1
|
Dumler JS, Walker DH. Genomics Should Inform Appropriate Analysis of Taxonomy and Pathogenesis of Rickettsia. J Infect Dis 2025; 231:827-829. [PMID: 39432829 DOI: 10.1093/infdis/jiae513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Affiliation(s)
- J Stephen Dumler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston
| |
Collapse
|
2
|
Hanson DK, Buhrmaster JC, Wyllie RM, Tira GA, Faries KM, Holten D, Kirmaier C, Laible PD. Inter-cofactor protein remodeling rewires short-circuited transmembrane electron transfer. Commun Chem 2025; 8:110. [PMID: 40204852 PMCID: PMC11982316 DOI: 10.1038/s42004-025-01460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/18/2025] [Indexed: 04/11/2025] Open
Abstract
Intraprotein electron transfer (ET) requires explicit local control of the environment of cofactors to influence their intermolecular distances, relative orientations, and redox properties. Efficient, longer-range ET often utilizes molecular orbitals of aromatic residues present in the intervening space. Here, revitalization of a vestigial ET pathway in the bacterial photosynthetic reaction center is achieved by scanning with tryptophans to uncover markedly improved routes of electron conduction in a key stabilizing step spanning 15 Å between tetrapyrrole and quinone cofactors. This ET event is maximally enhanced by pairing one or more tryptophans with a threonine to influence quinone binding and/or redox potential. Synergistic effects of these substitutions increase the yield of that ET step to ~95%. Joining these substitutions with mutant residues that improve initial ET steps dramatically enhances transmembrane charge separation via this redesigned version of a pathway that is quantitatively inactive in the native protein-cofactor complex.
Collapse
Affiliation(s)
- Deborah K Hanson
- Biosciences Division, Argonne National Laboratory, Lemont, IL, USA
| | | | - Ryan M Wyllie
- Biosciences Division, Argonne National Laboratory, Lemont, IL, USA
| | - Gregory A Tira
- Biosciences Division, Argonne National Laboratory, Lemont, IL, USA
| | - Kaitlyn M Faries
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO, USA
| | | | - Philip D Laible
- Biosciences Division, Argonne National Laboratory, Lemont, IL, USA.
| |
Collapse
|
3
|
Tran KN, Faries KM, Magdaong NCM, Mathews II, Weaver JB, Kirsh JM, Holten D, Kirmaier C, Boxer SG. Application of Amber Suppression To Study the Role of Tyr M210 in Electron Transfer in Rhodobacter sphaeroides Photosynthetic Reaction Centers. J Phys Chem B 2025; 129:3317-3333. [PMID: 40134359 DOI: 10.1021/acs.jpcb.5c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
The initial light-induced electron transfer (ET) steps in the bacterial photosynthetic reaction center (RC) have been extensively studied and provide a paradigm for connecting structure and function. Although RCs have local pseudo-C2 symmetry, ET only occurs along the A branch of chromophores. Tyrosine M210 is a key symmetry-breaking residue adjacent to bacteriochlorophyll BA that bridges the primary electron donor P and the bacteriopheophytin acceptor HA. We used amber suppression to incorporate phenylalanine variants with different electron-withdrawing/-donating capabilities at the position M210. X-ray data generally reveal no appreciable structural changes due to the mutations. P* decay and P+HA- formation are multiexponential (∼2 to 9, ∼10 to 60, and ∼100 to 300 ps) and temperature dependent. The 1020 nm transient-absorption band of P+BA- is barely resolved for a few variants at 295 K and for none at 77 K. The results indicate a change from two-step ET for wild-type RCs to the dominance of one-step superexchange ET for the mutants. Resonance Stark spectroscopy reveals that the free energy of P+BA- changes by -57 to +66 meV among the phenylalanine variants. Because P+BA- apparently lies above P* in all phenylalanine variants, the perturbations primarily affect the energy denominator for superexchange mixing. The findings deepen insight into primary ET in the bacterial RC.
Collapse
Affiliation(s)
- Khoi N Tran
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kaitlyn M Faries
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | | | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Jared B Weaver
- Drug Discovery, Insitro, Inc., 279 E. Grand Ave., South San Francisco, California 94080, United States
| | - Jacob M Kirsh
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Christine Kirmaier
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Mugnai G, Bernabò L, Daly G, Corneli E, Adessi A. Photofermentative production of poly-β-hydroxybutyrate (PHB) by purple non-sulfur bacteria using olive oil by-products. BIORESOUR BIOPROCESS 2025; 12:25. [PMID: 40128444 PMCID: PMC11933499 DOI: 10.1186/s40643-025-00856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/22/2025] [Indexed: 03/26/2025] Open
Abstract
This study evaluated the ability of six purple non-sulfur bacteria (PNSB) to convert olive oil by-products into poly-β-hydroxybutyrate (PHB). Strains were first independently cultivated in synthetic media with different carbon sources (acetic, lactic and malic acid) to assess their physiology and PHB production. Subsequently, their growth and PHB production using ingested pâté olive cake (IPOC) as a substrate were investigated. Transmission electron microscopy (TEM) observations were conducted on strains cultivated on IPOC to investigate their cell morphologies and inclusion bodies presence and size. Rhodopseudomonas palustris strains accumulated up to 6.8% w PHB/w cells with acetate and 0.86% w PHB/w cells with a daily productivity of 0.54 mg PHB L⁻1 culture d⁻1 on IPOC. In contrast, Cereibacter johrii and Cereibacter sphaeroides reached 58.64% w PHB/w cells and 65.45% w PHB/w cells with acetate, respectively, while C. sphaeroides achieved 21.48% w PHB/w cells and a daily productivity of 10.85 mg PHB L⁻1 culture d⁻1 when cultivated on IPOC. All strains exhibited growth and PHB accumulation in both synthetic media and IPOC substrate. Specifically, R. palustris strains 42OL, AV33 and CGA009 displayed growth capability in all substrates, while C. johrii strains 9Cis and PISA 7, and C. sphaeroides F17 showed promising PHB synthesis capabilities. TEM observations revealed that R. palustris strains, with smaller cell and inclusion body sizes, exhibited lower PHB accumulations, while C. johrii and C. sphaeroides strains, characterized by larger cells and inclusion bodies, demonstrated higher PHB production, recognizing them as promising candidates for PHB production using olive oil by-products. Further investigations under laboratory-scale conditions will be necessary to optimize operating parameters and develop integrated strategies for simultaneous PHB synthesis and the co-production of value-added products, thereby enhancing the economic feasibility of the process within a biorefinery framework.
Collapse
Affiliation(s)
- Gianmarco Mugnai
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121, Perugia, Italy
| | - Luca Bernabò
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
| | - Giulia Daly
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
| | - Elisa Corneli
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy
- PhotoB. Srl, Via Montecalvi, 3, San Casciano in Val Di Pesa, 50026, Florence, Italy
| | - Alessandra Adessi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine, 18, 50144, Florence, Italy.
| |
Collapse
|
5
|
Podosokorskaya OA, Maltseva AI, Elcheninov AG, Novikov AA, Zayulina KS, Merkel AY. Novel thermophilic hydrolytic bacterium Rarispira pelagica gen. nov., sp. nov., reclassification of Spirochaeta thermophila as Winmispira thermophila gen. nov., comb. nov., and proposal of Winmispiraceae fam. nov. and Winmispirales ord. nov. in the class Spirochaetia. Syst Appl Microbiol 2025; 48:126604. [PMID: 40132362 DOI: 10.1016/j.syapm.2025.126604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/28/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
A novel anaerobic moderately thermophilic bacterium, strain 38H-spT, was isolated from a hot spring located 12 m deep of the Kunashir Island shore. Gram-stain negative cells were non-sporeforming, motile, thin helices with regular coiling, occasionally forming bundles of cells. The strain grew at 30-60 °C and pH range of 5.5-8.4 with an optimum at 55 °C and pH 6.6-7.0. Strain 38H-spT required 0.5-5.5% NaCl (1.5% is an optimum) for growth. It was a chemoorganoheterotroph, growing on carbohydrates, including polymers (starch, pullulan, xylan, cellulose, arabinoxylan, xanthan gum, mannan, galactomannan, alginate and laminarin). Major products of glucose fermentation were acetate, ethanol, hydrogen, and carbon dioxide. Major cellular fatty acids were iso-C15:0, C14:0, C12:1 DMA. The size of complete genome of strain 38H-spT was 2.35 Mb; DNA G + C content was 40.1%. 93 CAZymes including 54 glycoside hydrolases were found to be encoded in the genome of the strain. According to 16S rRNA gene sequence and conserved protein sequences phylogenies strain 38H-spT with its closest relative Spirochaeta thermophila represented a deeply branched lineage of the class Spirochaetia. Based on phylogenetic analysis and phenotypic features these two bacteria were assigned to a novel family within a novel order for that the names Winmispiraceae fam. nov. and Winmispirales ord. nov. are proposed with Winmispira thermophila gen. nov., comb. nov. (previously known as Spirochaeta thermophila) as type species. Strain 38H-spT (=DSM 100344T = VKM B-2965T) represents the novel genus and species Rarispira pelagica gen. nov., sp. nov.
