1
|
Yoon G, Puentes R, Tran J, Multani A, Cobo ER. The role of cathelicidins in neutrophil biology. J Leukoc Biol 2024; 116:689-705. [PMID: 38758953 DOI: 10.1093/jleuko/qiae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Despite their relatively short lifespan, neutrophils are tasked with counteracting pathogens through various functions, including phagocytosis, production of reactive oxygen species, neutrophil extracellular traps (NETs), and host defense peptides. Regarding the latter, small cationic cathelicidins present a conundrum in neutrophil function. Although primarily recognized as microbicides with an ability to provoke pores in microbial cell walls, the ability of cathelicidin to modulate key neutrophil functions is also of great importance, including the release of chemoattractants, cytokines, and reactive oxygen species, plus prolonging neutrophil lifespan. Cumulative evidence indicates a less recognized role of cathelicidin as an "immunomodulator"; however, this term is not always explicit, and its relevance in neutrophil responses during infection and inflammation is seldom discussed. This review compiles and discusses studies of how neutrophils use cathelicidin to respond to infections, while also acknowledging immunomodulatory aspects of cathelicidin through potential crosstalk between sources of the peptide.
Collapse
Affiliation(s)
- Grace Yoon
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Rodrigo Puentes
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jacquelyn Tran
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Anmol Multani
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Eduardo R Cobo
- Faculty of Veterinary Medicine, University of Calgary, HSC 1871, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
2
|
Yamashita S, Okamoto M, Mendonca M, Fujiwara N, Kitamura E, Chang CSS, Brueckner S, Shindo S, Kuriki N, Cooley MA, Gill Dhillon N, Kawai T, Bartlett JD, Everett ET, Suzuki M. Fluoride Alters Gene Expression via Histone H3K27 Acetylation in Ameloblast-like LS8 Cells. Int J Mol Sci 2024; 25:9600. [PMID: 39273544 PMCID: PMC11395493 DOI: 10.3390/ijms25179600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Excessive fluoride ingestion during tooth development can cause dental fluorosis. Previously, we reported that fluoride activates histone acetyltransferase (HAT) to acetylate p53, promoting fluoride toxicity in mouse ameloblast-like LS8 cells. However, the roles of HAT and histone acetylation status in fluoride-mediated gene expression remain unidentified. Here, we demonstrate that fluoride-mediated histone modification causes gene expression alterations in LS8 cells. LS8 cells were treated with or without fluoride followed by ChIP-Seq analysis of H3K27ac. Genes were identified by differential H3K27ac peaks within ±1 kb from transcription start sites. The levels of mRNA of identified genes were assessed using rea-time PCR (qPCR). Fluoride increased H3K27ac peaks associated with Bax, p21, and Mdm2 genes and upregulated their mRNA levels. Fluoride decreased H3K27ac peaks and p53, Bad, and Bcl2 had suppressed transcription. HAT inhibitors (Anacardic acid or MG149) suppressed fluoride-induced mRNA of p21 and Mdm2, while fluoride and the histone deacetylase (HDAC) inhibitor sodium butyrate increased Bad and Bcl2 expression above that of fluoride treatment alone. To our knowledge, this is the first study that demonstrates epigenetic regulation via fluoride treatment via H3 acetylation. Further investigation is required to elucidate epigenetic mechanisms of fluoride toxicity in enamel development.
Collapse
Affiliation(s)
- Shohei Yamashita
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (S.Y.); (M.O.); (M.M.); (S.B.); (S.S.); (N.K.); (T.K.)
| | - Motoki Okamoto
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (S.Y.); (M.O.); (M.M.); (S.B.); (S.S.); (N.K.); (T.K.)
| | - Melanie Mendonca
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (S.Y.); (M.O.); (M.M.); (S.B.); (S.S.); (N.K.); (T.K.)
