1
|
Wan FG, Chen YL, Zheng JL, Jin WY, Chen TH, Zhu QL, Zhan QH, Jiang LH, Chen S, Song WH, Yan XJ. Exploring eutrophic effects of marine sediments underneath fish cage farms: Insights from changes in eukaryotic and bacterial communities and volatile organic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178820. [PMID: 39952204 DOI: 10.1016/j.scitotenv.2025.178820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 02/09/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
The roles of bacteria and eukaryotes in the sediments of fish farms have received considerable attention. High concentrations of volatile organic compounds (VOCs) in eutrophic sediments pose significant problems in the marine environment. However, the identification of VOCs and their association with bacteria and eukaryotes in marine sediments from fish farms remain unexplored. By using third-generation 18 s/16 s sequencing with bacterial absolute quantity and headspace solid-phase microextraction coupled with gas chromatography mass spectrometry (HS-SPME-GC-MS), we investigated benthic community structure and VOCs composition in the sediments from five large yellow croaker farms in China (DJ, DC, DT, NJ, and ND), as well as geological and chemical changes. The ND sediments, characterized as mud substrates with the highest moisture and nutrient levels, were dominated by ciliates and flagellates, whereas typical benthic organisms such as echinoderms, annelids, and cnidarians were absent in other farming areas. These sediments had higher bacterial density and increased proportions of Desulfuromonadia and Desulfobacterota but lower proportions of Campylobacterota compared to other areas. Additionally, ND sediments exhibited the highest VOC content, with 2-Octen-1-ol being the most abundant compound, characterized by mushroom-like, earthy, fishy, rancid, and metallic odors that may negatively influence the flavor of large yellow croaker. We identified 76 differential VOCs, most of which showed a positive correlation with bacteria, ciliates, and flagellates, while some VOCs showed a positive correlation with the annelid Aurospio foodbancsia and the cnidarian Diadumene cincta. Our study is the first to elucidate the complex interactions of benthic organisms and VOCs during the eutrophication process in sediments from cage fish farms, providing potential biomarkers for ecosystem monitoring.
Collapse
Affiliation(s)
- Fa-Guo Wan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yong-Long Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Wang-Yang Jin
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Tian-Hong Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Qing-Ling Zhu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Qing-Hao Zhan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Li-Hua Jiang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Shun Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China; Institute of Nanji Islands National Marine Nature Reserve, Wenzhou, Zhejiang, PR China
| | - Wei-Hua Song
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao-Jun Yan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
2
|
Yan W, Gu L, Yue X, Zhong H, Wang D. Distribution of protoporphyrin IX during Prorocentrum donghaiense blooms and its relationship with particle-attached and free-living bacterial communities. ENVIRONMENTAL RESEARCH 2024; 263:120255. [PMID: 39481790 DOI: 10.1016/j.envres.2024.120255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Particle-attached (PA) and free-living (FL) bacterial communities are essential for nutrient cycles and metabolite production and serve as a food source in aquatic systems. However, our understanding of how biotic factors influence community interactions, co-occurrence patterns, and niche occupancy remains limited. This study investigated the influence of protoporphyrin IX (PPIX) on bacteria with different lifestyles during Prorocentrum donghaiense bloom. The findings revealed that PPIX distribution responded variably to changes in physicochemical parameters induced by red tide bloom. Large-sized or particle-attached (PA) phytoplankton (cell size >3 μm) were identified as the primary contributors to environmental PPIX, while small-sized plankton or free-living (FL) microorganisms (<3 μm) contributed less. In red tide-affected areas, PPIX and its derivatives were significantly more abundant than in non-red tide areas, indicating an increased demand for porphyrins by plankton during red tides. Additionally, the red tide also significantly influenced the preference of bacterial lineages for PA or FL lifestyles, highlighting a close interaction between bacteria with different lifestyles and PPIX levels. This study quantitatively analyzed the distribution of PPIX across different cell sizes in red tide and non-red tide marine environments, providing insights into microbial interactions and dynamics in changing ecosystems and offering a reference for using PPIX to predict red tide ecological disasters.
Collapse
Affiliation(s)
- Wanli Yan
- Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China; College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Lide Gu
- Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China.
| | - Xinli Yue
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Haowen Zhong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Deli Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
3
|
Van Le V, Kang M, Ko SR, Park CY, Lee JJ, Choi IC, Oh HM, Ahn CY. Response of particle-attached and free-living bacterial communities to Microcystis blooms. Appl Microbiol Biotechnol 2024; 108:42. [PMID: 38183480 DOI: 10.1007/s00253-023-12828-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/29/2023] [Accepted: 11/13/2023] [Indexed: 01/08/2024]
Abstract
The massive proliferation of Microcystis threatens freshwater ecosystems and degrades water quality globally. Understanding the mechanisms that contribute to Microcystis growth is crucial for managing Microcystis blooms. The lifestyles of bacteria can be classified generally into two groups: particle-attached (PA; > 3 µm) and free-living (FL; 0.2-3.0 µm). However, little is known about the response of PA and FL bacteria to Microcystis blooms. Using 16S rRNA gene high-throughput sequencing, we investigated the stability, assembly process, and co-occurrence patterns of PA and FL bacterial communities during distinct bloom stages. PA bacteria were phylogenetically different from their FL counterparts. Microcystis blooms substantially influenced bacterial communities. The time decay relationship model revealed that Microcystis blooms might increase the stability of both PA and FL bacterial communities. A contrasting community assembly mechanism was observed between the PA and FL bacterial communities. Throughout Microcystis blooms, homogeneous selection was the major assembly process that impacted the PA bacterial community, whereas drift explained much of the turnover of the FL bacterial community. Both PA and FL bacterial communities could be separated into modules related to different phases of Microcystis blooms. Microcystis blooms altered the assembly process of PA and FL bacterial communities. PA bacterial community appeared to be more responsive to Microcystis blooms than FL bacteria. Decomposition of Microcystis blooms may enhance cooperation among bacteria. Our findings highlight the importance of studying bacterial lifestyles to understand their functions in regulating Microcystis blooms. KEY POINTS: • Microcystis blooms alter the assembly process of PA and FL bacterial communities • Microcystis blooms increase the stability of both PA and FL bacterial communities • PA bacteria seem to be more responsive to Microcystis blooms than FL bacteria.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Mingyeong Kang
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - So-Ra Ko
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Chan-Yeong Park
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jay Jung Lee
- Geum River Environment Research Center, National Institute of Environmental Research, Chungbuk, 29027, Republic of Korea
| | - In-Chan Choi
- Geum River Environment Research Center, National Institute of Environmental Research, Chungbuk, 29027, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea.
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
4
|
Wang M, Wang S, Li H, Mao Z, Lu Y, Cheng Y, Han X, Wang Y, Liu Y, Wan S, Zhou LJ, Wu QL. Methylparaben changes the community composition, structure, and assembly processes of free-living bacteria, phytoplankton, and zooplankton. ENVIRONMENTAL RESEARCH 2024; 262:119944. [PMID: 39245310 DOI: 10.1016/j.envres.2024.119944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Parabens are common contaminants in river and lake environments. However, few studies have been conducted to determine the effects of parabens on bacteria, phytoplankton, and zooplankton communities in aquatic environments. In this study, the effect of methylparaben (MP) on the diversity and community structure of the aquatic plankton microbiome was investigated by incubating a microcosm with MP at 0.1, 1, 10, and 100 μg/L for 7 days. The results of the Simpson index showed that MP treatment altered the α-diversity of free-living bacteria (FL), phytoplankton, and zooplankton but had no significant effect on the α-diversity of particle-attached bacteria (PA). Further, the relative abundances of the sensitive bacteria Chitinophaga and Vibrionimonas declined after MP addition. Moreover, the relative abundances of Desmodesmus sp. HSJ717 and Scenedesmus armatus, of the phylum Chlorophyta, were significantly lower in the MP treatment group than in the control group. In addition, the relative abundance of Stoeckeria sp. SSMS0806, of the Dinophyta phylum, was higher than that in the control group. MP addition also increased the relative abundance of Arthropoda but decreased the relative abundance of Rotifera and Ciliophora. The β-diversity analysis showed that FL and phytoplankton communities were clustered separately after treatment with different MP concentrations. MP addition changed community assembly mechanisms in the microcosm, including increasing the stochastic processes for FL and the deterministic processes for PA and phytoplankton. Structural equation modeling analysis showed a significant negative relationship between bacteria richness and phytoplankton richness, and a significant positive relationship between phytoplankton (richness and community composition) and zooplankton. Overall, this study emphasizes that MP, at environmental concentrations, can change the diversity and structure of plankton microbial communities, which might have a negative effect on ecological systems.