Collapse
Affiliation(s)
- Olga A Podosokorskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia.
| | - Anastasiia I Maltseva
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Alexander G Elcheninov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Andrei A Novikov
- Gubkin Russian State University of Oil and Gas, Leninsky Prospect 65/1, 119991 Moscow, Russia
| | - Kseniya S Zayulina
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, 7/2 Prospekt 60-letiya Oktyabrya, 117312 Moscow, Russia
| |
Collapse
|
6
|
Castelli M, Petroni G. An Evolutionary-Focused Review of the Holosporales (Alphaproteobacteria): Diversity, Host Interactions, and Taxonomic Re-ranking as Holosporineae Subord. Nov. MICROBIAL ECOLOGY 2025; 88:15. [PMID: 40085262 PMCID: PMC11909080 DOI: 10.1007/s00248-025-02509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
The order Holosporales is a broad and ancient lineage of bacteria obligatorily associated with eukaryotic hosts, mostly protists. Significantly, this is similar to other evolutionary distinct bacterial lineages (e.g. Rickettsiales and Chlamydiae). Here, we provide a detailed and comprehensive account on the current knowledge on the Holosporales. First, acknowledging the up-to-date phylogenetic reconstructions and recent nomenclatural proposals, we reevaluate their taxonomy, thus re-ranking them as a suborder, i.e. Holosporineae, within the order Rhodospirillales. Then, we examine the phylogenetic diversity of the Holosporineae, presenting the 20 described genera and many yet undescribed sub-lineages, as well as the variety of the respective environments of provenance and hosts, which belong to several different eukaryotic supergroups. Noteworthy representatives of the Holosporineae are the infectious intranuclear Holospora, the host manipulator 'Caedimonas', and the farmed shrimp pathogen 'Candidatus Hepatobacter'. Next, we put these bacteria in the broad context of the whole Holosporineae, by comparing with the available data on the least studied representatives, including genome sequences. Accordingly, we reason on the most probable evolutionary trajectories for host interactions, host specificity, and emergence of potential pathogens in aquaculture and possibly humans, as well as on future research directions to investigate those many open points on the Holosporineae.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | |
Collapse
|
7
|
Kang MS, Kim HS, Yu JY, Srinivasan S, Lee SS. Marivivens marinum sp. nov., isolated from tidal flat, Gochang, South Korea. Int J Syst Evol Microbiol 2025; 75. [PMID: 40127120 DOI: 10.1099/ijsem.0.006735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
A Gram-negative, rod-shaped, non-motile, aerobic bacterium, designated MK-3T, was isolated from shallow seawater in Gochang, Republic of Korea. Growth of strain MK-3T occurred at 15-40 °C (30 °C), pH 6.0-7.0 (pH 7.0) and in the presence of 2-3 % NaCl (2%). Phylogenetic analysis based on the 16S rRNA gene sequence placed strain MK-3T within the family Roseobacteraceae. It exhibited sequence similarities of 95.7% with Salipiger marinus CK-I3-6T, Salipiger aestuarii DSM 22011T and Salipiger pentaromativorans P9T; 95.4% with Ruegeria alba 1NDH52CT, Salipiger manganoxidans VSW210T and Salipiger thiooxidans DSM 10146T; 95.3% with Marivivens donghaensis AM-4T and Histidinibacterium lentulum B17T; and 95.2% with Marivivens geojensis FJ12T. Phylogenetic and phylogenomic analyses consistently demonstrated that strain MK-3T formed a distinct lineage within the genus Marivivens, clustering with its closest relatives. The major fatty acids were C18 : 1 ω7c/C18 : 1 ω6c, C18 : 1 ω7c 11-methyl and C16 : 0. The genome length of strain MK-3T was 3.3 Mbp, and the DNA G+C content was 62.8 mol%. The strain contained Q-10 as the major ubiquinone. The polar lipids consisted of three phosphatidylinositol mannosides and a diphosphatidylglycerol. Based on its phenotypic, chemotaxonomic, phylogenetic and genomic characteristics, strain MK-3T represents a novel species in the genus Marivivens, for which the name Marivivens marinum sp. nov. is proposed. The type strain is MK-3T (=KEMB 21417T=KCTC 8294T=JCM 36630T).
Collapse
Affiliation(s)
- Min-Seok Kang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Hyung-Seop Kim
- Department of Marine Biology, College of Ocean Science and Technology, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do, Republic of Korea
| | - Jae-Yon Yu
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Sathiyaraj Srinivasan
- Department of Bio and Environmental Technology, Seoul Women's University, Hwarang-ro, Nowon-gu, Seoul (01797), Republic of Korea
| | - Sang-Seob Lee
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
8
|
Sbissi I, Dali H, Hamra R, Boujemaa E, Nasr MAH, Ghodhbane-Gtari F, Gtari M. Taxonomic revision of the family Aurantimonadaceae: proposal of Dennerimonas gen. nov., Mesocryomonas gen. nov., Rathsackimonas gen. nov. and Plantimonas gen. nov., along with the reclassification of Jeongeupella Jiang et al. 2024 as a later heterotypic synonym of Antarcticirhabdus Du et al. 2023. Int J Syst Evol Microbiol 2025; 75. [PMID: 40153296 DOI: 10.1099/ijsem.0.006733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025] Open
Abstract
Phylogenetic analysis of the genus Aureimonas, utilizing both 16S rRNA gene sequences and comprehensive whole-genome data, revealed its polyphyletic nature, necessitating a revision to accommodate phylogenetically distinct species. Based on established threshold values for genus demarcation - specifically, 16S rRNA gene similarity, Average Amino Acid Identity and Percentage of Conserved Proteins - a notably substantial divergence was observed within the genus Aureimonas, and the division of Aureimonas into four distinct genera is strongly supported. To address this, we propose the establishment of four new genera: Dennerimonas gen. nov., Mesocryomonas gen. nov., Rathsackimonas gen. nov. and Plantimonas gen. nov. These classifications accommodate species that are significantly divergent from the type species of Aureimonas, thereby more accurately reflecting their distinct evolutionary lineages. Additionally, Aureimonas glaciistagni is proposed to be reclassified within the genus Jiella as Jiella glaciistagni comb. nov. based on phylogenetic evidence indicating a closer evolutionary relationship to Jiella species than to other members of Aureimonas. Our analysis, which included assessments of 16S rRNA gene similarity, Average Nucleotide Identity, and digital DNA-DNA hybridization values exceeding species delineation thresholds, further supports the reclassification of Jeongeupella Jiang et al. 2024 as a later heterotypic synonym of Antarcticirhabdus Du et al. 2023.
Collapse
Affiliation(s)
- Imed Sbissi
- Institute of Arid Lands of Medenine, LR Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Microorganisms, University of Gabes, Medenine, Tunisia
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis Cedex 2080, Tunisia
| | - Hana Dali
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis Cedex 2080, Tunisia
| | - Rihab Hamra
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis Cedex 2080, Tunisia
| | - Emeni Boujemaa
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis Cedex 2080, Tunisia
| | - Mohamed Aziz Haj Nasr
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis Cedex 2080, Tunisia
| | - Faten Ghodhbane-Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis Cedex 2080, Tunisia
- Higher Institute of Biotechnology of Sidi-Thabet, University of La Manouba, Sidi Thabet, Tunisia
| | - Maher Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis Cedex 2080, Tunisia
| |
Collapse
|
9
|
Yokota S, Taniguchi T, Takayanagi S. Brucella anthropi bacteremia: Persistent bacteremia with minimal symptoms. J Infect Chemother 2025; 31:102595. [PMID: 39710163 DOI: 10.1016/j.jiac.2024.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/08/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Brucella anthropi, an aerobic, glucose-nonfermenting gram-negative rod, is predominantly an opportunistic pathogen affecting immunosuppressed patients. This case report describes a 27-year-old woman with systemic lupus erythematosus who developed persistent B. anthropi bacteremia following a pregnancy termination. Despite her stable condition and minimal symptoms, including transient fever, blood cultures revealed persistent bacteremia. Initial treatment with ceftazidime was ineffective due to resistance, leading to a switch to ciprofloxacin, which ultimately resolved the bacteremia. This case underscores the challenges in identifying the source of infection in the absence of typical symptoms and highlights the importance of vigilance in monitoring for persistent bacteremia, even in clinically stable patients. Our findings suggest that symptom improvement does not guarantee the resolution of bacteremia, propose follow-up blood cultures to ensure effective management of B. anthropi bacteremia.
