diffusion susceptibility test method. Extracts of Diploicia canescens, Psilolechia lucida, Lecanora sulphurea, Pertusaria amara and Lepraria incana showed clear inhibition of the Gram-positive bacteria tested (S. aureus, L. monocytogenes, L. plantarum). Diploicia canescens, Pertusaria amara and Lepraria incana extracts also inhibited the dermatophyte fungi tested. The Lepraria incana sample tested here was the only extract that showed activity against any of the Gram-negative bacteria tested; it showed inhibition of Pseudomnas aeruginosa. Overall, our results showed that crude extracts of Diploicia canescens and Pertusaria amara had the most potent antimicrobial activity of all the extracts tested. Our results are in general agreement with published findings elsewhere. The activity of the Porpidia tuberculosa margin sample being different from that of the main colony material was an interesting and new finding reported here for the first time.
Collapse
Affiliation(s)
- J. A. Taylor
- E.E.E.S and The Graduate School, The Open University, Walton Hall, Milton Keynes MK 7 6AA, UK
| | - Toscane Fourie
- INSERM Aix-Marseille University, Provence-Alpes-Côte d'Azur, Marseille, France
| | | | | |
Collapse
|
10
|
Pankratov TA, Samylina OS, Tikhonova EN, Ianutsevich EA, Avtukh AN, Lee YM. A novel bacteriobiont of the Arctic lichen Flavocetraria nivalis, Lichenifustis flavocetrariae gen. nov, sp. nov. demonstrating hydrolytic properties and containing a full set of the Calvin-Benson-Bassham cycle genes. Arch Microbiol 2023; 205:232. [PMID: 37166571 DOI: 10.1007/s00203-023-03577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
A Gram-negative, strictly aerobic, chemoorganotrophic, bacteriochlorophyll a-containing, slow-growing bacterium was isolated from the lichen Flavocetraria nivalis and designated strain BP6-180914 T. Cells of this strain were large nonmotile rods, which reproduced by binary fission. Cells grew under oxic conditions and were able to utilize sugars and several polysaccharides, including starch and pectin. Strain BP6-180914 T was psychrotolerant and moderately acidophilic growing at 4-35 °C (optimum 20-28 °C) and between pH 4.0 and 7.5 (optimum 4.5-5.5). The major fatty acids were C18:1ω7c, C19:0 cyclo, C16:0 and C18:0. The polar lipids were diphosphatidylglycerols, phosphatidylglycerols, phosphatidylethanolamines, phosphatidylcholines, unidentified aminolipids, and a number of glycolipids, the major one being an unidentified glycolipid. The quinone was Q-10. The DNA G + C content was 63.65%. Comparative 16S rRNA gene sequence analysis revealed that strain BP6-180914 T was a member of the order Hyphomicrobiales and belonged to the family Lichenihabitantaceae defined by the lichen-dwelling facultative aerobic chemo-organotroph Lichenihabitans psoromatis (92.7% sequence similarity). The results of phylogenomic and genomic relatedness analyses showed that strain BP6-180914 T could clearly be distinguished from other species in the order Hyphomicrobiales with average nucleotide identity values of < 74.05% and genome-to-genome distance values of < 21.1%. The AAI value of 65.9% between strain BP6-180914 T and L. psoromatis allowed us to assign this strain to the novel genus of the family Lichenihabitantaceae. Therefore, it is proposed that strain BP6-180914 T represents a novel species in a new genus, Lichenifustis flavocetrariae gen. nov., sp. nov.; strain BP6-180914 T (= KCTC 92872 T = VKM B-3641 T = UQM 41506 T) is the type strain.
Collapse
Affiliation(s)
- Timofei A Pankratov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 60 Let Oktjabrja pr-t, 7, Bld. 2, 117312, Moscow, Russian Federation.