Collapse
Affiliation(s)
- Man Wang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Shengxing Wang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huabing Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhendu Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Yiwei Lu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Yunshan Cheng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; School of Ecology and Environment, Anhui Normal University, Wuhu, 050031, China
| | - Xiaotong Han
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yujing Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yanru Liu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Shiqiang Wan
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Li-Jun Zhou
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
5
|
Adhikari NP, Adhikari S, Rijal KR. Community composition and co-occurrence of free-living and particle-attached bacteria in the source region of the Ganges and Brahmaputra Rivers. Int Microbiol 2024:10.1007/s10123-024-00607-6. [PMID: 39400629 DOI: 10.1007/s10123-024-00607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Bacteria have two trophic lifestyles in aquatic ecosystems, i.e., free-living (FL) and particle-attached (PA), with different but essential ecological roles. However, relevant knowledge is still dearth in the upstream source region of the Himalayan Rivers. Thus, we emphasized a comparative study on community composition, co-occurrence, and geographic distribution of the FL and PA bacteria and the effect of environmental factors in the source region of the Ganges and Brahmaputra Rivers. PA bacteria relative to FL harbored a significantly higher local diversity, richness, and evenness. A significantly higher abundance of Betaproteobacteria, Verrucomicrobiota, and Planctomycetota in PA trophic lifestyle and Gammaproteobacteria and Actinomycetota in FL tropic lifestyle and indicator OTUs belonging to related taxa were observed. The spatial variation of the FL and PA bacterial communities was most significantly impacted by dispersal limitation as a discrete factor. Among the environmental parameters, the total nitrogen (TN) was found to be a significant (P < 0.001) driver of the variation in PA communities. Meanwhile, particulate organic carbon (POC) and TN considerably explained the variation of FL communities. A significant correlation (P < 0.001) of TN with dominant bacterial taxa (Pseudomonadota, Actinomycetota, and Verrucomicrobiota) and FL and PA indicator OTUs associated with these taxa further confirmed nitrogen as the limiting nutrient in the source region of the Ganges and Brahmaputra Rivers. The co-occurrence network topological characteristics showed that the PA network was more stable than the FL network, which was more complicated and unstable. Thus, it can be speculated that FL communities relative to PA are more vulnerable to shifting upon disturbances.
Collapse
Affiliation(s)
- Namita Paudel Adhikari
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Subash Adhikari
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Komal Raj Rijal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, 44613, Kathmandu, Nepal
| |
Collapse
|
6
|
Rajguru B, Shri M, Bhatt VD. Exploring microbial diversity in the rhizosphere: a comprehensive review of metagenomic approaches and their applications. 3 Biotech 2024; 14:224. [PMID: 39247454 PMCID: PMC11379838 DOI: 10.1007/s13205-024-04065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
The rhizosphere, the soil region influenced by plant roots, represents a dynamic microenvironment where intricate interactions between plants and microorganisms shape soil health, nutrient cycling, and plant growth. Soil microorganisms are integral players in the transformation of materials, the dynamics of energy flows, and the intricate cycles of biogeochemistry. Considerable research has been dedicated to investigating the abundance, diversity, and intricacies of interactions among different microbes, as well as the relationships between plants and microbes present in the rhizosphere. Metagenomics, a powerful suite of techniques, has emerged as a transformative tool for dissecting the genetic repertoire of complex microbial communities inhabiting the rhizosphere. The review systematically navigates through various metagenomic approaches, ranging from shotgun metagenomics, enabling unbiased analysis of entire microbial genomes, to targeted sequencing of the 16S rRNA gene for taxonomic profiling. Each approach's strengths and limitations are critically evaluated, providing researchers with a nuanced understanding of their applicability in different research contexts. A central focus of the review lies in the practical applications of rhizosphere metagenomics in various fields including agriculture. By decoding the genomic content of rhizospheric microbes, researchers gain insights into their functional roles in nutrient acquisition, disease suppression, and overall plant health. The review also addresses the broader implications of metagenomic studies in advancing our understanding of microbial diversity and community dynamics in the rhizosphere. It serves as a comprehensive guide for researchers, agronomists, and policymakers, offering a roadmap for harnessing metagenomic approaches to unlock the full potential of the rhizosphere microbiome in promoting sustainable agriculture.
Collapse
Affiliation(s)
- Bhumi Rajguru
- School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat India
| | - Manju Shri
- School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat India
| | - Vaibhav D Bhatt
- School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat India
| |
Collapse
|
7
|
Zhang Z, Lu J, Zhang S, Tian Z, Feng C, Liu Y. Analysis of bacterial community structure, functional variation, and assembly mechanisms in multi-media habitats of lakes during the frozen period. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116903. [PMID: 39205354 DOI: 10.1016/j.ecoenv.2024.116903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Ice, water, and sediment represent three interconnected habitats in lake ecosystems, and bacteria are crucial for maintaining ecosystem equilibrium and elemental cycling across these habitats. However, the differential characteristics and driving mechanisms of bacterial community structures in the ice, water, and sediments of seasonally frozen lakes remain unclear. In this study, high-throughput sequencing technology was used to analyze and compare the structure, function, network characteristics, and assembly mechanisms of bacterial communities in the ice, water, and sediment of Wuliangsuhai, a typical cold region in Inner Mongolia. The results showed that the bacterial communities in the ice and water phases had similar diversity and composition, with Proteobacteria, Bacteroidota, Actinobacteria, Campilobacterota, and Cyanobacteria as dominant phyla. The bacterial communities in sediments displayed significant differences from ice and water, with Chloroflexi, Proteobacteria, Firmicutes, Desulfobacterota, and Acidobacteriota being the dominant phyla. Notably, the bacterial communities in water exhibited higher spatial variability in their distribution than those in ice and sediment. This study also revealed that during the frozen period, the bacterial community species in the ice, water, and sediment media were dominated by cooperative relationships. Community assembly was primarily influenced by stochastic processes, with dispersal limitation and drift identified as the two most significant factors within this process. However, heterogeneous selection also played a significant role in the community composition. Furthermore, functions related to nitrogen, phosphorus, sulfur, carbon, and hydrogen cycling vary among bacterial communities in ice, water, and sediment. These findings elucidate the intrinsic mechanisms driving variability in bacterial community structure and changes in water quality across different media phases (ice, water, and sediment) in cold-zone lakes during the freezing period, offering new insights for water environmental protection and ecological restoration efforts in such environments.
Collapse
Affiliation(s)
- Zixuan Zhang
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Junping Lu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Water Resources Protection and Utilization, Hohhot 010018, China; Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in Inner Mongolia Section of the Yellow River Basin, Hohhot 010018, China.
| | - Sheng Zhang
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Autonomous Region Key Laboratory of Water Resources Protection and Utilization, Hohhot 010018, China; Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in Inner Mongolia Section of the Yellow River Basin, Hohhot 010018, China
| | - Zhiqiang Tian
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chen Feng
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yinghui Liu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
8
|
Huang R, Zhang P, Zhang X, Chen S, Sun J, Jiang X, Zhang D, Li H, Yi X, Qu L, Wang T, Gao K, Hall-Spencer JM, Adams J, Gao G, Lin X. Ocean acidification alters microeukaryotic and bacterial food web interactions in a eutrophic subtropical mesocosm. ENVIRONMENTAL RESEARCH 2024; 257:119084. [PMID: 38823617 DOI: 10.1016/j.envres.2024.119084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 06/03/2024]
Abstract
Ocean acidification (OA) is known to influence biological and ecological processes, mainly focusing on its impacts on single species, but little has been documented on how OA may alter plankton community interactions. Here, we conducted a mesocosm experiment with ambient (∼410 ppmv) and high (1000 ppmv) CO2 concentrations in a subtropical eutrophic region of the East China Sea and examined the community dynamics of microeukaryotes, bacterioplankton and microeukaryote-attached bacteria in the enclosed coastal seawater. The OA treatment with elevated CO2 affected taxa as the phytoplankton bloom stages progressed, with a 72.89% decrease in relative abundance of the protist Cercozoa on day 10 and a 322% increase in relative abundance of Stramenopile dominated by diatoms, accompanied by a 29.54% decrease in relative abundance of attached Alphaproteobacteria on day 28. Our study revealed that protozoans with different prey preferences had differing sensitivity to high CO2, and attached bacteria were more significantly affected by high CO2 compared to bacterioplankton. Our findings indicate that high CO2 changed the co-occurrence network complexity and stability of microeukaryotes more than those of bacteria. Furthermore, high CO2 was found to alter the proportions of potential interactions between phytoplankton and their predators, as well as microeukaryotes and their attached bacteria in the networks. The changes in the relative abundances and interactions of microeukaryotes between their predators in response to high CO2 revealed in our study suggest that high CO2 may have profound impacts on marine food webs.