Collapse
Affiliation(s)
- Sho Yokota
- Department of Infectious Diseases, Chiba University Hospital, Chiba, Japan
| | - Toshibumi Taniguchi
- Department of Infectious Diseases, Matsudo City General Hospital, Chiba, Japan.
| | - Shin Takayanagi
- Department of Infectious Diseases, Matsudo City General Hospital, Chiba, Japan
| |
Collapse
|
10
|
Kolo AO, Brayton KA, Collins NE, Bastos ADS, Matthee S, Gall CA, Wentzel J, Neves L, Oosthuizen MC. Bacterial blood microbiome of Mastomys rodents: implications for disease spill-over at the animal-human interface within the Bushbuckridge-East community, South Africa. Front Cell Infect Microbiol 2025; 15:1520086. [PMID: 39963409 PMCID: PMC11830667 DOI: 10.3389/fcimb.2025.1520086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
The Bushbuckridge-East community in Mpumalanga Province, South Africa is bordered by nature reserves, including the Manyeleti Game Reserve. Murid rodents are prevalent in both Manyeleti and communal rangelands adjoining the community households. Although rodents are reservoir hosts for a broad range of viral, bacterial and parasitic pathogens, the rodent microbial diversity and transmission of zoonotic agents to humans in the community is understudied. In this study we investigated bacterial diversity in wild and commensal rodents sampled from different habitats. The 16S rRNA gene was amplified from DNA extracted from the blood of 24 wild Mastomys and one Steatomys sp. and subjected to PacBio circular consensus sequencing. As Bartonella species were dominant in the blood microbiome, gltA gene characterization was performed to delineate species. Rodents sampled from peri-urban and communal rangelands had higher proportions of Bartonella spp. [Hlalakahle (77.7%), Gottenburg (47.8%), Tlhavekisa (83.8%)] compared to those from the protected habitat (43.8%). Ehrlichia spp., Anaplasma spp., and Coxiella burnetii were detected at <1% of the sequence reads. Conventional PCR and sequencing validated the detection of Bartonella spp. with the first confirmation of Bartonella mastomydis infection in Mastomys in South Africa. Additionally, 317 mites, 90 fleas, 10 ticks and eight lice were collected from the rodents, providing evidence of possible vectors of the organisms detected. The detection of zoonotic agents in rodents in Bushbuckridge-East community, together with prior serological confirmation of Bartonella and Coxiella in non-malarial acute febrile patients from this community, highlights the possible risks that commensal rodents pose to human health.
Collapse
Affiliation(s)
- Agatha O. Kolo
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Kelly A. Brayton
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Nicola E. Collins
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Armanda D. S. Bastos
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
- Hans Hoheisen Research Centre, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Sonja Matthee
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, South Africa
| | - Cory A. Gall
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Jeanette Wentzel
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- Hans Hoheisen Research Centre, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Luis Neves
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- Centro de Biotecnologia, Eduardo Mondlane University, Maputo, Mozambique
| | - Marinda C. Oosthuizen
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
11
|
Rudolf I, Kejíková R, Kosoy M, Hubálek Z, Mravcová K, Šikutová S, Whatmore AM, Al Dahouk S. Brucella microti and Rodent-Borne Brucellosis: A Neglected Public Health Threat. Zoonoses Public Health 2025; 72:1-8. [PMID: 39439057 PMCID: PMC11695703 DOI: 10.1111/zph.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Brucellosis is one of the most important zoonoses worldwide, primarily affecting livestock but also posing a serious threat to public health. The major Brucella species are known to cause a feverish disease in humans with various clinical signs. These classical Brucella species are (re-)emerging, but also novel strains and species, some of them transmitted from rodents, can be associated with human infections. As a result of our review on rodent-borne brucellosis, we emphasise the need for more comprehensive surveillance of Brucella and especially Brucella microti in rodent populations and call for further research targeting the ecological persistence of rodent-associated Brucella species in the environment, their epizootic role in wild rodents and their virulence and pathogenicity for wildlife.
Collapse
Affiliation(s)
- Ivo Rudolf
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
- Department of Experimental BiologyMasaryk UniversityBrnoCzech Republic
| | - Romana Kejíková
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| | | | - Zdeněk Hubálek
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| | - Kristína Mravcová
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| | - Silvie Šikutová
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| | | | - Sascha Al Dahouk
- Department 1 ‐ Infectious DiseasesRobert Koch InstituteBerlinGermany
| |
Collapse
|
12
|
Hong JY, Jo JH, Chun SY, Im WT. Isolation and characterization of Novosphingobium aquae sp. nov. and Novosphingobium anseongense sp. nov. , isolated from freshwater. Int J Syst Evol Microbiol 2025; 75. [PMID: 40009431 DOI: 10.1099/ijsem.0.006688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Two novel Gram-stain-negative, aerobic, heterotrophic, non-motile bacterial strains, designated as AS3R-12T and PS1R-30T, were isolated from freshwater in South Korea. To determine their taxonomic positions, the strains were thoroughly characterized. Genomic analyses, based on 16S rRNA gene and draft genome sequence data, revealed that the two novel isolates, AS3R-12T and PS1R-30T, belonged to the genus Novosphingobium. AS3R-12T showed the highest 16S rRNA gene similarity (97.7%) with Novosphingobium flavum UCT-28T. In addition, PS1R-30T showed 97.9% 16S rRNA gene similarity with Novosphingobium lentum NBRC 107847T. The draft genome of strains AS3R-12T and PS1R-30T consisted of 4 149 275 and 4 969 838 bps, with DNA G+C content of 63.1 and 66.1 mol%, respectively. The average nucleotide identity between two strains and other related species was below 76.2%, and the digital DNA-DNA hybridization values with closely related species were below 20.8%, both lower than the species delineation threshold. Strains AS3R-12T and PS1R-30T contained the ubiquinone Q-10 as the major quinone and displayed a polyamine pattern with spermidine as the predominant polyamine. Additionally, their major fatty acids were characterized by C16:1 ω7c/C16:1 ω6c (summed feature 3) and C18:1 ω7c/C18:1 ω6c (summed feature 8). The major polar lipids of AS3R-12T and PS1R-30T were diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), sphingoglycolipid (SGL) and phosphatidylcholine (PC). Moreover, physiological and biochemical results allowed the phenotypic and genotypic differentiation of strains AS3R-12T and PS1R-30T from their closest and other species of the genus Novosphingobium with validly published names. Therefore, AS3R-12T and PS1R-30T represented novel species of the genus Novosphingobium, for which the names Novosphingobium aquae sp. nov. (type strain AS3R-12T=KACC 23096T=LMG 32950T) and Novosphingobium anseongense sp. nov. (type strain PS1R-30T=KACC 23097T=LMG 32951T) are proposed.
Collapse
Affiliation(s)
- Ju-Young Hong
- School of Biotechnology, Hankyong National University, 327, Jungang-ro, Anseong-si, Gyeonggi-do, 17579, Republic of Korea
| | - Jung-Hun Jo
- School of Biotechnology, Hankyong National University, 327, Jungang-ro, Anseong-si, Gyeonggi-do, 17579, Republic of Korea
- AceEMzyme Co., Ltd., Room 403, Academic Industry Cooperation, 327, Jungang-ro, Anseong-si, Gyeonggi-do, 17579, Republic of Korea
| | - Se-Yoon Chun
- AceEMzyme Co., Ltd., Room 403, Academic Industry Cooperation, 327, Jungang-ro, Anseong-si, Gyeonggi-do, 17579, Republic of Korea
| | - Wan-Taek Im
- School of Biotechnology, Hankyong National University, 327, Jungang-ro, Anseong-si, Gyeonggi-do, 17579, Republic of Korea
- AceEMzyme Co., Ltd., Room 403, Academic Industry Cooperation, 327, Jungang-ro, Anseong-si, Gyeonggi-do, 17579, Republic of Korea
- HK Ginseng Research Center, 327, Jungang-ro, Anseong-si, Gyeonggi-do, 17579, Republic of Korea
| |
Collapse
|
13
|
Mahjoubi M, Cherif H, Aliyu H, Chouchane H, Cappello S, Neifar M, Mapelli F, Souissi Y, Borin S, Cowan DA, Cherif A. Brucella pituitosa strain BU72, a new hydrocarbonoclastic bacterium through exopolysaccharide-based surfactant production. Int Microbiol 2025; 28:299-313. [PMID: 38867105 DOI: 10.1007/s10123-024-00540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/22/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024]
Abstract
Hydrocarbon and heavy metal pollution are amongst the most severe and prevalent environmental problems due to their toxicity and persistence. Bioremediation using microorganisms is considered one of the most effective ways to treat polluted sites. In the present study, we unveil the bioremediation potential of Brucella pituitosa strain BU72. Besides its ability to grow on multiple hydrocarbons as the sole carbon source and highly tolerant to several heavy metals, BU72 produces different exopolysaccharide-based surfactants (EBS) when grown with glucose or with crude oil as sole carbon source. These EBS demonstrated particular and specific functional groups as determined by Fourier transform infrared (FTIR) spectral analysis that showed a strong absorption peak at 3250 cm-1 generated by the -OH group for both EBS. The FTIR spectra of the produced EBS revealed major differences in functional groups and protein content. To better understand the EBS production coupled with the degradation of hydrocarbons and heavy metal resistance, the genome of strain BU72 was sequenced. Annotation of the genome revealed multiple genes putatively involved in EBS production pathways coupled with resistance to heavy metals genes such as arsenic tolerance and cobalt-zinc-cadmium resistance. The genome sequence analysis showed the potential of BU72 to synthesise secondary metabolites and the presence of genes involved in plant growth promotion. Here, we describe the physiological, metabolic, and genomic characteristics of Brucella pituitosa strain BU72, indicating its potential as a bioremediation agent.