| | - Olga S Samylina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 60 Let Oktjabrja pr-t, 7, Bld. 2, 117312, Moscow, Russian Federation
| | - Ekaterina N Tikhonova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 60 Let Oktjabrja pr-t, 7, Bld. 2, 117312, Moscow, Russian Federation
| | - Elena A Ianutsevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 60 Let Oktjabrja pr-t, 7, Bld. 2, 117312, Moscow, Russian Federation
| | - Alexander N Avtukh
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the RAS, Federal Research Centre "Pushchino Scientific Centre of Biological Investigations RAS", 142290, Pushchino, Russian Federation
| | - Yung Mi Lee
- Division of Life Sciences, Korea Polar Research Institute, 26 Songdomirae-Ro, Yeonsu-Gu, Incheon, 21990, Republic of Korea
| |
Collapse
|
11
|
Weeraphan T, Somphong A, Poengsungnoen V, Buaruang K, Harunari E, Igarashi Y, Tanasupawat S, Phongsopitanun W. Bacterial microbiome in tropical lichens and the effect of the isolation method on culturable lichen-derived actinobacteria. Sci Rep 2023; 13:5483. [PMID: 37016075 PMCID: PMC10073151 DOI: 10.1038/s41598-023-32759-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/01/2023] [Indexed: 04/06/2023] Open
Abstract
Ten samples of tropical lichens collected from Doi Inthanon, Thailand, were explored for the diversity of their bacterial microbiomes through 16S rRNA-based metagenomics analysis. The five predominant lichen-associated bacteria belonged to the phyla Proteobacteria (31.84%), Planctomycetota (17.08%), Actinobacteriota (15.37%), Verrucomicrobiota (12.17%), and Acidobacteriota (7.87%). The diversity analysis metric showed that Heterodermia contained the highest bacterial species richness. Within the lichens, Ramalina conduplicans and Cladonia rappii showed a distinct bacterial community from the other lichen species. The community of lichen-associated actinobacteria was investigated as a potential source of synthesized biologically active compounds. From the total Operational Taxonomic Units (OTUs) found across the ten different lichen samples, 13.21% were identified as actinobacteria, including the rare actinobacterial genera that are not commonly found, such as Pseudonocardia, Kineosporia, Dactylosporangium, Amycolatopsis, Actinoplanes, and Streptosporangium. Evaluation of the pretreatment method (heat, air-drying, phenol, and flooding) and isolation media used for the culture-dependent actinobacterial isolation revealed that the different pretreatments combined with different isolation media were effective in obtaining several species of actinobacteria. However, metagenomics analyses revealed that there were still several strains, including rare actinobacterial species, that were not isolated. This research strongly suggests that lichens appear to be a promising source for obtaining actinobacteria.
Collapse
Affiliation(s)
- Trinset Weeraphan
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Achiraya Somphong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Vasun Poengsungnoen
- Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Kawinnat Buaruang
- Lichen Research Unit, Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
- Natural Products and Nanoparticles Research Unit (RP2), Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
12
|
High Andean Steppes of Southern Chile Contain Little-Explored Peltigera Lichen Symbionts. J Fungi (Basel) 2023; 9:jof9030372. [PMID: 36983540 PMCID: PMC10058012 DOI: 10.3390/jof9030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/08/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Peltigera lichens can colonize extreme habitats, such as high-elevation ecosystems, but their biodiversity is still largely unknown in these environments, especially in the southern hemi- sphere. We assessed the genetic diversity of mycobionts and cyanobionts of 60 Peltigera lichens collected in three high Andean steppes of southern Chile using LSU, β-tubulin, COR3 and ITS loci for mycobionts, and SSU and rbcLX loci for cyanobionts. We obtained 240 sequences for the different mycobiont markers and 118 for the cyanobiont markers, including the first report of β-tubulin sequences of P. patagonica through modifying a previously designed primer. Phylogenetic analyses, ITS scrutiny and variability of haplotypes were used to compare the sequences with those previously reported. We found seven mycobiont species and eleven cyanobiont haplotypes, including considerable novel symbionts. This was reflected by ~30% of mycobionts and ~20% of cyanobionts haplotypes that yielded less than 99% BLASTn sequence identity, 15 new sequences of the ITS1-HR, and a putative new Peltigera species associated with 3 Nostoc haplotypes not previously reported. Our results suggest that high Andean steppe ecosystems are habitats of unknown or little-explored lichen species and thus valuable environments to enhance our understanding of global Peltigera biodiversity.