- Biology I Halmos College of Arts and Sciences, Behavioral Neuroscience I College of Psychology, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - Natsumi Fujiwara
- Department of Oral Health Care Management, Graduate School of Biomedical Sciences, Tokushima University, Kuramoto, Tokushima 770-8504, Japan;
| | - Eiko Kitamura
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA; (E.K.)
| | | | - Susanne Brueckner
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (S.Y.); (M.O.); (M.M.); (S.B.); (S.S.); (N.K.); (T.K.)
| | - Satoru Shindo
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (S.Y.); (M.O.); (M.M.); (S.B.); (S.S.); (N.K.); (T.K.)
| | - Nanako Kuriki
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (S.Y.); (M.O.); (M.M.); (S.B.); (S.S.); (N.K.); (T.K.)
| | - Marion A. Cooley
- Department of Oral Biology and Diagnostic Sciences, The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Navi Gill Dhillon
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (S.Y.); (M.O.); (M.M.); (S.B.); (S.S.); (N.K.); (T.K.)
| | - John D. Bartlett
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH 43210, USA;
| | - Eric T. Everett
- Department of Biomedical Sciences, Adams School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Maiko Suzuki
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA; (S.Y.); (M.O.); (M.M.); (S.B.); (S.S.); (N.K.); (T.K.)
| |
Collapse
|
3
|
Whitmore M, Tobin I, Burkardt A, Zhang G. Nutritional Modulation of Host Defense Peptide Synthesis: A Novel Host-Directed Antimicrobial Therapeutic Strategy? Adv Nutr 2024; 15:100277. [PMID: 39053604 PMCID: PMC11381887 DOI: 10.1016/j.advnut.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
The escalating threat of antimicrobial resistance underscores the imperative for innovative therapeutic strategies. Host defense peptides (HDPs), integral components of innate immunity, exhibit profound antimicrobial and immunomodulatory properties. Various dietary compounds, such as short-chain fatty acids, vitamins, minerals, sugars, amino acids, phytochemicals, bile acids, probiotics, and prebiotics have been identified to enhance the synthesis of endogenous HDPs without provoking inflammatory response or compromising barrier integrity. Additionally, different classes of these compounds synergize in augmenting HDP synthesis and disease resistance. Moreover, dietary supplementation of several HDP-inducing compounds or their combinations have demonstrated robust protection in rodents, rabbits, pigs, cattle, and chickens from experimental infections. However, the efficacy of these compounds in inducing HDP synthesis varies considerably among distinct compounds. Additionally, the regulation of HDP genes occurs in a gene-specific, cell type-specific, and species-specific manner. In this comprehensive review, we systematically summarized the modulation of HDP synthesis and the mechanism of action attributed to each major class of dietary compounds, including their synergistic combinations, across a spectrum of animal species including humans. We argue that the ability to enhance innate immunity and barrier function without triggering inflammation or microbial resistance positions the nutritional modulation of endogenous HDP synthesis as a promising host-directed approach for mitigating infectious diseases and antimicrobial resistance. These HDP-inducing compounds, particularly in combinations, harbor substantial clinical potential for further exploration in antimicrobial therapies for both human and other animals.
Collapse
Affiliation(s)
- Melanie Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Amanda Burkardt
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
4
|
Kumar P, Neelamegam K, Ramasamy C, Samivel R, Xia H, Kapusta DR, Pandey KN. Epigenetic mechanisms differentially regulate blood pressure and renal dysfunction in male and female Npr1 haplotype mice. FASEB J 2024; 38:e23858. [PMID: 39109516 PMCID: PMC11309581 DOI: 10.1096/fj.202400714r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