Collapse
Affiliation(s)
- Mouna Mahjoubi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Hanene Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Habibu Aliyu
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Habib Chouchane
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Simone Cappello
- Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM)-CNR of Messina., Sp. San Raineri, 86, 98122, Messina, Italy
| | - Mohamed Neifar
- Common Services Unit "Bioreactor Coupled With an Ultrafilter"; APVA‑LR16ES20; ENIS, University of Sfax, Sfax, Tunisia
| | | | - Yasmine Souissi
- Department of Engineering, German University of Technology in Oman, P.O. Box 1816, PC 130, Muscat, Sultanate of Oman
| | - Sara Borin
- Common Services Unit "Bioreactor Coupled With an Ultrafilter"; APVA‑LR16ES20; ENIS, University of Sfax, Sfax, Tunisia
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002, South Africa
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
| |
Collapse
|
14
|
Sawada H, Sakai Y, Takashima Y, Naito K, Horita M, Satou M. Afipia dichlorophenoxyacetatis sp. nov., isolated from field soil in Japan, degrades 2,4-dichlorophenoxyacetic acid. Int J Syst Evol Microbiol 2025; 75. [PMID: 39928400 DOI: 10.1099/ijsem.0.006672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Bacterial strains, designated DD3T and DDX28, were isolated from field soil in Japan. The strains had the ability to use 2,4-dichlorophenoxyacetic acid as the sole carbon source. They were Gram-reaction-negative, oxidase-positive, weakly catalase-positive, aerobic and non-spore-forming. Their cells were rod-shaped and often lacked flagella, but some exhibited motility due to the presence of one or two polar flagella. The genomic DNA G+C content was 58.8 mol%, and the major cellular fatty acids (>10% of the total fatty acids) were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), C18 : 0 and C17 : 0 cyclo. Phylogenetic analyses based on gyrB gene sequences and phylogenomic analysis using whole-genome sequences confirmed that the strains belong to the genus Afipia; however, their phylogenetic position did not match that of any known species of this genus. Comparative studies of the average nucleotide identity and digital DNA-DNA hybridization with closely related species revealed values lower than the thresholds used for prokaryotic species delineation (95-96 and 70%, respectively), with the highest values observed for Afipia broomeae ATCC 49717T (79.92 and 21.5%, respectively). Phenotypic characteristics, cellular fatty acid composition and specific metabolic processes and biosynthetic gene clusters could differentiate the strains from their closest relatives. Our phenotypic, chemotaxonomic and genotypic data indicate that DD3T/DDX28 constitute a novel Afipia species, for which we propose the name Afipia dichlorophenoxyacetatis sp. nov., with DD3T (MAFF 311804T=ICMP 25015T) as the type strain.
Collapse
Affiliation(s)
- Hiroyuki Sawada
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yoriko Sakai
- Institute for Agro-Environmental Sciences, NARO, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Yusuke Takashima
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Ken Naito
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Mitsuo Horita
- Institute for Agro-Environmental Sciences, NARO, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Mamoru Satou
- Research Center of Genetic Resources, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
15
|
Khanal A, Han SR, Lee JH, Oh TJ. Unraveling nitrogen metabolism, cold and stress adaptation in polar Bosea sp. PAMC26642 through comparative genome analysis. Front Microbiol 2025; 15:1505699. [PMID: 39925882 PMCID: PMC11804256 DOI: 10.3389/fmicb.2024.1505699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/04/2024] [Indexed: 02/11/2025] Open
Abstract
Nitrogen metabolism, related genes, and other stress-resistance genes are poorly understood in Bosea strain. To date, most of the research work in Bosea strains has been focused on thiosulfate oxidation and arsenic reduction. This work aimed to better understand and identify genomic features that enable thiosulfate-oxidizing lichen-associated Bosea sp. PAMC26642 from the Arctic region of Svalbard, Norway, to withstand harsh environments. Comparative genomic analysis was performed using various bioinformatics tools to compare Bosea sp. PAMC26642 with other strains of the same genus, emphasizing nitrogen metabolism and stress adaptability. During genomic analysis of Bosea sp. PAMC26642, assimilatory nitrogen metabolic pathway and its associated enzymes such as nitrate reductase, NAD(P)H-nitrite reductase, ferredoxin-nitrite reductase, glutamine synthetase, glutamine synthase, and glutamate dehydrogenase were identified. In addition, carbonic anhydrase, cyanate lyase, and nitronate monooxygenase were also identified. Furthermore, the strain demonstrated nitrate reduction at two different temperatures (15°C and 25°C). Enzymes associated with various stress adaptation pathways, including oxidative stress (superoxide dismutase, catalase, and thiol peroxidase), osmotic stress (OmpR), temperature stress (Csp and Hsp), and heavy metal resistance, were also identified. The average Nucleotide Identity (ANI) value is found to be below the threshold of 94-95%, indicating this bacterium might be a potential new species. This study is very helpful in determining the diversity of thiosulfate-oxidizing nitrate-reducing bacteria, as well as their ability to adapt to extreme environments. These bacteria can be used in the future for environmental, biotechnological, and agricultural purposes, particularly in processes involving sulfur and nitrogen transformation.
Collapse
Affiliation(s)
- Anamika Khanal
- Genome-Based Bio-IT Convergence Institute, Asan, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, Republic of Korea
| | - So-Ra Han
- Genome-Based Bio-IT Convergence Institute, Asan, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, Republic of Korea
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
| | - Jun Hyuck Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Tae-Jin Oh
- Genome-Based Bio-IT Convergence Institute, Asan, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, Republic of Korea
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, Republic of Korea
| |
Collapse
|
16
|
Tang PYP, Loh AAR, Hu D, Deignan LK, Summers S, Pereyra JPA, Case RJ. Draft genomes of two Roseibium spp. isolated from the coral Pachyseris speciosa from a Singaporean reef. Microbiol Resour Announc 2025; 14:e0076524. [PMID: 39601522 PMCID: PMC11737088 DOI: 10.1128/mra.00765-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Two Roseibium spp. strains were isolated from skeletal macerates of the Singaporean coral Pachyseris speciosa at an ambient high temperature. We sequenced the genomes of SCP14 (JBDZYH000000000) and SCP15 (JBDZYI000000000), which revealed genomes containing genetic elements that play a role in coral health during thermal stress.
Collapse
Affiliation(s)
- Pei Yi Peggy Tang
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Aaron An Rong Loh
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Dalong Hu
- Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Lindsey Kane Deignan
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- St John’s Island National Marine Laboratory c/o Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Stephen Summers
- Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
- St John’s Island National Marine Laboratory c/o Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Joao Paulo Andre Pereyra
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Rebecca J. Case
- Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
17
|
Choi Y, Ganzorig M, Lee K. Analysis of the Genomes and Adaptive Traits of Skermanella cutis sp. nov., a Human Skin Isolate, and the Type Strains Skermanella rosea and Skermanella mucosa. Microorganisms 2025; 13:94. [PMID: 39858862 PMCID: PMC11767975 DOI: 10.3390/microorganisms13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The genus Skermanella comprises important soil bacteria that are often associated with the crop rhizospheres, but its physiological traits remain poorly understood. This study characterizes Skermanella sp. TT6T, isolated from human skin, with a focus on its metabolic and environmental adaptations. Genome sequencing and phylogenomic analyses revealed that the strain TT6T is most closely related to S. rosea M1T, with average nucleotide identity and digital DNA-DNA hybridization values of 94.14% (±0.5%) and 64.7%, respectively. Comparative genomic analysis showed that the strains TT6T, S. rosea M1T and S. mucosa 8-14-6T share the Calvin cycle, and possess photosynthetic genes associated with the purple bacteria-type photosystem II. The strains TT6T and S. rosea M1T exhibited growth in a nitrogen-free medium under microaerobic conditions, which were generated in test tubes containing 0.1% soft agar. Under these conditions, with nitrate as a nitrogen source, S. rosea M1T formed gases, indicating denitrification. Strain TT6T also contains gene clusters involved in trehalose and carotenoid biosynthesis, along with salt-dependent colony morphology changes, highlighting its adaptive versatility. Genomic analyses further identified pathways related to hydrogenase and sulfur oxidation. Phenotypic and chemotaxonomic traits of strain TT6T were also compared with closely related type strains, confirming its genotypic and phenotypic distinctiveness. The new species, Skermanella cutis sp. nov., is proposed, with TT6T (=KCTC 82306T = JCM 34945T) as the type strain. This study underscores the agricultural and ecological significance of the genus Skermanella.