Collapse
|
13
|
Sierra MA, Ryon KA, Tierney BT, Foox J, Bhattacharya C, Afshin E, Butler D, Green SJ, Thomas WK, Ramsdell J, Bivens NJ, McGrath K, Mason CE, Tighe SW. Microbiome and metagenomic analysis of Lake Hillier Australia reveals pigment-rich polyextremophiles and wide-ranging metabolic adaptations. ENVIRONMENTAL MICROBIOME 2022; 17:60. [PMID: 36544228 PMCID: PMC9768965 DOI: 10.1186/s40793-022-00455-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Lake Hillier is a hypersaline lake known for its distinctive bright pink color. The cause of this phenomenon in other hypersaline sites has been attributed to halophiles, Dunaliella, and Salinibacter, however, a systematic analysis of the microbial communities, their functional features, and the prevalence of pigment-producing-metabolisms has not been previously studied. Through metagenomic sequencing and culture-based approaches, our results evidence that Lake Hillier is composed of a diverse set of microorganisms including archaea, bacteria, algae, and viruses. Our data indicate that the microbiome in Lake Hillier is composed of multiple pigment-producer microbes, including Dunaliella, Salinibacter, Halobacillus, Psychroflexus, Halorubrum, many of which are cataloged as polyextremophiles. Additionally, we estimated the diversity of metabolic pathways in the lake and determined that many of these are related to pigment production. We reconstructed complete or partial genomes for 21 discrete bacteria (N = 14) and archaea (N = 7), only 2 of which could be taxonomically annotated to previously observed species. Our findings provide the first metagenomic study to decipher the source of the pink color of Australia's Lake Hillier. The study of this pink hypersaline environment is evidence of a microbial consortium of pigment producers, a repertoire of polyextremophiles, a core microbiome and potentially novel species.
Collapse
Affiliation(s)
- Maria A Sierra
- Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Krista A Ryon
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Braden T Tierney
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jonathan Foox
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Chandrima Bhattacharya
- Tri-Institutional Computational Biology and Medicine Program, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Evan Afshin
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Daniel Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University, New York, IL, USA
| | - W Kelley Thomas
- Department of Molecular, Cellular, and Biomedical Sciences, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, USA
| | | | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, MO, USA
| | | | - Christopher E Mason
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Scott W Tighe
- Advanced Genomics Laboratory, University of Vermont Cancer Center, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
14
|
He Z, Naganuma T. Chronicle of Research into Lichen-Associated Bacteria. Microorganisms 2022; 10:2111. [PMID: 36363703 PMCID: PMC9698887 DOI: 10.3390/microorganisms10112111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/30/2022] [Accepted: 10/21/2022] [Indexed: 02/12/2024] Open
Abstract
Lichens are mutually symbiotic systems consisting of fungal and algal symbionts. While diverse lichen-forming fungal species are known, limited species of algae form lichens. Plasticity in the combination of fungal and algal species with different eco-physiological properties may contribute to the worldwide distribution of lichens, even in extreme habitats. Lichens have been studied systematically for more than 200 years; however, plasticity in fungal-algal/cyanobacterial symbiotic combinations is still unclear. In addition, the association between non-cyanobacterial bacteria and lichens has attracted attention in recent years. The types, diversity, and functions of lichen-associated bacteria have been studied using both culture-based and culture-independent methods. This review summarizes the history of systematic research on lichens and lichen-associated bacteria and provides insights into the current status of research in this field.
Collapse
Affiliation(s)
| | - Takeshi Naganuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
15
|
Miral A, Kautsky A, Alves-Carvalho S, Cottret L, Guillerm-Erckelboudt AY, Buguet M, Rouaud I, Tranchimand S, Tomasi S, Bartoli C. Rhizocarpon geographicum Lichen Discloses a Highly Diversified Microbiota Carrying Antibiotic Resistance and Persistent Organic Pollutant Tolerance. Microorganisms 2022; 10:1859. [PMID: 36144461 PMCID: PMC9503503 DOI: 10.3390/microorganisms10091859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
As rock inhabitants, lichens are exposed to extreme and fluctuating abiotic conditions associated with poor sources of nutriments. These extreme conditions confer to lichens the unique ability to develop protective mechanisms. Consequently, lichen-associated microbes disclose highly versatile lifestyles and ecological plasticity, enabling them to withstand extreme environments. Because of their ability to grow in poor and extreme habitats, bacteria associated with lichens can tolerate a wide range of pollutants, and they are known to produce antimicrobial compounds. In addition, lichen-associated bacteria have been described to harbor ecological functions crucial for the evolution of the lichen holobiont. Nevertheless, the ecological features of lichen-associated microbes are still underestimated. To explore the untapped ecological diversity of lichen-associated bacteria, we adopted a novel culturomic approach on the crustose lichen Rhizocarpon geographicum. We sampled R. geographicum in French habitats exposed to oil spills, and we combined nine culturing methods with 16S rRNA sequencing to capture the greatest bacterial diversity. A deep functional analysis of the lichen-associated bacterial collection showed the presence of a set of bacterial strains resistant to a wide range of antibiotics and displaying tolerance to Persistent Organic Pollutants (POPs). Our study is a starting point to explore the ecological features of the lichen microbiota.