We determined the epigenetic mechanisms regulating mean arterial pressure (MAP) and renal dysfunction in guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) gene-targeted mice. The Npr1 (encoding NPRA) gene-targeted mice were treated with class 1 specific histone deacetylase inhibitor (HDACi) mocetinostat (MGCD) to determine the epigenetic changes in a sex-specific manner. Adult male and female Npr1 haplotype (1-copy; Npr1+/-), wild-type (2-copy; Npr1+/+), and gene-duplicated heterozygous (3-copy; Npr1++/+) mice were intraperitoneally injected with MGCD (2 mg/kg) for 14 days. BP, renal function, histopathology, and epigenetic changes were measured. One-copy male mice showed significantly increased MAP, renal dysfunction, and fibrosis than 2-copy and 3-copy mice. Furthermore, HDAC1/2, collagen1alpha-2 (Col1α-2), and alpha smooth muscle actin (α-SMA) were significantly increased in 1-copy mice compared with 2-copy controls. The expression of antifibrotic microRNA-133a was attenuated in 1-copy mice but to a greater extent in males than females. NF-κB was localized at significantly lower levels in cytoplasm than in the nucleus with stronger DNA binding activity in 1-copy mice. MGCD significantly lowered BP, improved creatinine clearance, and repaired renal histopathology. The inhibition of class I HDACs led to a sex-dependent distinctive stimulation of acetylated positive histone marks and inhibition of methylated repressive histone marks in Npr1 1-copy mice; however, it epigenetically lowered MAP, repaired renal fibrosis, and proteinuria and suppressed NF-kB differentially in males versus females. Our results suggest a role for epigenetic targets affecting hypertension and renal dysfunction in a sex-specific manner.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of PhysiologySchool of Medicine, Tulane University Health Sciences CenterNew OrleansLouisianaUSA
| | - Kandasamy Neelamegam
- Department of PhysiologySchool of Medicine, Tulane University Health Sciences CenterNew OrleansLouisianaUSA
| | - Chandramohan Ramasamy
- Department of PhysiologySchool of Medicine, Tulane University Health Sciences CenterNew OrleansLouisianaUSA
| | - Ramachandran Samivel
- Department of PhysiologySchool of Medicine, Tulane University Health Sciences CenterNew OrleansLouisianaUSA
| | - Huijing Xia
- Department of PharmacologyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Daniel R. Kapusta
- Department of PharmacologyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Kailash N. Pandey
- Department of PhysiologySchool of Medicine, Tulane University Health Sciences CenterNew OrleansLouisianaUSA
| |
Collapse
|
5
|
Liu P, Luo Y, Zhang M. Intestinal microbiota and tuberculosis: Insights from Mendelian randomization. Medicine (Baltimore) 2024; 103:e38762. [PMID: 38968531 PMCID: PMC11250452 DOI: 10.1097/md.0000000000038762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024] Open
Abstract
Respiratory tuberculosis (RTB), a global health concern affecting millions of people, has been observationally linked to the gut microbiota, but the depth and nature of this association remain elusive. Despite these findings, the underlying causal relationship is still uncertain. Consequently, we used the Mendelian randomization (MR) method to further investigate this potential causal connection. We sourced data on the gut microbiota from a comprehensive genome-wide association study (GWAS) conducted by the MiBioGen Consortium (7686 cases, and 115,893 controls). For RTB, we procured 2 distinct datasets, labeled the Fingen R9 TBC RESP and Fingen R9 AB1 RESP, from the Finnish Genetic Consortium. To decipher the potential relationship between the gut microbiota and RTB, we employed MR on both datasets. Our primary mode of analysis was the inverse variance weighting (IVW) method. To ensure robustness and mitigate potential confounders, we meticulously evaluated the heterogeneity and potential pleiotropy of the outcomes. In the TBC RESP (RTB1) dataset related to the gut microbiota, the IVW methodology revealed 7 microbial taxa that were significantly associated with RTB. In a parallel vein, the AB1 RESP (RTB2) dataset highlighted 4 microbial taxa with notable links. Notably, Lachnospiraceae UCG010 was consistently identified across both datasets. This correlation was especially evident in the data segments designated Fingen R9 TBC RESP (OR = 1.799, 95% CI = 1.243-2.604) and Finngen R9 AB1 RESP (OR = 2.131, 95% CI = 1.088-4.172). Our study identified a causal relationship between particular gut microbiota and RTB at the level of prediction based on genetics. This discovery sheds new light on the mechanisms of RTB development, which are mediated by the gut microbiota.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yaomei Luo
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Minghua Zhang
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
6
|