Collapse
Affiliation(s)
- Ruiping Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Marine Resources Utilization in South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou, China
| | - Ping Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen, China
| | - Xu Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen, China
| | - Shouchang Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jiazhen Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaowen Jiang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Di Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - He Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiangqi Yi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Liming Qu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Tifeng Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jason M Hall-Spencer
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan; School of Geography and Oceanography, Nanjing University, Nanjing, China
| | - Jonathan Adams
- School of Geography and Oceanography, Nanjing University, Nanjing, China
| | - Guang Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen, China.
| |
Collapse
|
9
|
da Silva S, Vuong P, Amaral JRV, da Silva VAS, de Oliveira SS, Vermelho AB, Beale DJ, Bissett A, Whiteley AS, Kaur P, Macrae A. The piranha gut microbiome provides a selective lens into river water biodiversity. Sci Rep 2024; 14:21518. [PMID: 39277613 PMCID: PMC11401890 DOI: 10.1038/s41598-024-72329-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
Advances in omics technologies have enabled the in-depth study of microbial communities and their metabolic profiles from all environments. Here metagenomes were sampled from piranha (Serrasalmus rhombeus) and from river water from the Rio São Benedito (Amazon Basin). Shotgun metagenome sequencing was used to explore diversity and to test whether fish microbiomes are a good proxy for river microbiome studies. The results showed that the fish microbiomes were not significantly different from the river water microbiomes at higher taxonomic ranks. However, at the genus level, fish microbiome alpha diversity decreased, and beta diversity increased. This result repeated for functional gene abundances associated with specific metabolic categories (SEED level 3). A clear delineation between water and fish was seen for beta diversity. The piranha microbiome provides a good and representative subset of its river water microbiome. Variations seen in beta biodiversity were expected and can be explained by temporal variations in the fish microbiome in response to stronger selective forces on its biodiversity. Metagenome assembled genomes construction was better from the fish samples. This study has revealed that the microbiome of a piranha tells us a lot about its river water microbiome and function.
Collapse
Affiliation(s)
- Sheila da Silva
- Programa Pós-Graduação de Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paton Vuong
- UWA School of Agriculture & Environment, University of Western Australia, Perth, Australia
| | - João Ricardo Vidal Amaral
- Programa Pós-Graduação de Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Selma Soares de Oliveira
- Programa Pós-Graduação de Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alane Beatriz Vermelho
- Programa Pós-Graduação de Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David John Beale
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Environment, Dutton Park, QLD, Australia
| | - Andrew Bissett
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Environment, Battery Point, TAS, Australia
| | - Andrew Steven Whiteley
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Environment, Waterford, WA, Australia
| | - Parwinder Kaur
- UWA School of Agriculture & Environment, University of Western Australia, Perth, Australia
| | - Andrew Macrae
- Programa Pós-Graduação de Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Jiménez-Venegas J, Zamora-Leiva L, Univaso L, Soto J, Tapia Y, Paneque M. Profile of Bacterial Communities in Copper Mine Tailings Revealed through High-Throughput Sequencing. Microorganisms 2024; 12:1820. [PMID: 39338494 PMCID: PMC11433839 DOI: 10.3390/microorganisms12091820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Mine-tailing dumps are one of the leading sources of environmental degradation, often with public health and ecological consequences. Due to the complex ecosystems generated, they are ideal sites for exploring the bacterial diversity of specially adapted microorganisms. We investigated the concentrations of trace metals in solid copper (Cu) mine tailings from the Ovejería Tailings Dam of the National Copper Corporation of Chile and used high-throughput sequencing techniques to determine the microbial community diversity of the tailings using 16S rRNA gene-based amplicon sequence analysis. The concentrations of the detected metals were highest in the following order: iron (Fe) > Cu > manganese (Mn) > molybdenum (Mo) > lead (Pb) > chromium (Cr) > cadmium (Cd). Furthermore, 16S rRNA gene-based sequence analysis identified 12 phyla, 18 classes, 43 orders, 82 families, and 154 genera at the three sampling points. The phylum Proteobacteria was the most dominant, followed by Chlamydiota, Bacteroidetes, Actinobacteria, and Firmicutes. Genera, such as Bradyrhizobium, Aquabacterium, Paracoccus, Caulobacter, Azospira, and Neochlamydia, showed high relative abundance. These genera are known to possess adaptation mechanisms in high concentrations of metals, such as Cd, Cu, and Pb, along with nitrogen-fixation capacity. In addition to their tolerance to various metals, some of these genera may represent pathogens of amoeba or humans, which contributes to the complexity and resilience of bacterial communities in the studied Cu mining tailings. This study highlights the unique microbial diversity in the Ovejería Tailings Dam, including the discovery of the genus Neochlamydia, reported for the first time for heavy metal resistance. This underscores the importance of characterizing mining sites, particularly in Chile, to uncover novel bacterial mechanisms for potential biotechnological applications.
Collapse
Affiliation(s)
- Joseline Jiménez-Venegas
- Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; (J.J.-V.); (Y.T.)
- Master Program in Territorial Management of Natural Resources, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile
| | - Leonardo Zamora-Leiva
- Fundación Bionostra Chile Research, Almirante Lynch 1179, San Miguel, Santiago 8920033, Chile; (L.Z.-L.); (L.U.); (J.S.)
| | - Luciano Univaso
- Fundación Bionostra Chile Research, Almirante Lynch 1179, San Miguel, Santiago 8920033, Chile; (L.Z.-L.); (L.U.); (J.S.)
| | - Jorge Soto
- Fundación Bionostra Chile Research, Almirante Lynch 1179, San Miguel, Santiago 8920033, Chile; (L.Z.-L.); (L.U.); (J.S.)
| | - Yasna Tapia
- Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; (J.J.-V.); (Y.T.)
| | - Manuel Paneque
- Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile; (J.J.-V.); (Y.T.)
| |
Collapse
|
11
|
Xie G, Sun C, Gong Y, Luo W, Tang X. Beyond the Bloom: Unraveling the Diversity, Overlap, and Stability of Free-Living and Particle-Attached Bacterial Communities in a Cyanobacteria-Dominated Hypereutrophic Lake. MICROBIAL ECOLOGY 2024; 87:96. [PMID: 39046558 PMCID: PMC11269507 DOI: 10.1007/s00248-024-02410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
In aquatic ecosystems with low nutrient levels, organic aggregates (OAs) act as nutrient hotspots, hosting a diverse range of microbial species compared to those in the water column. Lake eutrophication, marked by intensified and prolonged cyanobacterial blooms, significantly impacts material and energy cycling processes, potentially altering the ecological traits of both free-living (FL) and particle-attached (PA) bacteria. However, the extent to which observed patterns of FL and PA bacterial diversity, community assembly, and stability extend to hypereutrophic lakes remains understudied. To address this gap, we investigated bacterial diversity, composition, assembly processes, and stability within hypereutrophic Lake Xingyun. Our results revealed that FL bacterial communities exhibited higher α-diversity than PA counterparts, coupled with discernible taxonomic compositions. Both bacterial communities showed distinct seasonality, influenced by cyanobacterial bloom intensity. Environmental factors accounted for 71.1% and 54.2% of the variation among FL and PA bacteria, respectively. The assembly of the PA bacterial community was predominantly stochastic, while FL assembly was more deterministic. The FL network demonstrated greater stability, complexity, and negative interactions, indicative of competitive relationships, while the PA network showed a prevalence of positive correlations, suggesting mutualistic interactions. Importantly, these findings differ from observations in oligotrophic, mesotrophic, and eutrophic lakes. Overall, this research provides valuable insights into the interplay among bacterial fractions, enhancing our understanding of nutrient status and cyanobacterial blooms in shaping bacterial communities.