Collapse
Affiliation(s)
- Alice Miral
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, University of Rennes 1, 35000 Rennes, France
| | - Adam Kautsky
- IGEPP, INRAE, Institut Agro, University of Rennes 1, LIPME, INRAE, 35653 Le Rheu, France
| | - Susete Alves-Carvalho
- IGEPP, INRAE, Institut Agro, University of Rennes 1, LIPME, INRAE, 35653 Le Rheu, France
| | - Ludovic Cottret
- CNRS, Université de Toulouse, 31320 Castanet-Tolosan, France
| | | | - Manon Buguet
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, University of Rennes 1, 35000 Rennes, France
| | - Isabelle Rouaud
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, University of Rennes 1, 35000 Rennes, France
| | - Sylvain Tranchimand
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, University of Rennes 1, 35000 Rennes, France
| | - Sophie Tomasi
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, University of Rennes 1, 35000 Rennes, France
| | - Claudia Bartoli
- IGEPP, INRAE, Institut Agro, University of Rennes 1, LIPME, INRAE, 35653 Le Rheu, France
| |
Collapse
|
16
|
Wang Q, Li J, Yang J, Zou Y, Zhao XQ. Diversity of endophytic bacterial and fungal microbiota associated with the medicinal lichen Usnea longissima at high altitudes. Front Microbiol 2022; 13:958917. [PMID: 36118246 PMCID: PMC9479685 DOI: 10.3389/fmicb.2022.958917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Endophytic microbial communities of lichen are emerging as novel microbial resources and for exploration of potential biotechnological applications. Here, we focused on a medicinal lichen Usnea longissima, and investigated its bacterial and fungal endophytes. Using PacBio 16S rRNA and ITS amplicon sequencing, we explored the diversity and composition of endophytic bacteria and fungi in U. longissima collected from Tibet at five altitudes ranging from 2,989 to 4,048 m. A total of 6 phyla, 12 classes, 44 genera, and 13 species of the bacterial community have been identified in U. longissima. Most members belong to Alphaproteobacteria (42.59%), Betaproteobacteria (33.84%), Clostridia (13.59%), Acidobacteria (7%), and Bacilli (1.69%). As for the fungal community, excluding the obligate fungus sequences, we identified 2 phyla, 15 classes, 65 genera, and 19 species. Lichen-related fungi of U. longissima mainly came from Ascomycota (95%), Basidiomycota (2.69%), and unidentified phyla (2.5%). The presence of the sequences that have not been characterized before suggests the novelty of the microbiota. Of particular interest is the detection of sequences related to lactic acid bacteria and budding yeast. In addition, the possible existence of harmful bacteria was also discussed. To our best knowledge, this is the first relatively detailed study on the endophytic microbiota associated with U. longissima. The results here provide the basis for further exploration of the microbial diversity in lichen and promote biotechnological applications of lichen-associated microbial strains.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Li
- R&D Center, JALA Group Co., Ltd., Shanghai, China
| | - Jie Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zou
- R&D Center, JALA Group Co., Ltd., Shanghai, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xin-Qing Zhao,
| |
Collapse
|
17
|
Apigo A, Oono R. Plant abundance, but not plant evolutionary history, shapes patterns of host specificity in foliar fungal endophytes. Ecosphere 2022. [DOI: 10.1002/ecs2.3879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Austen Apigo
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara California 93106 USA
| | - Ryoko Oono
- Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara California 93106 USA
| |
Collapse
|
18
|
Shishido TK, Wahlsten M, Laine P, Rikkinen J, Lundell T, Auvinen P. Microbial Communities of Cladonia Lichens and Their Biosynthetic Gene Clusters Potentially Encoding Natural Products. Microorganisms 2021; 9:1347. [PMID: 34206222 PMCID: PMC8304397 DOI: 10.3390/microorganisms9071347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
Lichens have been widely used in traditional medicine, especially by indigenous communities worldwide. However, their slow growth and difficulties in the isolation of lichen symbionts and associated microbes have hindered the pharmaceutical utilisation of lichen-produced compounds. Advances in high-throughput sequencing techniques now permit detailed investigations of the complex microbial communities formed by fungi, green algae, cyanobacteria, and other bacteria within the lichen thalli. Here, we used amplicon sequencing, shotgun metagenomics, and in silico metabolomics together with compound extractions to study reindeer lichens collected from Southern Finland. Our aim was to evaluate the potential of Cladonia species as sources of novel natural products. We compared the predicted biosynthetic pathways of lichen compounds from isolated genome-sequenced lichen fungi and our environmental samples. Potential biosynthetic genes could then be further used to produce secondary metabolites in more tractable hosts. Furthermore, we detected multiple compounds by metabolite analyses, which revealed connections between the identified biosynthetic gene clusters and their products. Taken together, our results contribute to metagenomic data studies from complex lichen-symbiotic communities and provide valuable new information for use in further biochemical and pharmacological studies.