Breen P, Zimbric M, Caverly LJ. Itaconic acid inhibits nontuberculous mycobacterial growth in pH dependent manner while 4-octyl-itaconic acid enhances THP-1 clearance of nontuberculous mycobacteria in vitro. PLoS One 2024; 19:e0303516. [PMID: 38728330 PMCID: PMC11086914 DOI: 10.1371/journal.pone.0303516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Increasingly prevalent, nontuberculous mycobacteria (NTM) infections affect approximately 20% of people with cystic fibrosis (CF). Previous studies of CF sputum identified lower levels of the host metabolite itaconate in those infected with NTM. Itaconate can inhibit the growth of M. tuberculosis (MTB) in vitro via the inhibition of the glyoxylate cycle enzyme (ICL), but its impact on NTM is unclear. To test itaconic acid's (IA) effect on NTM growth, laboratory and CF clinical strains of Mycobacterium abscessus and Mycobacterium avium were cultured in 7H9 minimal media supplemented with 1-10 mM of IA and short-chain fatty acids (SCFA). M. avium and M. abscessus grew when supplemented with SCFAs, whereas the addition of IA (≥ 10 mM) completely inhibited NTM growth. NTM supplemented with acetate or propionate and 5 mM IA displayed slower growth than NTM cultured with SCFA and ≤ 1 mM of IA. However, IA's inhibition of NTM was pH dependent; as similar and higher quantities (100 mM) of pH adjusted IA (pH 7) did not inhibit growth in vitro, while in an acidic minimal media (pH 6.1), 1 to 5 mM of non-pH adjusted IA inhibited growth. None of the examined isolates displayed the ability to utilize IA as a carbon source, and IA added to M. abscessus isocitrate lyase (ICL) decreased enzymatic activity. Lastly, the addition of cell-permeable 4-octyl itaconate (4-OI) to THP-1 cells enhanced NTM clearance, demonstrating a potential role for IA/itaconate in host defense against NTM infections.
Collapse
Affiliation(s)
- Paul Breen
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Madsen Zimbric
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Lindsay J. Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| |
Collapse
|
7
|
Chang KC, Nagarajan N, Gan YH. Short-chain fatty acids of various lengths differentially inhibit Klebsiella pneumoniae and Enterobacteriaceae species. mSphere 2024; 9:e0078123. [PMID: 38305176 PMCID: PMC10900885 DOI: 10.1128/msphere.00781-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
The gut microbiota is inextricably linked to human health and disease. It can confer colonization resistance against invading pathogens either through niche occupation and nutrient competition or via its secreted metabolites. Short-chain fatty acids (SCFA) are the primary metabolites in the gut as a result of dietary fiber fermentation by the gut microbiota. In this work, we demonstrate that the interaction of single-species gut commensals on solid media is insufficient for pathogen inhibition, but supernatants from monocultures of these commensal bacteria enriched in acetate confer inhibition against anaerobic growth of the enteric pathogen Klebsiella pneumoniae. The three primary SCFAs (acetate, propionate, and butyrate) strongly inhibit the intestinal commensal Escherichia coli Nissle as well as a panel of enteric pathogens besides K. pneumoniae at physiological pH of the cecum and ascending colon. This inhibition was significantly milder on anaerobic gut commensals Bacteroides thetaiotaomicron and Bifidobacterium adolescentis previously demonstrated to be associated with microbiota recovery after antibiotic-induced dysbiosis. We describe a general suppression of bacterial membrane potential by these SCFAs at physiological cecum and ascending colonic pH. Furthermore, the strength of bacterial inhibition increases with increasing alkyl chain length. Overall, the insights gained in this study shed light on the potential therapeutic use of SCFAs for conferring colonization resistance against invading pathogens in a dysbiotic gut.IMPORTANCERising antimicrobial resistance has made treatment of bacterial infections increasingly difficult. According to the World Health Organization, it has become a burgeoning threat to hospital and public health systems worldwide. This threat is largely attributed to the global rise of carbapenem-resistant Enterobacteriaceae in recent years, with common hospital-acquired pathogens growing increasingly resistant to last-line antibiotics. Antibiotics disrupt the homeostatic balance of the gut microbiota, resulting in the loss of colonization resistance against enteric pathogens. This work describes the ability of short-chain fatty acids (SCFAs) produced by gut microbiota to be effective against a wide panel of enteric pathogens without major impact on common gut commensal species. We also demonstrate a previously undescribed link between alkyl chain length and antibacterial effects of SCFAs. SCFAs, thus, hold promise as an alternative therapeutic option leveraging on the antimicrobial activity of these endogenously produced gut metabolites without disrupting gut microbiota homeostasis.