Collapse
Affiliation(s)
- Guijuan Xie
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Chuanbo Sun
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Yi Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wenlei Luo
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- The Fuxianhu Station of Plateau Deep Lake Field Scientific Observation and Research, Yuxi, 653100, Yunnan, China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
You Z, Wang C, Yang X, Liu Z, Guan Y, Mu J, Shi H, Zhao Z. Effects of eutrophication on the horizontal transfer of antibiotic resistance genes in microalgal-bacterial symbiotic systems. ENVIRONMENTAL RESEARCH 2024; 251:118692. [PMID: 38493856 DOI: 10.1016/j.envres.2024.118692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Overloading of nutrients such as nitrogen causes eutrophication of freshwater bodies. The spread of antibiotic resistance genes (ARGs) poses a threat to ecosystems. However, studies on the enrichment and spread of ARGs from increased nitrogen loading in algal-bacterial symbiotic systems are limited. In this study, the transfer of extracellular kanamycin resistance (KR) genes from large (RP4) small (pEASY-T1) plasmids into the intracellular and extracellular DNA (iDNA, eDNA) of the inter-algal environment of Chlorella pyrenoidosa was investigated, along with the community structure of free-living (FL) and particle-attached (PA) bacteria under different nitrogen source concentrations (0-2.5 g/L KNO3). The results showed that KR gene abundance in the eDNA adsorbed on solid particles (D-eDNA) increased initially and then decreased with increasing nitrogen concentration, while the opposite was true for the rest of the free eDNA (E-eDNA). Medium nitrogen concentrations promoted the transfer of extracellular KR genes into the iDNA attached to algal microorganisms (A-iDNA), eDNA attached to algae (B-eDNA), and the iDNA of free microorganisms (C-iDNA); high nitrogen contributed to the transfer of KR genes into C-iDNA. The highest percentage of KR genes was found in B-eDNA with RP4 plasmid treatment (66.2%) and in C-iDNA with pEASY-T1 plasmid treatment (86.88%). In addition, dissolved oxygen (DO) significantly affected the bacterial PA and FL community compositions. Nephelometric turbidity units (NTU) reflected the abundance of ARGs in algae. Proteobacteria, Cyanobacteria, Bacteroidota, and Actinobacteriota were the main potential hosts of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in the phytoplankton inter-algal environment.
Collapse
Affiliation(s)
- Ziqi You
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| | - Ce Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Xiaobin Yang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Zikuo Liu
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Yueqiang Guan
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Jiandong Mu
- Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao, 066200, China
| | - Huijuan Shi
- Museum of Hebei University, Hebei University, Baoding, Hebei, China.
| | - Zhao Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China.
| |
Collapse
|
13
|
Bydalek F, Webster G, Barden R, Weightman AJ, Kasprzyk-Hordern B, Wenk J. Microbial community and antimicrobial resistance niche differentiation in a multistage, surface flow constructed wetland. WATER RESEARCH 2024; 254:121408. [PMID: 38442607 DOI: 10.1016/j.watres.2024.121408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Free-living (FL) and particulate-associated (PA) communities are distinct bacterioplankton lifestyles with different mobility and dissemination routes. Understanding spatio-temporal dynamics of PA and FL fractions will allow improvement to wastewater treatment processes including pathogen and AMR bacteria removal. In this study, PA, FL and sediment community composition and antimicrobial resistance gene (ARG; tetW, ermB, sul1, intI1) dynamics were investigated in a full-scale municipal wastewater free-water surface polishing constructed wetland. Taxonomic composition of PA and FL microbial communities shifted towards less diverse communities (Shannon, Chao1) at the CW effluent but retained a distinct fraction-specific composition. Wastewater treatment plant derived PA communities introduced the bulk of AMR load (70 %) into the CW. However, the FL fraction was responsible for exporting over 60 % of the effluent AMR load given its high mobility and the effective immobilization (1-3 log removal) of PA communities. Strong correlations (r2>0.8, p < 0.05) were observed between the FL fraction, tetW and emrB dynamics, and amplicon sequence variants (ASVs) of potentially pathogenic taxa, including Bacteroides, Enterobacteriaceae, Aeromonadaceae, and Lachnospiraceae. This study reveals niche differentiation of microbial communities and associated AMR in CWs and shows that free-living bacteria are a primary escape route of pathogenic and ARG load from CWs under low-flow hydraulic conditions.
Collapse
Affiliation(s)
- Franciszek Bydalek
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK; GW4 NERC CDT in Freshwater Biosciences and Sustainability, Cardiff University, Cardiff CF10 3AX, UK; Organisms and Environment Division, School of Biosciences, Microbiomes, Microbes and Informatics Group, Cardiff University, Cardiff CF10 3AX, UK
| | - Gordon Webster
- Organisms and Environment Division, School of Biosciences, Microbiomes, Microbes and Informatics Group, Cardiff University, Cardiff CF10 3AX, UK
| | | | - Andrew J Weightman
- Organisms and Environment Division, School of Biosciences, Microbiomes, Microbes and Informatics Group, Cardiff University, Cardiff CF10 3AX, UK
| | - Barbara Kasprzyk-Hordern
- Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK; Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Jannis Wenk
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
14
|
Lian C, Xiang J, Cai H, Ke J, Ni H, Zhu J, Zheng Z, Lu K, Yang W. Microalgae Inoculation Significantly Shapes the Structure, Alters the Assembly Process, and Enhances the Stability of Bacterial Communities in Shrimp-Rearing Water. BIOLOGY 2024; 13:54. [PMID: 38275730 PMCID: PMC10813777 DOI: 10.3390/biology13010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Intensive shrimp farming may lead to adverse environmental consequences due to discharged water effluent. Inoculation of microalgae can moderate the adverse effect of shrimp-farming water. However, how bacterial communities with different lifestyles (free-living (FL) and particle-attached (PA)) respond to microalgal inoculation is unclear. In the present study, we investigated the effects of two microalgae (Nannochloropsis oculata and Thalassiosira weissflogii) alone or in combination in regulating microbial communities in shrimp-farmed water and their potential applications. PERMANOVA revealed significant differences among treatments in terms of time and lifestyle. Community diversity analysis showed that PA bacteria responded more sensitively to different microalgal treatments than FL bacteria. Redundancy analysis (RDA) indicated that the bacterial community was majorly influenced by environmental factors, compared to microalgal direct influence. Moreover, the neutral model analysis and the average variation degree (AVD) index indicated that the addition of microalgae affected the bacterial community structure and stability during the stochastic process, and the PA bacterial community was the most stable with the addition of T. weissflogii. Therefore, the present study revealed the effects of microalgae and nutrient salts on bacterial communities in shrimp aquaculture water by adding microalgae to control the process of community change. This study is important for understanding the microbial community assembly and interpreting complex interactions among zoo-, phyto-, and bacterioplankton in shrimp aquaculture ecosystems. Additionally, these findings may contribute to the sustainable development of shrimp aquaculture and ecosystem conservation.
Collapse
Affiliation(s)
- Chen Lian
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Jie Xiang
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Huifeng Cai
- Fishery Technical Management Service Station of Yinzhou District, Ningbo 315100, China;
| | - Jiangdong Ke
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Heng Ni
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Zhongming Zheng
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Kaihong Lu
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| | - Wen Yang
- School of Marine Sciences, Ningbo University, No. 169 Qixingnan Road, Beilun District, Ningbo 315832, China; (C.L.); (J.X.); (J.K.); (H.N.); (J.Z.); (Z.Z.); (K.L.)
| |
Collapse
|
15
|
Shi Y, Wang X, Cai H, Ke J, Zhu J, Lu K, Zheng Z, Yang W. The Assembly Process of Free-Living and Particle-Attached Bacterial Communities in Shrimp-Rearing Waters: The Overwhelming Influence of Nutrient Factors Relative to Microalgal Inoculation. Animals (Basel) 2023; 13:3484. [PMID: 38003102 PMCID: PMC10668652 DOI: 10.3390/ani13223484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The ecological functions of bacterial communities vary between particle-attached (PA) lifestyles and free-living (FL) lifestyles, and separately exploring their community assembly helps to elucidate the microecological mechanisms of shrimp rearing. Microalgal inoculation and nutrient enrichment during shrimp rearing are two important driving factors that affect rearing-water bacterial communities, but their relative contributions to the bacterial community assembly have not been evaluated. Here, we inoculated two microalgae, Nannochloropsis oculata and Thalassiosira weissflogii, into shrimp-rearing waters to investigate the distinct effects of various environmental factors on PA and FL bacterial communities. Our study showed that the composition and representative bacteria of different microalgal treatments were significantly different between the PA and FL bacterial communities. Regression analyses and Mantel tests revealed that nutrients were vital factors that constrained the diversity, structure, and co-occurrence patterns of both the PA and FL bacterial communities. Partial least squares path modeling (PLS-PM) analysis indicated that microalgae could directly or indirectly affect the PA bacterial community through nutrient interactions. Moreover, a significant interaction was detected between PA and FL bacterial communities. Our study reveals the unequal effects of microalgae and nutrients on bacterial community assembly and helps explore microbial community assembly in shrimp-rearing ecosystems.