Collapse
Affiliation(s)
- Tânia Keiko Shishido
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; (P.L.); (P.A.)
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; (M.W.); (T.L.)
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; (P.L.); (P.A.)
| | - Jouko Rikkinen
- Finnish Museum of Natural History, Botany Unit, University of Helsinki, P.O. Box 7, 00014 Helsinki, Finland;
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Taina Lundell
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; (M.W.); (T.L.)
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; (P.L.); (P.A.)
| |
Collapse
|
19
|
Leiva D, Fernández-Mendoza F, Acevedo J, Carú M, Grube M, Orlando J. The Bacterial Community of the Foliose Macro-lichen Peltigera frigida Is More than a Mere Extension of the Microbiota of the Subjacent Substrate. MICROBIAL ECOLOGY 2021; 81:965-976. [PMID: 33404820 DOI: 10.1007/s00248-020-01662-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Lichens host highly diverse microbial communities, with bacteria being one of the most explored groups in terms of their diversity and functioning. These bacteria could partly originate from symbiotic propagules developed by many lichens and, perhaps more commonly and depending on environmental conditions, from different sources of the surroundings. Using the narrowly distributed species Peltigera frigida as an object of study, we propose that bacterial communities in these lichens are different from those in their subjacent substrates, even if some taxa might be shared. Ten terricolous P. frigida lichens and their substrates were sampled from forested sites in the Coyhaique National Reserve, located in an understudied region in Chile. The mycobiont identity was confirmed using partial 28S and ITS sequences. Besides, 16S fragments revealed that mycobionts were associated with the same cyanobacterial haplotype. From both lichens and substrates, Illumina 16S amplicon sequencing was performed using primers that exclude cyanobacteria. In lichens, Proteobacteria was the most abundant phylum (37%), whereas soil substrates were dominated by Acidobacteriota (39%). At lower taxonomic levels, several bacterial groups differed in relative abundance among P. frigida lichens and their substrates, some of them being highly abundant in lichens but almost absent in substrates, like Sphingomonas (8% vs 0.2%), and others enriched in lichens, as an unassigned genus of Chitinophagaceae (10% vs 2%). These results reinforce the idea that lichens would carry some components of their microbiome when propagating, but they also could acquire part of their bacterial community from the substrates.
Collapse
Affiliation(s)
- Diego Leiva
- Faculty of Sciences, Department of Ecological Sciences, Universidad de Chile, Santiago, Chile
- Institute of Biology, University of Graz, Graz, Austria
| | | | - José Acevedo
- Faculty of Sciences, Department of Ecological Sciences, Universidad de Chile, Santiago, Chile
| | - Margarita Carú
- Faculty of Sciences, Department of Ecological Sciences, Universidad de Chile, Santiago, Chile
| | - Martin Grube
- Institute of Biology, University of Graz, Graz, Austria
| | - Julieta Orlando
- Faculty of Sciences, Department of Ecological Sciences, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
20
|
Diversity and Physiological Characteristics of Antarctic Lichens-Associated Bacteria. Microorganisms 2021; 9:microorganisms9030607. [PMID: 33804278 PMCID: PMC8001610 DOI: 10.3390/microorganisms9030607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The diversity of lichen-associated bacteria from lichen taxa Cetraria, Cladonia, Megaspora, Pseudephebe, Psoroma, and Sphaerophorus was investigated by sequencing of 16S rRNA gene amplicons. Physiological characteristics of the cultured bacterial isolates were investigated to understand possible roles in the lichen ecosystem. Proteobacteria (with a relative abundance of 69.7–96.7%) were mostly represented by the order Rhodospirillales. The 117 retrieved isolates were grouped into 35 phylotypes of the phyla Actinobacteria (27), Bacteroidetes (6), Deinococcus-Thermus (1), and Proteobacteria (Alphaproteobacteria (53), Betaproteobacteria (18), and Gammaproteobacteria (12)). Hydrolysis of macromolecules such as skim milk, polymer, and (hypo)xanthine, solubilization of inorganic phosphate, production of phytohormone indole-3-acetic acid, and fixation of atmospheric nitrogen were observed in different taxa. The potential phototrophy of the strains of the genus Polymorphobacter which were cultivated from a lichen for the first time was revealed by the presence of genes involved in photosynthesis. Altogether, the physiological characteristics of diverse bacterial taxa from Antarctic lichens are considered to imply significant roles of lichen-associated bacteria to allow lichens to be tolerant or competitive in the harsh Antarctic environment.