Collapse
Affiliation(s)
| | | | - Kyoung Lee
- Department of Bio Health Science, Changwon National University, Changwon 51140, Gyeongnam, Republic of Korea; (Y.C.); (M.G.)
| |
Collapse
|
18
|
Alleman AB, Stolyar S, Marx CJ, Leducq JB. Led astray by 16S rRNA: phylogenomics reaffirms the monophyly of Methylobacterium and lack of support for Methylorubrum as a genus. THE ISME JOURNAL 2025; 19:wraf011. [PMID: 39834026 PMCID: PMC11833323 DOI: 10.1093/ismejo/wraf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Although the 16S (and 18S) rRNA gene has been an essential tool in classifying prokaryotes, using a single locus to revise bacteria taxonomy can introduce unwanted artifacts. There was a recent proposition to split the Methylobacterium genus, which contains diverse plant-associated strains and is important for agriculture and biotechnology, into two genera. Resting strongly on the phylogeny of 16S rRNA, 11 species of Methylobacterium were transferred to a newly proposed genus Methylorubrum. Numerous recent studies have independently questioned Methylorubrum as a valid genus, but the prior revision has left discrepancies among taxonomic databases. Here, we review phylogenomic and phenotypic evidence against Methylorubrum as a genus and call for its abandonment. Because Methylobacterium sensu lato forms a consistent and monophyletic genus, we argue for the restoration of the former and consensual Methylobacterium taxonomy. The large genomic, phenotypic, and ecological diversity within Methylobacterium however suggests complex evolutionary and adaptive processes and support the description of the most basal clade of Methylobacterium (group C) as a distinct genus in future work. Overall, this perspective demonstrates the danger of solely relying upon the 16S rRNA gene as a delimiter of genus level taxonomy and that further attempts must include more robust phenotypic and phylogenomic criteria.
Collapse
Affiliation(s)
- Alexander B Alleman
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive MS 3051, Moscow ID 83844-3051, United States
| | - Sergey Stolyar
- Department of Chemical Engineering, University of Washington, 3781 Okanogan Lane, Seattle WA 98195-1750, United States
| | - Christopher J Marx
- Department of Biological Sciences, University of Idaho, 875 Perimeter Drive MS 3051, Moscow ID 83844-3051, United States
| | - Jean-Baptiste Leducq
- Département de Phytologie (FSAA), IBIS, CRIV, 2480 Bd Hochelaga, Université Laval Québec, QC G1V0A6, Canada
| |
Collapse
|
19
|
Castelli M, Gammuto L, Podushkina D, Vecchi M, Altiero T, Clementi E, Guidetti R, Rebecchi L, Sassera D. Hepatincolaceae (Alphaproteobacteria) are Distinct From Holosporales and Independently Evolved to Associate With Ecdysozoa. Environ Microbiol 2025; 27:e70028. [PMID: 39797518 PMCID: PMC11724238 DOI: 10.1111/1462-2920.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 01/13/2025]
Abstract
The Hepatincolaceae (Alphaproteobacteria) are a group of bacteria that inhabit the gut of arthropods and other ecdysozoans, associating extracellularly with microvilli. Previous phylogenetic studies, primarily single-gene analyses, suggested their relationship to the Holosporales, which includes intracellular bacteria in protist hosts. However, the genomics of Hepatincolaceae is still in its early stages. In this study, the number of available Hepatincolaceae genomes was increased to examine their evolutionary and functional characteristics. It was found that the previous phylogenetic grouping with Holosporales was incorrect due to sequence compositional biases and that Hepatincolaceae form an independent branch within the Hepatincolaceae. This led to a reinterpretation of their features, proposing a new evolutionary scenario that involves an independent adaptation to host association compared to the Holosporales, with distinct specificities. The Hepatincolaceae exhibit greater nutritional flexibility, utilising various molecules available in the host gut and thriving in anaerobic conditions. However, they have a less complex mechanism for modulating host interactions, which are likely less direct than those of intracellular bacteria. In addition, representatives of Hepatincolaceae show several lineage-specific traits related to differences in host species and life conditions.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Leandro Gammuto
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Diona Podushkina
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Matteo Vecchi
- Dipartimento di Scienze Della VitaUniversità degli Studi di Modena e Reggio EmiliaModenaItaly
- Institute of Systematics and Evolution of AnimalsPolish Academy of SciencesKrakowPoland
| | - Tiziana Altiero
- Dipartimento Educazione e Scienze UmaneUniversità degli Studi di Modena e Reggio EmiliaModenaItaly
| | - Emanuela Clementi
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
| | - Roberto Guidetti
- Dipartimento di Scienze Della VitaUniversità degli Studi di Modena e Reggio EmiliaModenaItaly
| | - Lorena Rebecchi
- Dipartimento di Scienze Della VitaUniversità degli Studi di Modena e Reggio EmiliaModenaItaly
| | - Davide Sassera
- Department of Biology and BiotechnologyUniversity of PaviaPaviaItaly
- Fondazione IRCCS Policlinico San MatteoPaviaItaly
| |
Collapse
|
20
|
He DY, Gao JW, Wang YR, Cao K, Cao YF, Li Y, Wang LY, Wang XC, Xu L, Sun C. Paludibacillus litoralis gen. nov., sp. nov.: a novel species of a novel genus in the family Paracoccaceae, isolated from the sediment of a tidal flat located in Zhoushan, China. Int J Syst Evol Microbiol 2025; 75. [PMID: 39869388 DOI: 10.1099/ijsem.0.006655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
A Gram-stain-negative, aerobic and rod-shaped bacterium, designated as HZG-20T, was isolated from a tidal flat in Zhoushan, Zhejiang Province, China. The 16S rRNA sequence similarities between strain HZG-20T and Pikeienuella piscinae RR4-56T, Coraliihabitans acroporae NNCM2T, Parvibaculum indicum P31T and Zhengella mangrovi X9-2-2T were 98.9, 91.7, 91.0 and 91.0%, respectively. Colonies of strain HZG-20T were 1.4 mm in diameter, milky white, round, smooth and convex after cultivating on marine agar at 30 °C for 48 h. Cells were catalase and oxidase-negative. Growth occurred at 15-37 ℃ (optimum, 28 ℃), pH 5.0-9.0 (optimum, pH 6.0-8.0) and with 0-8% (w/v) NaCl (optimum, 1-3%). It contained Menaquinone-8 (H2) as the sole respiratory quinone, and C16:0 (11.8-13.6%), C18:1 ω9c (6.8-13.3%) and C15:0 anteiso (10.9-27.7%) as the major cellular fatty acids. The main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid, one unidentified aminolipid, one unidentified phosphoglycolipid, two unidentified glycolipids (GL1-GL2) and three unidentified lipids (L1-L3). The genome of strain HZG-20T was 3 835 886 bp in length, comprised 3746 protein-coding genes, with DNA G+C content of 67.1 mol%. The phylogenetic and phylogenomic trees indicated that strain HZG-20T formed an independent and stable clade with P. piscinae RR4-56T. However, the average nucleotide identity, digit DNA-DNA hybridization and average amino acid identity values between strain HZG-20T and P. piscinae RR4-56T, C. acroporae NNCM2T, P. indicum P31T and Z. mangrovi X9-2-2T were 81.6, 71.1, 68.7 and 69.5%; 23.0, 18.5, 17.9 and 17.5%; and 78.2, 56.8, 56.5 and 61.9%, respectively, together with distinct chemotaxonomic features, indicating strain HZG-20T should not be assigned to known genera. As a result, a novel species of a novel genus within the family Paracoccaceae, designated as Paludibacillus litoralis gen. nov., sp. nov., was proposed. The type strain is HZG-20T (MCCC 1K08468T=KCTC 82692T).