Collapse
Affiliation(s)
- Yikai Shi
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| | - Xuruo Wang
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| | - Huifeng Cai
- Fishery Technical Management Service Station of Yinzhou District, Ningbo 315100, China;
| | - Jiangdong Ke
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| | - Kaihong Lu
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| | - Zhongming Zheng
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| | - Wen Yang
- School of Marine Sciences, Ningbo University, No.169 Qixingnan Road, Beilun District, Ningbo 315832, China; (Y.S.); (X.W.); (J.K.); (J.Z.); (K.L.); (Z.Z.)
| |
Collapse
|
16
|
Pernthaler J, Krempaska N, le Moigne A. Small-scale spatial beta diversity of bacteria in the mixed upper layer of a lake. Environ Microbiol 2023; 25:1847-1859. [PMID: 37173811 DOI: 10.1111/1462-2920.16399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Bacterial community composition among individual, experimentally generated 'lake snow' particles may be highly variable. Since such aggregates are seasonally abundant in the mixed upper layer of lakes, we hypothesized that particle-attached (PA) bacteria disproportionally contribute to the small-scale spatial beta diversity of pelagic communities. Community composition was analysed in sets of small (10 mL) samples collected from a pre-alpine lake in May, July and October 2018. Bacteria were classified as free-living (FL) or PA depending on their presence in large, 5-μm pre-filtered reference samples. FL exhibited clear seasonal differences in community composition and assembly. They were spatially uniform in May and July, and only a few FL taxa exhibited significant spatial variability. Spatial heterogeneity of FL in October was caused by high alpha and beta diversity of rare taxa, many with a presumably 'tychoplanktic' (alternating attached and free-living) lifestyle. The spatial beta diversity of PA was always high, and only about 10% of their seasonal richness was present in any single sample. Thus, most compositional variability of pelagic bacteria at spatial scales of cm to m either directly or indirectly originated from PA. On a functional level, this genotypic heterogeneity might affect the spatial distribution of rare metabolic traits.
Collapse
Affiliation(s)
- Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Natalia Krempaska
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Alizée le Moigne
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Yokoyama D, Kikuchi J. Inferring microbial community assembly in an urban river basin through geo-multi-omics and phylogenetic bin-based null-model analysis of surface water. ENVIRONMENTAL RESEARCH 2023; 231:116202. [PMID: 37211183 DOI: 10.1016/j.envres.2023.116202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
Understanding the community assembly process is a central issue in microbial ecology. In this study, we analyzed the community assembly of particle-associated (PA) and free-living (FL) surface water microbiomes in 54 sites from the headstream to the river mouth of an urban river in Japan, the river basin of which has the highest human population density in the country. Analyses were conducted from two perspectives: (1) analysis of deterministic processes considering only environmental factors using a geo-multi-omics dataset and (2) analysis of deterministic and stochastic processes to estimate the contributions of heterogeneous selection (HeS), homogeneous selection (HoS), dispersal limitation (DL), homogenizing dispersal (HD), and drift (DR) as community assembly processes using a phylogenetic bin-based null model. The variation in microbiomes was successfully explained from a deterministic perspective by environmental factors, such as organic matter-related, nitrogen metabolism, and salinity-related parameters, using multivariate statistical analysis, network analysis, and habitat prediction. In addition, we demonstrated the dominance of stochastic processes (DL, HD, and DR) over deterministic processes (HeS and HoS) in community assembly from both deterministic and stochastic perspectives. Our analysis revealed that as the distance between two sites increased, the effect of HoS sharply decreased while the effect of HeS increased, particularly between upstream and estuary sites, indicating that the salinity gradient could potentially enhance the contribution of HeS to community assembly. Our study highlights the importance of both stochastic and deterministic processes in community assembly of PA and FL surface water microbiomes in urban riverine ecosystems.
Collapse
Affiliation(s)
- Daiki Yokoyama
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan
| |
Collapse
|
18
|
Louati I, Nunan N, Tambosco K, Bernard C, Humbert JF, Leloup J. The phyto-bacterioplankton couple in a shallow freshwater ecosystem: Who leads the dance? HARMFUL ALGAE 2023; 126:102436. [PMID: 37290884 DOI: 10.1016/j.hal.2023.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 06/10/2023]
Abstract
Bloom-forming phytoplankton dynamics are still unpredictable, even though it is known that several abiotic factors, such as nutrient availability and temperature, are key factors for bloom development. We investigated whether biotic factors, i.e. the bacterioplankton composition (via 16SrDNA metabarcoding), were correlated with phytoplankton dynamics, through a weekly monitoring of a shallow lake known to host recurrent cyanobacterial blooms. We detected concomitant changes in both bacterial and phytoplankton community biomass and diversity. During the bloom event, a significant decrease in phytoplankton diversity, was detected, with a first co-dominance of Ceratium, Microcystis and Aphanizomenon, followed by a co-dominance of the two cyanobacterial genera. In the same time, we observed a decrease of the particle-associated (PA) bacterial richness and the emergence of a specific bacterial consortium that was potentially better adapted to the new nutritional niche. Unexpectedly, changes in PA bacterial communities occurred just before the development the emergence of the phytoplanktonic bloom and the associated modification of the phytoplanktonic community composition, suggesting that changes in environmental conditions leading to the bloom, were first sensed by the bacterial PA community. This last was quite stable throughout the bloom event, even though there were changes in the blooming species, suggesting that the association between cyanobacterial species and bacterial communities may not be as tight as previously described for monospecific blooming communities. Finally, the dynamics of the free-living (FL) bacterial communities displayed a different trajectory from those of the PA and phytoplankton communities. This FL communities can be viewed as a reservoir for bacterial recruitment for the PA fraction. Altogether, these data also highlight s that the spatial organization within these different microenvironments in the water column is a relevant factor in the structuring of these communities.
Collapse
Affiliation(s)
- Imen Louati
- Sorbonne Université, UMR 7618 CNRS-INRA- RD-Paris Cité-UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 4 place Jussieu, Paris cedex 05 75252, France
| | - Naoise Nunan
- Sorbonne Université, UMR 7618 CNRS-INRA- RD-Paris Cité-UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 4 place Jussieu, Paris cedex 05 75252, France; Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, Uppsala 75007, Sweden
| | - Kevin Tambosco
- Sorbonne Université, UMR 7618 CNRS-INRA- RD-Paris Cité-UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 4 place Jussieu, Paris cedex 05 75252, France
| | - Cécile Bernard
- Muséum National d'Histoire Naturelle, UMR 7245 CNRS-MNHN, Molécules de Communication et Adaptation des Microorganismes, Paris, France
| | - Jean-François Humbert
- Sorbonne Université, UMR 7618 CNRS-INRA- RD-Paris Cité-UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 4 place Jussieu, Paris cedex 05 75252, France
| | - Julie Leloup
- Sorbonne Université, UMR 7618 CNRS-INRA- RD-Paris Cité-UPEC, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES-Paris), 4 place Jussieu, Paris cedex 05 75252, France.
| |
Collapse
|
19
|
Fang W, Fan T, Xu L, Wang S, Wang X, Lu A, Chen Y. Seasonal succession of microbial community co-occurrence patterns and community assembly mechanism in coal mining subsidence lakes. Front Microbiol 2023; 14:1098236. [PMID: 36819062 PMCID: PMC9936157 DOI: 10.3389/fmicb.2023.1098236] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Coal mining subsidence lakes are classic hydrologic characteristics created by underground coal mining and represent severe anthropogenic disturbances and environmental challenges. However, the assembly mechanisms and diversity of microbial communities shaped by such environments are poorly understood yet. In this study, we explored aquatic bacterial community diversity and ecological assembly processes in subsidence lakes during winter and summer using 16S rRNA gene sequencing. We observed that clear bacterial community structure was driven by seasonality more than by habitat, and the α-diversity and functional diversity of the bacterial community in summer were significantly higher than in winter (p < 0.001). Canonical correspondence analysis indicated that temperature and chlorophyll-a were the most crucial contributing factors influencing the community season variations in subsidence lakes. Specifically, temperature and chlorophyll-a explained 18.26 and 14.69% of the community season variation, respectively. The bacterial community variation was driven by deterministic processes in winter but dominated by stochastic processes in summer. Compared to winter, the network of bacterial communities in summer exhibited a higher average degree, modularity, and keystone taxa (hubs and connectors in a network), thereby forming a highly complex and stable community structure. These results illustrate the clear season heterogeneity of bacterial communities in subsidence lakes and provide new insights into revealing the effects of seasonal succession on microbial assembly processes in coal mining subsidence lake ecosystems.