Collapse
|
21
|
Multidisciplinary approach to describe Trebouxia diversity within lichenized fungi Buellia zoharyi from the Canary Islands. Symbiosis 2020. [DOI: 10.1007/s13199-020-00722-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Noh HJ, Shin SC, Park Y, Choi A, Baek K, Hong SG, Cho YJ, Lee H, Lee YM. Lichenicola cladoniae gen. nov., sp. nov., a member of the family Acetobacteraceae isolated from an Antarctic lichen. Int J Syst Evol Microbiol 2020; 70:5918-5925. [PMID: 33034550 DOI: 10.1099/ijsem.0.004495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain-negative, facultative anaerobic, chemoheterotrophic, pink-coloured, rod-shaped and non-motile bacterial strains, PAMC 26568 and PAMC 26569T, were isolated from an Antarctic lichen. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains PAMC 26568 and PAMC 26569T belong to the family Acetobacteraceae and the most closely related species are Gluconacetobacter takamatsuzukensis (96.1 %), Gluconacetobacter tumulisoli (95.9 %) and Gluconacetobacter sacchari (95.7 %). Phylogenomic and genomic relatedness analyses showed that strains PAMC 26568 and PAMC 26569T are clearly distinguished from other genera in the family Acetobacteraceae by average nucleotide identity values (<72.8 %) and the genome-to-genome distance values (<22.5 %). Genomic analysis revealed that strains PAMC 26568 and PAMC 26569T do not contain genes involved in atmospheric nitrogen fixation and utilization of sole carbon compounds such as methane and methanol. Instead, strains PAMC 26568 and PAMC 26569T possess genes to utilize nitrate and nitrite and certain monosaccharides and disaccharides. The major fatty acids (>10 %) are summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c; 40.3-40.4 %), C18 : 1 2OH (22.7-23.7 %) and summed feature 2 (C14 : 0 3OH and/or C16 : 1 iso I; 12.0 % in PAMC 26568). The major respiratory quinone is Q-10. The genomic DNA G+C content of PAMC 26568 and PAMC 26569T is 64.6 %. Their distinct phylogenetic position and some physiological characteristics distinguish strains PAMC 26568 and PAMC 26569T from other genera in the family Acetobacteraceae supporting the proposal of Lichenicola gen. nov., with the type species Lichenicola cladoniae sp. nov. (type strain, PAMC 26569T=KCCM 43315T=JCM 33604T).