Collapse
Affiliation(s)
- Kai Chirng Chang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Niranjan Nagarajan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Rodríguez-Carlos A, Jacobo-Delgado Y, Santos-Mena AO, García-Hernández MH, De Jesus-Gonzalez LA, Lara-Ramirez EE, Rivas-Santiago B. Histone deacetylase (HDAC) inhibitors- based drugs are effective to control Mycobacterium tuberculosis infection and promote the sensibility for rifampicin in MDR strain. Mem Inst Oswaldo Cruz 2023; 118:e230143. [PMID: 38126492 PMCID: PMC10740574 DOI: 10.1590/0074-02760230143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Tuberculosis (TB) is a major public health problem, which has been aggravated by the alarming growth of drug-resistant tuberculosis. Therefore, the development of a safer and more effective treatment is needed. OBJECTIVES The aim of this work was repositioning and evaluate histone deacetylases (HDAC) inhibitors- based drugs with potential antimycobacterial activity. METHODS Using an in silico pharmacological repositioning strategy, three molecules that bind to the catalytic site of histone deacetylase were selected. Pneumocytes type II and macrophages were infected with Mycobacterium tuberculosis and treated with pre-selected HDAC inhibitors (HDACi). Subsequently, the ability of each of these molecules to directly promote the elimination of M. tuberculosis was evaluated by colony-forming unit (CFU)/mL. We assessed the expression of antimicrobial peptides and respiratory burst using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). FINDINGS Aminoacetanilide (ACE), N-Boc-1,2-phenylenediamine (N-BOC), 1,3-Diphenylurea (DFU), reduce bacillary loads in macrophages and increase the production of β-defensin-2, LL-37, superoxide dismutase (SOD) 3 and inducible nitric oxide synthase (iNOS). While only the use of ACE in type II pneumocytes decreases the bacterial load through increasing LL-37 expression. Furthermore, the use of ACE and rifampicin inhibited the survival of intracellular multi-drug resistance M. tuberculosis. MAIN CONCLUSIONS Our data support the usefulness of in silico approaches for drug repositioning to provide a potential adjunctive therapy for TB.
Collapse
Affiliation(s)
- Adrián Rodríguez-Carlos
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | - Yolanda Jacobo-Delgado
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| | | | | | | | - Edgar E Lara-Ramirez
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Laboratorio de Biotecnología Farmacéutica, Reynosa, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Zacatecas, Mexico
| |
Collapse
|
9
|
Liu T, Sun Z, Yang Z, Qiao X. Microbiota-derived short-chain fatty acids and modulation of host-derived peptides formation: Focused on host defense peptides. Biomed Pharmacother 2023; 162:114586. [PMID: 36989711 DOI: 10.1016/j.biopha.2023.114586] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The byproducts of bacterial fermentation known as short-chain fatty acids (SCFAs) are chemically comprised of a carboxylic acid component and a short hydrocarbon chain. Recent investigations have demonstrated that SCFAs can affect intestinal immunity by inducing endogenous host defense peptides (HDPs) and their beneficial effects on barrier integrity, gut health, energy supply, and inflammation. HDPs, which include defensins, cathelicidins, and C-type lectins, perform a significant function in innate immunity in gastrointestinal mucosal membranes. SCFAs have been demonstrated to stimulate HDP synthesis by intestinal epithelial cells via interactions with G protein-coupled receptor 43 (GPR43), activation of the Jun N-terminal kinase (JNK) and Mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways, and the cell growth pathways. Furthermore, SCFA butyrate has been demonstrated to enhance the number of HDPs released from macrophages. SCFAs promote monocyte-to-macrophage development and stimulate HDP synthesis in macrophages by inhibiting histone deacetylase (HDAC). Understanding the etiology of many common disorders might be facilitated by studies into the function of microbial metabolites, such as SCFAs, in the molecular regulatory processes of immune responses (e.g., HDP production). This review will focus on the current knowledge of the role and mechanism of microbiota-derived SCFAs in influencing the synthesis of host-derived peptides, particularly HDPs.