Collapse
Affiliation(s)
- Wangkai Fang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area With High Groundwater Level, Huainan, China
| | - Tingyu Fan
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area With High Groundwater Level, Huainan, China
| | - Liangji Xu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area With High Groundwater Level, Huainan, China
| | - Shun Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area With High Groundwater Level, Huainan, China
| | - Xingming Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area With High Groundwater Level, Huainan, China
| | - Akang Lu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, China
- Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources and Ecological Protection in Mining Area With High Groundwater Level, Huainan, China
| | - Yongchun Chen
- National Engineering Laboratory of Coal Mine Ecological Environment Protection, Huainan, China
| |
Collapse
|
20
|
Adyari B, Hou L, Zhang L, Chen N, Ju F, Zhu L, Yu CP, Hu A. Seasonal hydrological dynamics govern lifestyle preference of aquatic antibiotic resistome. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100223. [PMID: 36437887 PMCID: PMC9691914 DOI: 10.1016/j.ese.2022.100223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance genes (ARGs) are a well-known environmental concern. Yet, limited knowledge exists on the fate and transport of ARGs in deep freshwater reservoirs experiencing seasonal hydrological changes, especially in the context of particle-attached (PA) and free-living (FL) lifestyles. Here, the ARG profiles were examined using high-throughput quantitative PCR in PA and FL lifestyles during four seasons representing two hydrological phenomena (vertical mixing and thermal stratification) in the Shuikou Reservoir (SR), Southern China. The results indicated that seasonal hydrological dynamics were critical for influencing the ARGs in PA and FL and the transition of ARGs between the two lifestyles. ARG profiles both in PA and FL were likely to be shaped by horizontal gene transfer. However, they exhibited distinct responses to the physicochemical (e.g., nutrients and dissolved oxygen) changes under seasonal hydrological dynamics. The particle-association niche (PAN) index revealed 94 non-conservative ARGs (i.e., no preferences for PA and FL) and 23 and 16 conservative ARGs preferring PA and FL lifestyles, respectively. A sharp decline in conservative ARGs under stratified hydrologic suggested seasonal influence on the ARGs transition between PA and FL lifestyles. Remarkably, the conservative ARGs (in PA or FL lifestyle) were more closely related to bacterial OTUs in their preferred lifestyle than their counterparts, indicating lifestyle-dependent ARG enrichment. Altogether, these findings enhanced our understanding of the ARG lifestyles and the role of seasonal hydrological changes in governing the ARG transition between the lifestyles in a typical deep freshwater ecosystem.
Collapse
Affiliation(s)
- Bob Adyari
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Department of Environmental Engineering, Universitas Pertamina, Jakarta, 12220, Indonesia
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah State University, UT, 84322, USA
| | - Lanping Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Nengwang Chen
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
| | - Longji Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
21
|
Shen Z, Xie G, Zhang Y, Yu B, Shao K, Gao G, Tang X. Similar assembly mechanisms but distinct co-occurrence patterns of free-living vs. particle-attached bacterial communities across different habitats and seasons in shallow, eutrophic Lake Taihu. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120305. [PMID: 36181942 DOI: 10.1016/j.envpol.2022.120305] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Eutrophication due to nitrogen and phosphorus input is an increasing problem in lake ecosystems. Free-living (FL) and particle-attached (PA) bacterial communities play a primary role in mediating biogeochemical processes in these lakes and in responding to eutrophication. However, knowledge of factors governing function, assembly mechanisms, and co-occurrence patterns of these communities remain poorly understood and are key challenges in microbial ecology. To address this knowledge gap, we collected 96 samples from Lake Taihu across four seasons and investigated the bacterial community using 16S rRNA gene sequencing. Our results demonstrate that the α-diversity, β-diversity, community composition, and functional composition of FL and PA bacterial communities exhibited differing spatiotemporal dynamics. FL and PA bacterial communities displayed similar distance-decay relationships across seasons. Deterministic processes (i.e., environmental filtering and species interaction) were the primary factors shaping community assembly in both FL and PA bacteria. Similar environmental factors shaped bacterial community structure while different environmental factors drove bacterial functional composition. Habitat filtering influenced enrichment of bacteria within specific functional groups. Among them, the FL bacterial community appeared to play a critical role in methane-utilization, whereas the PA bacteria contributed more to biogeochemical cycling of carbon. FL and PA bacterial communities exhibited distinct co-occurrence pattern across different seasons. In the FL network, Methylotenera and Methylophilaceae were identified as keystone taxa, while Burkholderiaceae and the hgcI clade were keystone taxa in the PA network. The PA bacterial community appeared to possess greater stability in the face of environmental change than did FL counterparts. These results broaden our knowledge of the driving factors, co-occurrence patterns, and assembly processes in FL and PA bacterial communities in eutrophic ecosystems and provide improved insight into the underlying mechanisms responsible for these results.
Collapse
Affiliation(s)
- Zhen Shen
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guijuan Xie
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Yuqing Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Bobing Yu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Ma Y, Li P, Zhong H, He M, Wang B, Mou X, Wu L. The Ecological Differentiation of Particle-Attached and Free-Living Bacterial Communities in a Seasonal Flooding Lake-the Poyang Lake. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02134-1. [PMID: 36323973 DOI: 10.1007/s00248-022-02134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Particle-attached (PA) and free-living (FL) bacterial communities play essential roles in the biogeochemical cycling of essential nutrients in aquatic environments. However, little is known about the factors that drive the differentiation of bacterial lifestyles, especially in flooding lake systems. Here we assessed the compositional and functional similarities between the FL and PA bacterial fractions in a typical flooding lake-the Poyang Lake (PYL) of China. The results revealed that PA communities had significantly different compositions and functions from FL communities in every hydrological period, and the diversity of both PA and FL communities was affected mainly by the water regime rather than bacterial lifestyles. PA communities were more diverse and enriched with Proteobacteria and Bacteroidetes, while FL communities had more Actinobacteria. There was a higher abundance of photosynthetic and nitrogen-cycling bacterial groups in PA communities, but a higher abundance of members involved in hydrocarbon degradation, aromatic hydrocarbon degradation, and methylotrophy in FL communities. Water properties (e.g., temperature, pH, total phosphorus) significantly regulated the lifestyle variations of PA and FL bacteria in PYL. Collectively, our results have demonstrated a clear ecological differentiation of PA and FL bacterial communities in flooding lakes, suggesting that the connectivity between FL and PA bacterial fractions is water property-related rather than water regime-related.
Collapse
Affiliation(s)
- Yantian Ma
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Pan Li
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Hui Zhong
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Mengjie He
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Binhua Wang
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Xiaozhen Mou
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Lan Wu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China.