Collapse
Affiliation(s)
- Dong-Yan He
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jia-Wei Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd., Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, PR China
| | - Yu-Ruo Wang
- Zhejiang Development & Planning Institute, Hangzhou 310012, PR China
| | - Ke Cao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yun-Fei Cao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd., Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, PR China
| | - Yang Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Lu-Yao Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xing-Cheng Wang
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd., Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, PR China
| | - Lin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd., Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, PR China
| | - Cong Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd., Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, PR China
| |
Collapse
|
21
|
Quintero M, Zuluaga-Valencia SD, Ríos-López LG, Sánchez O, Bernal CA, Sepúlveda N, Gómez-León J. Mercury-Resistant Bacteria Isolated from an Estuarine Ecosystem with Detoxification Potential. Microorganisms 2024; 12:2631. [PMID: 39770833 PMCID: PMC11676337 DOI: 10.3390/microorganisms12122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Mercury pollution is a significant environmental issue, primarily resulting from industrial activities, including gold mining extraction. In this study, 333 microorganisms were tested in increasing mercury concentrations, where 158 bacteria and 14 fungi were able to grow and remain viable at concentrations over 5.0 mg/L of mercuric chloride (II). One of the bacterial strains, Stenotrophomonas sp. INV PRT0231, isolated from the mouth of the San Juan River in the Chocó region in Colombia, showed a high mercury resistance level (MIC90 of 27 ± 9 mg/L), with a removal rate of 86.9%, an absorption rate of 1.2%, and a volatilization rate of 85.7% at pH 6.0 and 30.0 °C. The FTIR analysis showed changes in the functional groups, including fatty acid chains and methyl groups, proteins, and lipopolysaccharides associated with the carboxylate group (COO-), suggesting an important role of these biomolecules and their associated functional groups as mechanisms employed by the bacterium for mercury detoxification. Our study contributes to the understanding of the mechanisms of mercury biotransformation in microbial environmental isolates to help develop bioremediation strategies to mitigate mercury pollution caused by anthropogenic activities.
Collapse
Affiliation(s)
- Marynes Quintero
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (M.Q.); (S.D.Z.-V.); (L.G.R.-L.)
| | - Sol D. Zuluaga-Valencia
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (M.Q.); (S.D.Z.-V.); (L.G.R.-L.)
| | - Lady Giselle Ríos-López
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (M.Q.); (S.D.Z.-V.); (L.G.R.-L.)
| | - Olga Sánchez
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Cesar A. Bernal
- Marine Environmental Quality Laboratory Unit–LABCAM, Marine Environment Quality Program–CAM, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia;
| | - Niza Sepúlveda
- Environmental Biotechnology Research Group, Faculty of Engineering, Technological University of Choco “Diego Luis Cordoba”, Quibdó 270001, Chocó, Colombia;
| | - Javier Gómez-León
- Marine Bioprospecting Line, Evaluation and Use of Marine and Coastal Resources Program–VAR, Marine and Coastal Research Institute–INVEMAR, Santa Marta 470006, Magdalena, Colombia; (M.Q.); (S.D.Z.-V.); (L.G.R.-L.)
| |
Collapse
|
22
|
Arkan-Ozdemir S, Üstüntürk-Onan M, Ilhan-Sungur E. Facivitalis istanbulensis gen. nov., sp. nov., a novel member of the family Sphingomonadaceae with the potential for aromatic-degradation isolated from Jet A1 fuel. Antonie Van Leeuwenhoek 2024; 118:34. [PMID: 39602022 DOI: 10.1007/s10482-024-02037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
A novel gram-stain-indeterminate, rod-shaped, endospore-forming, motile, aerobic bacterium, designated JETA1-E2T, was isolated from aircraft fuel Jet A1 sample. The strain showed high pairwise similarity values of partial 16S rRNA gene sequences to Sphingomonas paucimobilis (MT367853) (99.42%), Sphingomonas sanguinis (MF319771) (99.34%), and Sphingomonas pseudosanguinis (HE716953) (99.27%) within the family Sphingomonadaceae. However, API test results revealed that the strain JETA1-E2T differed from these type strains. The phylogenetic tree based on the whole genome and the phylogenomic tree generated with the UBCG tool showed that the strain JETA1-E2T formed a distinct monophyletic clade within the family Sphingomonadaceae, and clustered distantly with the genera Sphingomonas and Sphingobium. The predominant respiratory quinone is Q-10. The major fatty acids are C16:0 and summed feature 8 (C18:1ω7c and/or C18:1ω6c). C19:0 is present in small amounts. The polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, aminophospholipid, unidentified glycolipid, and two unidentified sphingoglycolipids. The only polyamine is putrescine in minor amounts. The DNA G + C content of the type strain is 66.5 mol%. Several unique genes in the strain JETA1-E2T may contribute to fight against various stressors, virulence and pathogenicity, as well as survival in challenging conditions. The strain JETA1-E2T contains 100 of the characterised proteins available in the HADEG database of which 58% of these are involved in metabolic process of aromatics degradation. The findings indicate that the strain JETA1-E2T has the potential to metabolise hydrocarbons such as fuel, especially aromatic compounds. Based on the results of polyphasic taxonomic analyses, the strain JETA1-E2T represents a novel species in a new genus in the family Sphingomonadaceae for which the name Facivitalis istanbulensis gen. nov., sp. nov. is proposed. The type strain of Facivitalis istanbulensis is JETA1-E2T (DSM 117971T = LMG 33634T = KUEN 1206 (B) F3-1-1T).
Collapse
Affiliation(s)
- Simge Arkan-Ozdemir
- Department of Biology, Institute of Graduate Studies in Sciences, Istanbul University, 34134, Vezneciler, Istanbul, Türkiye
- Department of Pathology Laboratory Techniques, Vocational School of Health Services, Uskudar University, 34664, Uskudar, Istanbul, Türkiye
| | - Miray Üstüntürk-Onan
- Department of Biology, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Türkiye
| | - Esra Ilhan-Sungur
- Department of Biology, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Türkiye.
| |
Collapse
|
23
|
Li J, Göbel F, Hsu HY, Koch JN, Hager N, Flegler WA, Tanabe TS, Dahl C. YeeE-like bacterial SoxT proteins mediate sulfur import for oxidation and signal transduction. Commun Biol 2024; 7:1548. [PMID: 39572704 PMCID: PMC11582611 DOI: 10.1038/s42003-024-07270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
Many sulfur-oxidizing prokaryotes oxidize sulfur compounds through a combination of initial extracytoplasmic and downstream cytoplasmic reactions. Facultative sulfur oxidizers adjust transcription to sulfur availability. While sulfur-oxidizing enzymes and transcriptional repressors have been extensively studied, sulfur import into the cytoplasm and how regulators sense external sulfur are poorly understood. Addressing this gap, we show that SoxT1A and SoxT1B, which resemble YeeE/YedE-family thiosulfate transporters and are encoded alongside sulfur oxidation and transcriptional regulation genes, fulfill these roles in the Alphaproteobacterium Hyphomicrobium denitrificans. SoxT1A mutants are sulfur oxidation-negative despite high transcription levels of sulfur oxidation genes, showing that SoxT1A delivers sulfur to the cytoplasm for its further oxidation. SoxT1B serves as a signal transduction unit for the transcriptional repressor SoxR, as SoxT1B mutants are sulfur oxidation-negative due to low transcription unless SoxR is also absent. Thus, SoxT1A and SoxT1B play essential but distinct roles in oxidative sulfur metabolism and its regulation.
Collapse
Affiliation(s)
- Jingjing Li
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Fabienne Göbel
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Hsun Yun Hsu
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Julian Nikolaus Koch
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Department of Biochemistry, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Natalie Hager
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wanda Antonia Flegler
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Tomohisa Sebastian Tanabe
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| |
Collapse
|
24
|
Deng Y, Li CJ, Zhang J, Liu WH, Yu LY, Zhang YQ. Extensive genomic study characterizing three Paracoccaceae populations and revealing Pseudogemmobacter lacusdianii sp. nov. and Paracoccus broussonetiae sp. nov. Microbiol Spectr 2024; 12:e0108824. [PMID: 39329474 PMCID: PMC11537045 DOI: 10.1128/spectrum.01088-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 09/28/2024] Open
Abstract
Bacteria within the family Paracoccaceae show promising potential for applications in various fields, garnering significant research attention. Three Gram stain-negative bacteria, strains CPCC 101601T, CPCC 101403T, and CPCC 100767, were isolated from diverse environments: freshwater, rhizosphere soil of Broussonetia papyrifera, and the phycosphere, respectively. Analysis of their 16S rRNA gene sequences, compared with those in the GenBank database, indicated that they belong to the family Paracoccaceae, with nucleotide similarities of 92.5%-99.9% to all of the Paracoccaceae members with valid taxonomic names. Phylogenetic studies based on 16S rRNA gene and whole-genome sequences identified CPCC 101601T as a member of the genus Pseudogemmobacter, CPCC 101403T belonging to the genus Paracoccus, and CPCC 100767 as part of the genus Gemmobacter. Notably, genomic analysis using average nucleotide identity (ANI; <95%) and digital DNA-DNA hybridization (dDDH; <70%) with their closely related strains suggested that CPCC 101601T and CPCC 101403T represent new species within their respective genera. Conversely, CPCC 100767 exhibited high ANI (98.5%) and dDDH (87.4%) values with Gemmobacter fulvus con5T, indicating it belongs to this already recognized species. The in-depth genomic analysis revealed that strains CPCC 101601T, CPCC 101403T, and CPCC 100767 harbor key genes related to the pathways for denitrifying, MA utilization, and polyhydroxyalkanoate biosynthesis. Moreover, genotyping and phenotyping analysis confirmed that strain CPCC 100767 has the ability to convert atmospheric nitrogen into ammonia and produce 5-aminolevulinic acid, whereas CPCC 101601T can only perform the former bioprocess.IMPORTANCEBased on polyphasic taxonomic study, two new species, Pseudogemmobacter lacusdianii and Paracoccus broussonetiae, affiliated with the family Paracoccaceae were identified. This expands our understanding of the family Paracoccaceae and provides new microbial materials for further studies. Modern genomic techniques such as average nucleotide identity and digital DNA-DNA hybridization were utilized to determine species affiliations. These methods offer more precise results than traditional classification mainly based on 16S rRNA gene analysis. Beyond classification of these strains, the research delved into their genomes and discovered key genes related to denitrification, MA utilization, and polyhydroxyalkanoate biosynthesis. The identification of these genes provides a molecular basis for understanding the environmental roles of these strains. Particularly, strain CPCC 100767 demonstrated the ability to convert atmospheric nitrogen into ammonia and produce 5-aminolevulinic acid. These bioprocess capabilities are of significant practical value, such as in agricultural production for use as biofertilizers or biostimulants.