Collapse
Affiliation(s)
- Hyun-Ju Noh
- Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Seung Chul Shin
- Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Yerin Park
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Ahyoung Choi
- Bioresources Collection & Research Division, Nakdonggang National Institute of Biological Resources, 137 Donam 2-gil, Sangju 37242, Republic of Korea
| | - Kiwoon Baek
- Department of Biological Sciences, Inha University, Inharo 100, Incheon 22212, Republic of Korea.,Bioresources Collection & Research Division, Nakdonggang National Institute of Biological Resources, 137 Donam 2-gil, Sangju 37242, Republic of Korea
| | - Soon Gyu Hong
- Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Yong-Joon Cho
- School of Biological Sciences and Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoungseok Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Yung Mi Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| |
Collapse
|
23
|
Moya P, Molins A, Chiva S, Bastida J, Barreno E. Symbiotic microalgal diversity within lichenicolous lichens and crustose hosts on Iberian Peninsula gypsum biocrusts. Sci Rep 2020; 10:14060. [PMID: 32820199 PMCID: PMC7441164 DOI: 10.1038/s41598-020-71046-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022] Open
Abstract
This study analyses the interactions among crustose and lichenicolous lichens growing on gypsum biocrusts. The selected community was composed of Acarospora nodulosa, Acarospora placodiiformis, Diploschistes diacapsis, Rhizocarpon malenconianum and Diplotomma rivas-martinezii. These species represent an optimal system for investigating the strategies used to share phycobionts because Acarospora spp. are parasites of D. diacapsis during their first growth stages, while in mature stages, they can develop independently. R. malenconianum is an obligate lichenicolous lichen on D. diacapsis, and D. rivas-martinezii occurs physically close to D. diacapsis. Microalgal diversity was studied by Sanger sequencing and 454-pyrosequencing of the nrITS region, and the microalgae were characterized ultrastructurally. Mycobionts were studied by performing phylogenetic analyses. Mineralogical and macro- and micro-element patterns were analysed to evaluate their influence on the microalgal pool available in the substrate. The intrathalline coexistence of various microalgal lineages was confirmed in all mycobionts. D. diacapsis was confirmed as an algal donor, and the associated lichenicolous lichens acquired their phycobionts in two ways: maintenance of the hosts' microalgae and algal switching. Fe and Sr were the most abundant microelements in the substrates but no significant relationship was found with the microalgal diversity. The range of associated phycobionts are influenced by thallus morphology.
Collapse
Affiliation(s)
- Patricia Moya
- Botánica, ICBIBE, Fac. CC. Biológicas, Universitat de València, C/ Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain.
| | - Arantzazu Molins
- Botánica, ICBIBE, Fac. CC. Biológicas, Universitat de València, C/ Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain
| | - Salvador Chiva
- Botánica, ICBIBE, Fac. CC. Biológicas, Universitat de València, C/ Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain
| | - Joaquín Bastida
- Geología, Fac. CC. Biológicas, Universitat de València, C/ Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain
| | - Eva Barreno
- Botánica, ICBIBE, Fac. CC. Biológicas, Universitat de València, C/ Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
24
|
Contrasting bacteriome of the hornwort Leiosporoceros dussii in two nearby sites with emphasis on the hornwort-cyanobacterial symbiosis. Symbiosis 2020. [DOI: 10.1007/s13199-020-00680-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Spribille T, Tagirdzhanova G, Goyette S, Tuovinen V, Case R, Zandberg WF. 3D biofilms: in search of the polysaccharides holding together lichen symbioses. FEMS Microbiol Lett 2020; 367:fnaa023. [PMID: 32037451 PMCID: PMC7164778 DOI: 10.1093/femsle/fnaa023] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Stable, long-term interactions between fungi and algae or cyanobacteria, collectively known as lichens, have repeatedly evolved complex architectures with little resemblance to their component parts. Lacking any central scaffold, the shapes they assume are casts of secreted polymers that cement cells into place, determine the angle of phototropic exposure and regulate water relations. A growing body of evidence suggests that many lichen extracellular polymer matrices harbor unicellular, non-photosynthesizing organisms (UNPOs) not traditionally recognized as lichen symbionts. Understanding organismal input and uptake in this layer is key to interpreting the role UNPOs play in lichen biology. Here, we review both polysaccharide composition determined from whole, pulverized lichens and UNPOs reported from lichens to date. Most reported polysaccharides are thought to be structural cell wall components. The composition of the extracellular matrix is not definitively known. Several lines of evidence suggest some acidic polysaccharides have evaded detection in routine analysis of neutral sugars and may be involved in the extracellular matrix. UNPOs reported from lichens include diverse bacteria and yeasts for which secreted polysaccharides play important biological roles. We conclude by proposing testable hypotheses on the role that symbiont give-and-take in this layer could play in determining or modifying lichen symbiotic outcomes.
Collapse
Affiliation(s)
- Toby Spribille
- Department of Biological Sciences, CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Gulnara Tagirdzhanova
- Department of Biological Sciences, CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Spencer Goyette
- Department of Biological Sciences, CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Veera Tuovinen
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| | - Rebecca Case
- Department of Biological Sciences, CW405, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Wesley F Zandberg
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3427 University Way, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|