| |
Collapse
|
23
|
Yang Y, Chen C, Wang J, Xu T. Characterizing free-living and particle-attached bacterial communities of a canyon river reservoir on the Yungui Plateau, China. Front Microbiol 2022; 13:986637. [PMID: 36118241 PMCID: PMC9470832 DOI: 10.3389/fmicb.2022.986637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Revealing the composition of free-living (FL) and particle-attached (PA) bacterial communities could provide insights into their distinct roles in biogeochemical processes and algal bloom dynamics. While there is still a lack of research about the difference and interactions between FL and PA communities, especially on the Yungui plateau with underestimated diversity. This study unveiled the structure of both FL and PA bacterial communities in a canyon reservoir (Wujiangdu) on the Yungui Plateau, southern China. Water samples were collected from surface water at nine sites in the reservoir. FL and PA bacterial community structures were identified by high-throughput 16S rRNA gene sequencing. We compared the structure and diversity of FL and PA bacteria and investigated their relationship with environmental factors. Results showed that there were different structures between FL and PA bacterial communities, and the dominant FL and PA phyla were affected by different environmental variables. Moreover, diversity of PA bacteria was greater than that of FL bacteria. Both groups exhibited distance decay patterns in this reservoir with varying correlations with geographic distances. FL fraction, however, exhibited a stronger correlation with environmental factors than the PA counterpart. Both FL and PA communities were phylogenetic clustering than expected according to the mean nearest taxon distance. This study provides fundamental information on FL and PA bacteria distribution and demonstrates how specific environmental factors affected these two bacterial fractions in canyon river reservoirs.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences, Guizhou Normal University, Guizhou, China
| | - Chen Chen
- School of Life Sciences, Guizhou Normal University, Guizhou, China
| | - Junyi Wang
- School of Life Sciences, Guizhou Normal University, Guizhou, China
| | - Tao Xu
- Guizhou School of Emergency Management, Guizhou Normal University, Guizhou, China
- *Correspondence: Tao Xu,
| |
Collapse
|
24
|
Urvoy M, Gourmelon M, Serghine J, Rabiller E, L'Helguen S, Labry C. Free-living and particle-attached bacterial community composition, assembly processes and determinants across spatiotemporal scales in a macrotidal temperate estuary. Sci Rep 2022; 12:13897. [PMID: 35974094 PMCID: PMC9381549 DOI: 10.1038/s41598-022-18274-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
Bacteria play an important role in biogeochemical cycles as they transform and remineralize organic matter. Particles are notable hotspots of activity, hosting particle-attached (PA) communities that can differ largely from their free-living (FL) counterparts. However, long-standing questions remain concerning bacterial community assembly processes and driving factors. This study investigated the FL and PA community compositions and determinants within the Aulne estuary and the Bay of Brest coastal waters (France). Our results revealed that the FL and PA community compositions greatly varied with salinity and season, explaining a larger part of the variance than the sampling fraction. Both the FL and PA communities were driven by deterministic assembly processes and impacted by similar factors. The FL-PA dissimilarity varied across space and time. It decreased in the estuarine stations compared to the freshwater and marine ends, and in summer. Interestingly, a significant proportion of the FL and PA communities' β-diversity and dissimilarity was explained by cohesion, measuring the degree of taxa co-occurrence. This suggested the importance of co-occurrence patterns in shaping the FL and PA community compositions. Our results shed light on the factors influencing estuarine bacterial communities and provide a first step toward understanding their biogeochemical impacts.
Collapse
Affiliation(s)
- Marion Urvoy
- Ifremer, DYNECO, 29280, Plouzané, France. .,CNRS, IRD, Ifremer, UMR 6539, Laboratoire des Sciences de l'Environnement Marin (LEMAR), Université de Bretagne Occidentale, 29280, Plouzané, France.
| | | | | | | | - Stéphane L'Helguen
- CNRS, IRD, Ifremer, UMR 6539, Laboratoire des Sciences de l'Environnement Marin (LEMAR), Université de Bretagne Occidentale, 29280, Plouzané, France
| | | |
Collapse
|
25
|
Martinez-Varela A, Casas G, Berrojalbiz N, Piña B, Dachs J, Vila-Costa M. Polycyclic Aromatic Hydrocarbon Degradation in the Sea-Surface Microlayer at Coastal Antarctica. Front Microbiol 2022; 13:907265. [PMID: 35910648 PMCID: PMC9329070 DOI: 10.3389/fmicb.2022.907265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
As much as 400 Tg of carbon from airborne semivolatile aromatic hydrocarbons is deposited to the oceans every year, the largest identified source of anthropogenic organic carbon to the ocean. Microbial degradation is a key sink of these pollutants in surface waters, but has received little attention in polar environments. We have challenged Antarctic microbial communities from the sea-surface microlayer (SML) and the subsurface layer (SSL) with polycyclic aromatic hydrocarbons (PAHs) at environmentally relevant concentrations. PAH degradation rates and the microbial responses at both taxonomical and functional levels were assessed. Evidence for faster removal rates was observed in the SML, with rates 2.6-fold higher than in the SSL. In the SML, the highest removal rates were observed for the more hydrophobic and particle-bound PAHs. After 24 h of PAHs exposure, particle-associated bacteria in the SML showed the highest number of significant changes in their composition. These included significant enrichments of several hydrocarbonoclastic bacteria, especially the fast-growing genera Pseudoalteromonas, which increased their relative abundances by eightfold. Simultaneous metatranscriptomic analysis showed that the free-living fraction of SML was the most active fraction, especially for members of the order Alteromonadales, which includes Pseudoalteromonas. Their key role in PAHs biodegradation in polar environments should be elucidated in further studies. This study highlights the relevant role of bacterial populations inhabiting the sea-surface microlayer, especially the particle-associated habitat, as relevant bioreactors for the removal of aromatic hydrocarbons in the oceans.
Collapse
Affiliation(s)
| | | | | | | | | | - Maria Vila-Costa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| |
Collapse
|
26
|
Selak L, Osterholz H, Stanković I, Hanžek N, Udovič MG, Dittmar T, Orlić S. Adaptations of microbial communities and dissolved organics to seasonal pressures in a mesotrophic coastal Mediterranean lake. Environ Microbiol 2022; 24:2282-2298. [PMID: 35106913 DOI: 10.1111/1462-2920.15924] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022]
Abstract
In lake ecosystems, changes in eukaryotic and prokaryotic microbes and the concentration and availability of dissolved organic matter (DOM) produced within or supplied to the system by allochthonous sources are components that characterize complex processes in the microbial loop. We address seasonal changes of microbial communities and DOM in the largest Croatian lake, Vrana. This shallow lake is connected to the Adriatic Sea and is impacted by agricultural activity. Microbial community and DOM structure were driven by several environmental stressors, including drought, seawater intrusion, and heavy precipitation events. Bacterial composition of different lifestyles (free-living and particle-associated) differed and only a part of the particle-associated bacteria correlated with microbial eukaryotes. Oscillations of cyanobacterial relative abundance along with chlorophyll a revealed a high primary production season characterized by increased levels of autochthonous DOM that promoted bacterial processes of organic matter degradation. From our results, we infer that in coastal freshwater lakes dependent on precipitation-evaporation balance, prolonged dry season coupled with heavy irrigation impact microbial communities at different trophic levels even if salinity increases only slightly and allochthonous DOM inputs decrease. These pressures, if applied more frequently or at higher concentrations, could have the potential to overturn the trophic state of the lake. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Helena Osterholz
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany.,Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Igor Stanković
- Hrvatske vode, Central Water Management Laboratory, Zagreb, Croatia
| | - Nikola Hanžek
- Hrvatske vode, Central Water Management Laboratory, Zagreb, Croatia
| | - Marija Gligora Udovič
- University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, Zagreb, Croatia
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Sandi Orlić
- Ruđer Bošković Institute, Zagreb, Croatia.,Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia
| |
Collapse
|
27
|
Plant Tolerance to Drought Stress in the Presence of Supporting Bacteria and Fungi: An Efficient Strategy in Horticulture. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7100390] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing temperature leads to intensive water evaporation, contributing to global warming and consequently leading to drought stress. These events are likely to trigger modifications in plant physiology and microbial functioning due to the altered availability of nutrients. Plants exposed to drought have developed different strategies to cope with stress by morphological, physiological, anatomical, and biochemical responses. First, visible changes influence plant biomass and consequently limit the yield of crops. The presented review was undertaken to discuss the impact of climate change with respect to drought stress and its impact on the performance of plants inoculated with plant growth-promoting microorganisms (PGPM). The main challenge for optimal performance of horticultural plants is the application of selected, beneficial microorganisms which actively support plants during drought stress. The most frequently described biochemical mechanisms for plant protection against drought by microorganisms are the production of phytohormones, antioxidants and xeroprotectants, and the induction of plant resistance. Rhizospheric or plant surface-colonizing (rhizoplane) and interior (endophytic) bacteria and fungi appear to be a suitable alternative for drought-stress management. Application of various biopreparations containing PGPM seems to provide hope for a relatively cheap, easy to apply and efficient way of alleviating drought stress in plants, with implications in productivity and food condition.
Collapse
|
28
|
Abstract
Scientists have invested considerable resources in the study of the microbiota of the human body. These microorganisms play pivotal roles in immunity and disease. Of which, probiotics are live beneficial microorganisms that keep your intestinal or lung microbiota healthy, and occupy a special role in combating the infections. Thus, it is critical to understand their contributions to these processes. Technology can facilitate advanced studies of the microbiota, including how it develops and its positive and negatives effects on the immune system. This paper investigates how several factors (e.g. birth delivery mode, metabolic activities, types of microorganisms, and immune system interactions) affect the microbiota, particularly in early life. The paper also discusses how gastrointestinal microbes in particular may be associated with certain disease processes, such as those related to schizophrenia, autism, and diabetes. Clinical studies show that certain probiotic strains, like Lactobacillus rhamnosus GG and Bifidobacterium animalis ssp. lactis help to prevent infection of pathogenic organisms (both bacterial and viral). This research may yield crucial contributions to disease prevention and public health. The dysbiosis may result in changes in the acquired immunity later on. The probiotic strains can prevent viral replication during SARS-CoV-2 or COVID-19 infection by reducing proinflammatory cytokines. There has been much interest into the intestinal flora as proposed by the diversity, volume, and proposed role in disease. Future research in the field of microbiome should be done in order to uncover their association to gut virome by noting both their influence on each other and relevant health and disease.