Collapse
Affiliation(s)
- Yang Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cong-Jian Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Wei-Hong Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| | - Li-Yan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu-Qin Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Park S, Kim I, Woo H, Lee H, Yook S, Seo T. Aurantiacibacter flavus sp. nov. and Aurantiacibacter gilvus sp. nov., isolated from the mudflat of Suaeda japonica colonies. Int J Syst Evol Microbiol 2024; 74. [PMID: 39527473 DOI: 10.1099/ijsem.0.006578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Two novel strains were isolated from the mudflat of Suaeda japonica colonies in Incheon, Republic of Korea. Designated as DGU5T and DGU6T, these strains were Gram-stain-negative, facultatively anaerobic and rod-shaped and had yellowish colonies. Both strains were determined to belong to the genus Aurantiacibacter through phylogenetic analysis of their 16S rRNA sequences and draft genomes. The cells of strain DGU5T were non-motile and grew at temperatures ranging between 7-45°C (optimum, 25-30°C), pH 6.0-10.0 (optimum, 7.0-8.0) and in the presence of 0-11.0% NaCl (optimum, 2.0%). The cells of strain DGU6T were non-motile and grew in temperatures ranging from 10-45 °C (optimum, 30-35°C), pH 3.0-10.0 (optimum, 7.0-8.0) and in the presence of 0-11.0% NaCl (optimum, 2.0%). Overall genome relatedness index calculations revealed average nucleotide identity values (72.3-88.6%) and digital DNA-DNA hybridization values (18.8-35.9%) aligning with those of the genus Aurantiacibacter. The major fatty acids in both strains were C17:1 ω6c and summed feature 8 (C18:1 ω6c/C18:1 ω7c), while the predominant polar lipids were sphingoglycolipid, phosphatidylglycerol, and diphosphatidylglycerol. Phylogenetic, average nucleotide identity, digital DNA-DNA hybridization, physiological, and biochemical data collectively demonstrated the distinctiveness of the novel strains from other members within the family Erythrobacteraceae. We propose the names A. flavus sp. nov. (type strain DGU5T = KACC 23720T = TBRC 19015T) and A. gilvus sp. nov. (type strain DGU6T = KACC 23721T = TBRC 19016T) for the two strains.
Collapse
Affiliation(s)
- Sunho Park
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Inhyup Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Haejin Woo
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyunji Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Subin Yook
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | | |
Collapse
|
26
|
Yan C, Zhang K, Shi S, Jian L, Chen B, Quadri SR, Tian X. Alterisphingorhabdus coralli gen. nov. sp. nov., a novel aerobic anoxygenic phototrophic bacteria isolated from reef-building coral. Int J Syst Evol Microbiol 2024; 74. [PMID: 39570654 DOI: 10.1099/ijsem.0.006577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
The photosynthetic microorganisms within the coral holobiont produce energy and organic compounds through photosynthesis, which are vital for the biocalcification and heat tolerance of coral hosts. However, aerobic anoxygenic phototrophic bacteria (AAPB), which are one of the most important photosynthetic microorganisms, have not been thoroughly investigated in this environment. In this study, a novel AAPB, SCSIO 66989T, was isolated from the reef-building coral Favia sp. and considered a beneficial microorganism for corals (BMC). The polyphasic taxonomic analysis showed that it had the highest similarities with Parasphingorhabdus litoris DSM 22379T (95.9%) and Altererythrobacter ishigakiensis ATCC BAA-2084T (95.7%). Phylogenetic analysis showed that it formed an independent clade, distinguishing it from other genera within the family Sphingomonadaceae. The predominant fatty acids were C18 : 1 ω7c and/or C18 : 1 ω6c and C16 : 0. The major respiratory quinone was ubiquinone-10 (Q-10). Sphingolipid, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine were the diagnostic polar lipids. The average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values between SCSIO 66989T and the type strains of P. litoris DSM 22379T and A. ishigakiensis ATCC BAA-2084T were 69.2-70.0%, 58.6-61.2% and 19.2-19.7%, respectively. These results indicate that strain SCSIO 66989T represents a new species of a novel genus in the family Sphingomonadaceae, for which the name Alterisphingorhabdus coralli gen. nov. sp. nov. is proposed.
Collapse
Affiliation(s)
- Chang Yan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Songbiao Shi
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lili Jian
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Beilin Chen
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, PR China
| | - Syed Raziuddin Quadri
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar-91431, Northern Borders, Kingdom of Saudi Arabia
| | - Xinpeng Tian
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| |
Collapse
|
27
|
Venter SN, Rodriguez-R LM, Chuvochina M, Palmer M, Hugenholtz P, Steenkamp ET. Options and considerations for validation of prokaryotic names under the SeqCode. Syst Appl Microbiol 2024; 47:126554. [PMID: 39305564 DOI: 10.1016/j.syapm.2024.126554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 11/26/2024]
Abstract
Stable taxon names for Bacteria and Archaea are essential for capturing and documenting prokaryotic diversity. They are also crucial for scientific communication, effective accumulation of biological data related to the taxon names and for developing a comprehensive understanding of prokaryotic evolution. However, after more than a hundred years, taxonomists have succeeded in valid publication of only around 30 000 species names, based mostly on pure cultures under the International Code of Nomenclature of Prokaryotes (ICNP), out of the millions estimated to reside in the biosphere. The vast majority of prokaryotic species have not been cultured and are becoming increasingly known to us via culture-independent sequence-based approaches. Until recently, such taxa could only be addressed nomenclaturally via provisional names such as Candidatus or alphanumeric identifiers. Here, we present options and considerations to facilitate validation of names for these taxa using the recently established Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode). Community engagement and participation of relevant taxon specialists are critical and encouraged for the success of endeavours to formally name the uncultured majority.
Collapse
Affiliation(s)
- Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - Luis M Rodriguez-R
- Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Maria Chuvochina
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Australia
| | - Marike Palmer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Australia
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
28
|
Bouznada K, Belaouni HA, Saker R, Chaabane Chaouch F, Meklat A. Phylogenomic analyses of the Listeriaceae family support species reclassification and proposal of a new family and new genera. Antonie Van Leeuwenhoek 2024; 118:18. [PMID: 39387927 DOI: 10.1007/s10482-024-02027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
The taxonomy of the Listeriaceae family has undergone substantial revisions, expanding the Listeria genus from 6 to 29 species since 2009. However, these classifications have relied on 16S rRNA gene sequences and conventional polyphasic taxonomy, with limited use of genomic approaches. This study aimed to employ genomic tools, including phylogenomics, Overall Genomic Relatedness Indices (OGRIs), and core-genome phylogenomic analyses, to reevaluate the taxonomy of the Listeriaceae family. The analyses involved the construction of phylogenetic and phylogenomic trees based on 16S rRNA gene sequences and core genomes from 34 type strain genomes belonging to Listeriaceae family. OGRIs, which encompass Average Amino acid Identity (AAI), core-proteome AAI (cAAI), and Percentage of Conserved Proteins (POCP), were calculated, and specific threshold values of 70%, 87%, and 72-73% were established, respectively, to delimitate genera in the Listeriaceae family. These newly proposed OGRI thresholds unveiled distinct evolutionary lineages. The outcomes of this taxonomic re-evaluation were: (i): the division of the Listeria genus into an emended Listeria genus regrouping only Listeria senso stricto species; (ii): the remaining Listeria senso lato species were transferred into three newly proposed genera: Murraya gen. nov., Mesolisteria gen. nov., and Paenilisteria gen. nov. within Listeriaceae; (iii): Brochothrix was transferred to the newly proposed family Brochothricaceae fam. nov. within the Caryophanales order; (iiii): Listeria ivanovii subsp. londonensis was elevated to the species level as Listeria londonensis sp. nov.; and (iiiii): Murraya murrayi comb. nov. was reclassified as a later heterotypic synonym of Murraya grayi comb. nov. This taxonomic framework enables more precise identification of pathogenic Listeriaceae species, with significant implications for important areas such as food safety, clinical diagnostics, epidemiology, and public health.