Collapse
|
10
|
Shannon AH, Adelman SA, Hisey EA, Potnis SS, Rozo V, Yung MW, Li JY, Murphy CJ, Thomasy SM, Leonard BC. Antimicrobial Peptide Expression at the Ocular Surface and Their Therapeutic Use in the Treatment of Microbial Keratitis. Front Microbiol 2022; 13:857735. [PMID: 35722307 PMCID: PMC9201425 DOI: 10.3389/fmicb.2022.857735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
Microbial keratitis is a common cause of ocular pain and visual impairment worldwide. The ocular surface has a relatively paucicellular microbial community, mostly found in the conjunctiva, while the cornea would be considered relatively sterile. However, in patients with microbial keratitis, the cornea can be infected with multiple pathogens including Staphylococcus aureus, Pseudomonas aeruginosa, and Fusarium sp. Treatment with topical antimicrobials serves as the standard of care for microbial keratitis, however, due to high rates of pathogen resistance to current antimicrobial medications, alternative therapeutic strategies must be developed. Multiple studies have characterized the expression and activity of antimicrobial peptides (AMPs), endogenous peptides with key antimicrobial and wound healing properties, on the ocular surface. Recent studies and clinical trials provide promise for the use of AMPs as therapeutic agents. This article reviews the repertoire of AMPs expressed at the ocular surface, how expression of these AMPs can be modulated, and the potential for harnessing the AMPs as potential therapeutics for patients with microbial keratitis.
Collapse
Affiliation(s)
- Allison H. Shannon
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sara A. Adelman
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Erin A. Hisey
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sanskruti S. Potnis
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Vanessa Rozo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Madeline W. Yung
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Jennifer Y. Li
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Cathelicidin hCAP18/LL-37 promotes cell proliferation and suppresses antitumor activity of 1,25(OH) 2D 3 in hepatocellular carcinoma. Cell Death Dis 2022; 8:27. [PMID: 35039485 PMCID: PMC8763942 DOI: 10.1038/s41420-022-00816-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/06/2021] [Accepted: 12/21/2021] [Indexed: 01/15/2023]
Abstract
Cathelicidin hCAP18/LL-37 can resist infection from various pathogens and is an essential component of the human immune system. Accumulating evidence has indicated that hCAP18/LL-37 plays a tissue-specific role in human cancer. However, its function in hepatocellular carcinoma (HCC) is poorly understood. The present study investigated the effects of hCAP18/LL-37 on HCC in vitro and in vivo. Results showed that hCAP18/LL-37 overexpression significantly promoted the proliferation of cultured HCC cells and the growth of PLC/PRF-5 xenograft tumor. Transcriptome sequencing analyses revealed that the PI3K/Akt pathway was the most significant upregulated pathway induced by LL-37 overexpression. Further analysis demonstrated that hCAP18/LL-37 stimulated the phosphorylation of EGFR/HER2 and activated the PI3K/Akt pathway in HCC cells. Furthermore, stronger EGFR/HER2/Akt signals were observed in the PLC/PRF-5LL-37 xenograft tumor. Interestingly, even though the expression of hCAP18/LL-37 was significantly downregulated in HCC cells and tumors, 1,25(OH)2D3 treatment significantly upregulated the hCAP18/LL-37 level both in HCC cells and xenograft tumors. Moreover, 1,25(OH)2D3 together with si-LL-37 significantly enhanced the antitumor activity of 1,25(OH)2D3 in the PLC/PRF-5 xenograft tumor. Collectively, these data suggest that hCAP18/LL-37 promotes HCC cells proliferation through stimulation of the EGFR/HER2/Akt signals and appears to suppress the antitumor activity of 1,25(OH)2D3 in HCC xenograft tumor. This implies that hCAP18/LL-37 may be an important target when aiming to improve the antitumor activity of 1,25(OH)2D3 supplementation therapy in HCC.