Collapse
|
29
|
Tang X, Xie G, Shao K, Tian W, Gao G, Qin B. Aquatic Bacterial Diversity, Community Composition and Assembly in the Semi-Arid Inner Mongolia Plateau: Combined Effects of Salinity and Nutrient Levels. Microorganisms 2021; 9:208. [PMID: 33498349 PMCID: PMC7909399 DOI: 10.3390/microorganisms9020208] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
Due to the recent decades of climate change and intensive human activities, endorheic lakes are threatened by both salinization and eutrophication. However, knowledge of the aquatic bacterial community's response to simultaneous increasing salinity and trophic status is still poor. To address this knowledge gap, we collected 40 surface water samples from five lakes and six rivers on the semi-arid Inner Mongolia Plateau, and investigated their bacterial communities using 16S rRNA gene-targeted amplicon sequencing. We found that bacterial species diversity significantly decreased from the mesotrophic freshwater river habitat to the eutrophic high-brackish lake habitat; salinity was more important than trophic status in explaining this decreased diversity. Salinity was the most important environmental factor in shaping community composition, while increased nitrogen loading was more important in structuring predicted functional composition. Within the lake habitats, the impact of environmental filtering on bacterial community assembly increased with the increasing salinity. The results suggested that the elevated salinity and nutrients have combined effects on the aquatic bacterial community, resulting in dramatic declines in species diversity, and promoted the importance of deterministic processes in community assembly. Our findings provide new insights into bacterial communities' responses to the intensified climate-driven and anthropogenic environmental changes in aquatic ecosystems.
Collapse
Affiliation(s)
- Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (G.X.); (K.S.); (W.T.); (G.G.); (B.Q.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijuan Xie
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (G.X.); (K.S.); (W.T.); (G.G.); (B.Q.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (G.X.); (K.S.); (W.T.); (G.G.); (B.Q.)
| | - Wei Tian
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (G.X.); (K.S.); (W.T.); (G.G.); (B.Q.)
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (G.X.); (K.S.); (W.T.); (G.G.); (B.Q.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (G.X.); (K.S.); (W.T.); (G.G.); (B.Q.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Xie G, Tang X, Gong Y, Shao K, Gao G. How do Planktonic Particle Collection Methods Affect Bacterial Diversity Estimates and Community Composition in Oligo-, Meso- and Eutrophic Lakes? Front Microbiol 2020; 11:593589. [PMID: 33343534 PMCID: PMC7746777 DOI: 10.3389/fmicb.2020.593589] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/17/2020] [Indexed: 12/26/2022] Open
Abstract
Particles are hotspots of bacterial growth and nutrient recycling in aquatic ecosystems. In the study of particle-attached (PA) and/or free-living (FL) microbial assemblages, the first step is to separate particles from their surrounding water columns. Widely used collection techniques are filtration using different pore size filters, and centrifugation; however, it is unclear how the bacterial diversity, bacterial community structure (BCS) and taxonomic composition of PA assemblages are affected by different particle collection methods. To address this knowledge gap, we collected planktonic particles from eutrophic Lake Taihu, mesotrophic Lake Tianmu, and oligotrophic Lake Fuxian in China, using filtration with five pore size of filters (20, 10, 8.0, 5.0, and 3.0 μm), and centrifugation. Bacterial communities were then analyzed using Illumina MiSeq sequencing of the 16S rRNA gene. We found that PA collection method affected BCS significantly in all lakes. Centrifugation yielded the highest species diversity and lowest mean percentage of photoautotrophic Cyanobacteria in Lake Taihu, but not in the other two lakes, thus highlighting the potential compatibility of this method in the study of PA assemblage in eutrophic lakes. The high bacterial diversity and low relative percentage of Cyanobacteria was in samples retained on 5.0 μm filters in all lakes. These results suggest that collecting PA samples in lakes using filters with 5.0 μm pore size is the preferred protocol, if species diversity and heterotrophic bacteria are the top research priorities, when comparing bacterial communities in different trophic lakes at the same time. The present study offers the possibility of collecting PA samples using unified methods in oligotrophic to eutrophic lakes.
Collapse
Affiliation(s)
- Guijuan Xie
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Gong
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Li N, Chen X, Zhao H, Tang J, Jiang G, Li Z, Li X, Chen S, Zou S, Dong K, Xu Q. Spatial distribution and functional profile of the bacterial community in response to eutrophication in the subtropical Beibu Gulf, China. MARINE POLLUTION BULLETIN 2020; 161:111742. [PMID: 33075697 DOI: 10.1016/j.marpolbul.2020.111742] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/25/2020] [Accepted: 10/04/2020] [Indexed: 05/25/2023]
Abstract
In this study, we investigated the specific bacterial distribution and the response of bacterial communities to shifts in environmental factors in the subtropical Beibu Gulf, southern China. The abundances of Actinobacteria, Bacilli, Planctomycetia, Thermoleophilia, Anaerolineae, and Synechococcophycideae were significantly higher in high eutrophic samples than in medium eutrophic and oligotrophic samples. Bacterial alpha-diversity was found greater in high eutrophication samples than in the other samples. Besides, Ponticaulis koreensis, Nautella italic, Anaerospora hongkongensis, Candidatus Aquiluna rubra, and Roseovarius pacificus were sensitive to trophic variation and thus could be used as eco-markers. In addition, the relative abundances of functional genes involving carbohydrate and amino acid metabolism were very high among the samples. We also found temperature, Chl-a, TDN and NO3- were the main environmental drivers of bacterial community structure. Overall, this study provides new insight into the composition of bacterial community and function response to gradients of eutrophication in Beibu Gulf.
Collapse
Affiliation(s)
- Nan Li
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Xing Chen
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China; College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, People's Republic of China
| | - Huaxian Zhao
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Jinli Tang
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Gonglingxia Jiang
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Zhuoting Li
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Xiaoli Li
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Si Chen
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, People's Republic of China
| | - Shuqi Zou
- Department of biological sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, South Korea
| | - Ke Dong
- Department of biological sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, South Korea
| | - Qiangsheng Xu
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China.
| |
Collapse
|
32
|
Gubelit YI, Grossart HP. New Methods, New Concepts: What Can Be Applied to Freshwater Periphyton? Front Microbiol 2020; 11:1275. [PMID: 32670226 PMCID: PMC7328189 DOI: 10.3389/fmicb.2020.01275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
Microbial interactions play an essential role in aquatic ecosystems and are of the great interest for both marine and freshwater ecologists. Recent development of new technologies and methods allowed to reveal many functional mechanisms and create new concepts. Yet, many fundamental aspects of microbial interactions have been almost exclusively studied for marine pelagic and benthic ecosystems. These studies resulted in a formulation of the Black Queen Hypothesis, a development of the phycosphere concept for pelagic communities, and a realization of microbial communication as a key mechanism for microbial interactions. In freshwater ecosystems, especially for periphyton communities, studies focus mainly on physiology, biodiversity, biological indication, and assessment, but the many aspects of microbial interactions are neglected to a large extent. Since periphyton plays a great role for aquatic nutrient cycling, provides the basis for water purification, and can be regarded as a hotspot of microbial biodiversity, we highlight that more in-depth studies on microbial interactions in periphyton are needed to improve our understanding on functioning of freshwater ecosystems. In this paper we first present an overview on recent concepts (e.g., the "Black Queen Hypothesis") derived from state-of-the-art OMICS methods including metagenomics, metatranscriptomics, and metabolomics. We then point to the avenues how these methods can be applied for future studies on biodiversity and the ecological role of freshwater periphyton, a yet largely neglected component of many freshwater ecosystems.
Collapse
Affiliation(s)
- Yulia I. Gubelit
- Laboratory of Freshwater Hydrobiology, Zoological Institute, Russian Academy of Science, Saint Petersburg, Russia
| | - Hans-Peter Grossart
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Experimental Limnology, Leibniz-Institute for Freshwater Ecology and Inland Fisheries, Stechlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|