Collapse
|
12
|
Wang H, Hussain T, Yao J, Li J, Sabir N, Liao Y, Liang Z, Wang Y, Liu Y, Zhao D, Zhou X. Koumiss promotes Mycobacterium bovis infection by disturbing intestinal flora and inhibiting endoplasmic reticulum stress. FASEB J 2021; 35:e21777. [PMID: 34403519 DOI: 10.1096/fj.202002485rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022]
Abstract
Mycobacterium bovis is the causative agent of bovine tuberculosis and also responsible for serious threat to public health. Koumiss is a fermented mare's milk product, used as traditional drink. Here, we explored the effect of koumiss on gut microbiota and the host immune response against M bovis infection. Therefore, mice were treated with koumiss and fresh mare milk for 14 days before M bovis infection and continue for 5 weeks after infection. The results showed a clear change in the intestinal flora of mice treated with koumiss, and the lungs of mice treated with koumiss showed severe edema, inflammatory infiltration, and pulmonary nodules in M bovis-infected mice. Notably, we found that the content of short-chain fatty acids was significantly lower in the koumiss-treated group compared with the control group. However, the expression of endoplasmic reticulum stress and apoptosis-related proteins in the lungs of koumiss-treated mice were significantly decreased. Collectively, these findings suggest that koumiss treatment disturb the intestinal flora of, which is associated with disease severity and the possible mechanism that induces lungs pathology. Our current findings can be exploited further to establish the "gut-lung" axis which might be a novel strategy for the control of tuberculosis.
Collapse
Affiliation(s)
- Haoran Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tariq Hussain
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Jiao Yao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Naveed Sabir
- Department of Pathobiology, Faculty of Veterinary and Animal Sciences, University of Poonch, Rawalakot, Pakistan
| | - Yi Liao
- Animal Husbandry and Veterinary College, Southwest University for Nationalities, Cheng Du, China
| | - Zhengmin Liang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuanzhi Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yiduo Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Park JE, Kim HJ, Choi SH, Lee YH, Seo H, Yoo SS, Lee SY, Cha SI, Park JY, Kim CH, Lee J. The role of CECR1 in the immune-modulatory effects of butyrate and correlation between ADA2 and M1/M2 chemokines in tuberculous pleural effusion. Int Immunopharmacol 2021; 96:107635. [PMID: 33857806 DOI: 10.1016/j.intimp.2021.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The Cat Eye Syndrome Critical Region, Candidate 1 (CECR1) gene encoding adenosine deaminase 2 (ADA2) is mainly expressed by macrophages. Given the immunomodulatory functions of butyrate, we examined the effect of butyrate on CECR1 expression of macrophages and the relationship between ADA2 and M1/M2 macrophages-associated chemokines in pleural fluid of patients with tuberculous pleural effusion (TPE). METHODS Expression of CECR1 was evaluated in lipopolysaccharide (LPS)-stimulated and/or butyrate treated THP-1 cells. The role of CECR1 on butyrate-induced immune response was evaluated using siRNA transfected THP-1 cells. M1/M2 chemokines and ADA2 were measured in pleural fluid of patients with TPE. RESULTS Butyrate promoted the expression of CECR1 and M2-macrophage markers in THP-1 cells. CECR1 was found to be involved in regulating M2 polarization in THP-1 cells treated with LPS and butyrate. Among chemokines measured in pleural fluid of patients with TPE, there was a significant negative correlation between CCL21 and ADA2 levels and between CCL25 and ADA2 levels, and a significant positive correlation between TGF-β and ADA2 levels and between IL-22 and ADA2 levels. CONCLUSIONS CECR1 played an important role in the butyrate-modulated inflammatory responses in LPS-stimulated THP-1 cells. ADA2 may exert anti-inflammatory effects during the process of pleural inflammation in patients with TPE.
Collapse
Affiliation(s)
- Ji Eun Park
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Ha-Jeong Kim
- Department of Physiology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Tumor Heterogeneity and Network (THEN) Research Center, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Sun Ha Choi
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Yong Hoon Lee
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Hyewon Seo
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Seung Ick Cha
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Jae Yong Park
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Chang Ho Kim
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea.
| | - Jaehee Lee
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
14
|
Cutaneous Mycobacterial Infections in Returning Travelers. CURRENT TROPICAL MEDICINE REPORTS 2021. [DOI: 10.1007/s40475-021-00228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Campo M, Heater S, Peterson GJ, Simmons JD, Skerrett SJ, Mayanja-Kizza H, Stein CM, Boom WH, Hawn TR. HDAC3 inhibitor RGFP966 controls bacterial growth and modulates macrophage signaling during Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2021; 127:102062. [PMID: 33639591 DOI: 10.1016/j.tube.2021.102062] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
RATIONALE Host-directed therapeutics for Mycobacterium tuberculosis (Mtb) offer potential strategies for combatting antibiotic resistance and for killing non-replicating bacilli. Phenylbutyrate, a partially selective histone-deacetylase (HDAC) inhibitor, was previously shown to control Mtb growth and alter macrophage inflammatory pathways at 2-4 mM concentrations. OBJECTIVE To identify a more potent and selective HDAC inhibitor that modulates macrophage responses to mycobacteria and has direct antibacterial effects against Mtb. METHODS We used cellular approaches to characterize the role of pharmacologic inhibition of HDAC3 on Mtb growth and Mtb-induced peripheral and alveolar macrophage immune functions. MEASUREMENTS AND MAIN RESULTS RGFP966, an HDAC3 inhibitor, controlled Mtb, BCG and M. avium growth directly in broth culture and in human peripheral blood monocyte-derived and alveolar macrophages with an MIC50 of approximately 5-10 μM. In contrast, RGFP966 did not inhibit growth of several other intracellular and extracellular bacteria. We also found that RGFP966 modulated macrophage pro-inflammatory cytokine secretion in response to Mtb infection with decreased IL6 and TNF secretion. CONCLUSIONS We identified a potent and selective small molecule inhibitor of HDAC3 with direct antimicrobial activity against Mtb and modulation of macrophage signaling pathways.
Collapse
Affiliation(s)
- Monica Campo
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Sarah Heater
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | | | - Jason D Simmons
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Shawn J Skerrett
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Harriet Mayanja-Kizza
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Catherine M Stein
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, School of Medicine, Makerere University and Mulago Hospital, Kampala, Uganda
| | - W Henry Boom
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Thomas R Hawn
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
16
|
COVID-19: Proposing a Ketone-Based Metabolic Therapy as a Treatment to Blunt the Cytokine Storm. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6401341. [PMID: 33014275 PMCID: PMC7519203 DOI: 10.1155/2020/6401341] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Human SARS-CoV-2 infection is characterized by a high mortality rate due to some patients developing a large innate immune response associated with a cytokine storm and acute respiratory distress syndrome (ARDS). This is characterized at the molecular level by decreased energy metabolism, altered redox state, oxidative damage, and cell death. Therapies that increase levels of (R)-beta-hydroxybutyrate (R-BHB), such as the ketogenic diet or consuming exogenous ketones, should restore altered energy metabolism and redox state. R-BHB activates anti-inflammatory GPR109A signaling and inhibits the NLRP3 inflammasome and histone deacetylases, while a ketogenic diet has been shown to protect mice from influenza virus infection through a protective γδ T cell response and by increasing electron transport chain gene expression to restore energy metabolism. During a virus-induced cytokine storm, metabolic flexibility is compromised due to increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that damage, downregulate, or inactivate many enzymes of central metabolism including the pyruvate dehydrogenase complex (PDC). This leads to an energy and redox crisis that decreases B and T cell proliferation and results in increased cytokine production and cell death. It is hypothesized that a moderately high-fat diet together with exogenous ketone supplementation at the first signs of respiratory distress will increase mitochondrial metabolism by bypassing the block at PDC. R-BHB-mediated restoration of nucleotide coenzyme ratios and redox state should decrease ROS and RNS to blunt the innate immune response and the associated cytokine storm, allowing the proliferation of cells responsible for adaptive immunity. Limitations of the proposed therapy include the following: it is unknown if human immune and lung cell functions are enhanced by ketosis, the risk of ketoacidosis must be assessed prior to initiating treatment, and permissive dietary fat and carbohydrate levels for exogenous ketones to boost immune function are not yet established. The third limitation could be addressed by studies with influenza-infected mice. A clinical study is warranted where COVID-19 patients consume a permissive diet combined with ketone ester to raise blood ketone levels to 1 to 2 mM with measured outcomes of symptom severity, length of infection, and case fatality rate.
Collapse
|