Collapse
Affiliation(s)
- Khaoula Bouznada
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, BP 92, Kouba, Algiers, Algeria.
| | - Hadj Ahmed Belaouni
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, BP 92, Kouba, Algiers, Algeria
- Agri-Food and Biosciences Institute, Belfast, BT9 5PX, UK
| | - Rafika Saker
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, BP 92, Kouba, Algiers, Algeria
| | - Fawzia Chaabane Chaouch
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, BP 92, Kouba, Algiers, Algeria
| | - Atika Meklat
- Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure Cheikh Mohamed El Bachir El Ibrahimi, BP 92, Kouba, Algiers, Algeria
| |
Collapse
|
29
|
Wang HC, Huang MH, Guo DY, He W, Wang L, Fu ZY, Li WJ, Zhang AH, Zhang DF. Hohaiivirga grylli gen. nov., sp. nov., a New Member of the Family Methylobacteriaceae, Isolated from Cricket (Gryllus chinensis). Curr Microbiol 2024; 81:392. [PMID: 39369359 DOI: 10.1007/s00284-024-03922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
A Gram-staining negative, non-motile, rod-shaped, oxidase negative and catalase positive strain WL0021T was isolated from cricket (Gryllus chinensis) living in the campus of Hohai University. Strain WL0021T was characterized utilizing a polyphasic taxonomy approach. The major fatty acids (> 5%) for strain WL0021T were C16:0 and summed feature 8, and the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phospholipid, two aminolipids, and an unidentified polar lipid. Ubiquinone-10 was detected as the predominant respiratory quinone. The results of 16S rRNA gene phylogenetic analyses revealed that strain WL0021T had the highest sequence similarity of 95.3% to Microvirga flavescens c27j1T and strain WL0021T formed a distinct linage within the family Methylobacteriaceae in the phylogenetic trees. Whole genomic DNA G+C content was 48.3%. Combined with the results from this study, strain WL0021T should represent a novel genus in the family Methylobacteriaceae, for which the name Hohaiivirga grylli gen. nov., sp. nov. (type strain WL0021T=GDMCC 1.2420T =JCM 34655T=MCCC 1K05886T) is proposed.
Collapse
Affiliation(s)
- Hong-Chuan Wang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, People's Republic of China
| | - Meng-Han Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, People's Republic of China
| | - Dan-Yuan Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wei He
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, People's Republic of China
| | - Lu Wang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, People's Republic of China
| | - Zi-Yue Fu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, People's Republic of China
| | - Wen-Jun Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, People's Republic of China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ai Hua Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, People's Republic of China.
| | - Dao-Feng Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization & College of Oceanography, Hohai University, Nanjing, People's Republic of China.
| |
Collapse
|
30
|
Fufina TY, Zabelin AA, Khatypov RA, Khristin AM, Shkuropatov AY, Vasilieva LG. Comparative Study of Spectral and Functional Properties of Wild Type and Double Mutant H(L173)L/I(L177)H Reaction Centers of the Purple Bacterium Cereibacter sphaeroides. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1789-1802. [PMID: 39523116 DOI: 10.1134/s0006297924100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 11/16/2024]
Abstract
Previously, we found that in the reaction center (RC) of the purple bacterium Cereibacter sphaeroides, formation of heterodimeric primary electron donor (P) caused by the substitution of His-L173 by Leu, was compensated by the second mutation Ile-L177 - His. Significant changes in the spectral properties, pigment composition, and redox potential of P observed in the H(L173)L RC, are restored to the corresponding characteristics of the native RC in the RC H(L173)L/I(L177)H, with the difference that the energy of the long-wavelength QY optical transition of P increases significantly (by ~75 meV). In this work, it was shown using light-induced difference FTIR spectroscopy that the homodimeric structure of P is preserved in the RC with double mutation with partially altered electronic properties: electronic coupling in the radical-cation of the P+ dimer is weakened and localization of the positive charge on one of its halves is increased. Results of the study of the triple mutant RC, H(L173)L/I(L177)H/F(M197)H, are consistent with the assumption that the observed changes in the P+ electronic structure, as well as considerable blue shift of the QY P absorption band in the RC H(L173)L/I(L177)H, are associated with modification of the spatial position and/or geometry of P. Using femtosecond transient absorption spectroscopy, it was shown that the mutant H(L173)L/I(L177)H RC retains a sequence of reactions P* → P+BA- → P+HA- → P+QA- with electron transfer rates and the quantum yield of the final state P+QA- close to those observed in the wild-type RC (P* is the singlet-excited state of P; BA, HA, and QA are molecules of bacteriochlorophyll, bacteriopheophytin, and ubiquinone in the active A-branch of cofactors, respectively). The obtained results, together with the previously published data for the RC with symmetrical double mutation H(M202)L/I(M206)H, demonstrate that by introducing additional point amino acid substitutions, photochemical activity of the isolated RC from C. sphaeroides could be maintained at a high level even in the absence of important structural elements - axial histidine ligands of the primary electron donor P.
Collapse
Affiliation(s)
- Tatiana Yu Fufina
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey A Zabelin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Ravil A Khatypov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anton M Khristin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Anatoly Ya Shkuropatov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Lyudmila G Vasilieva
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
31
|
Xu QY, Gao L, Wu D, Li XY, Liu YH, Zhang Y, Chen YH, She TT, Fang BZ, Li WJ. Aquibaculum sediminis sp. nov., a halotolerant bacteria isolated from salt lake sediment. Antonie Van Leeuwenhoek 2024; 118:13. [PMID: 39352515 DOI: 10.1007/s10482-024-02024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/19/2024] [Indexed: 01/18/2025]
Abstract
An aerobic, Gram-stain negative bacterium was isolated from sediment samples of Barkol salt lake in Hami City, Xinjiang Uygur Autonomous Region, China, with the number EGI_FJ10229T. The strain is ellipse-shaped, oxidase-negative, catalase-positive, and has white, round, smooth, opaque colonies on marine 2216 E agar plate. Growth occurs at 4.0-37.0 ℃ (optimal:30.0 ℃), pH 7.0-9.0 (optimal: pH 8.0) and NaCl concentration of 0-8.0% (optimal: 3.0%). Phylogenetic analysis based on 16S rRNA gene and genome sequences indicated that the isolated strain should be assigned to the genus Aquibaculum and was most closely related to Aquibaculum arenosum CAU 1616 T. Average nucleotide identity (ANI) and Average amino-acid identity (AAI) values between the type species of the genus Aquibaculum and other related type species were lower than the threshold values recommended for bacterial species. The genomic DNA G + C content of EGI_FJ10229T was 65.41%. The major polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylcholine, phosphatidylethanolamine and unidentified phospholipid. The major fatty acids (> 5%) were C19:0 cyclo ω8c (42.0%) and C18:1 ω7c (33.78%). The respiratory quinone identified was Q-10. Differential phenotypic and genotypic characteristics of this strain and species of genus Aquibaculum showed that the strain should be classified as representing a new species belonging to this genus, for which the name Aquibaculum sediminis sp. nov. is proposed. The type strain of the proposed novel species is EGI_FJ10229T (= KCTC 8570 T = GDMCC 1.4598 T).
Collapse
Affiliation(s)
- Qing-Yu Xu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lei Gao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Dildar Wu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xin-Yao Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yong-Hong Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Yao Zhang
- Guangdong University of Education, Guangzhou, 510275, Guangdong, People's Republic of China
| | - Yue-Heng Chen
- Guangdong University of Education, Guangzhou, 510275, Guangdong, People's Republic of China
| | - Ting-Ting She
- Guangdong University of Education, Guangzhou, 510275, Guangdong, People's Republic of China
| | - Bao-Zhu Fang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| | - Wen-Jun Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
32
|
Liu Q, Xin YH. Sabulicella glaciei sp. nov., Isolated from Glacier, and Reclassification of Roseomonas rubea, Roseomonas ponticola and Roseomonas oleicola as Neoroseomonas rubea comb. nov., Falsiroseomonas ponticola comb. nov. and Falsiroseomonas oleicola comb. nov. Curr Microbiol 2024; 81:345. [PMID: 39235469 DOI: 10.1007/s00284-024-03877-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
A Gram-stain-negative, short rod-shaped strain, MDT2-1-1T, was isolated from cryoconite samples collected from the Midui glacier in Tibet, China. It grew aerobically from 7 to 40 °C, within a pH range of 6.0-10.0, and in NaCl concentration of 0 to 1.0% (w/v). The pairwise 16S rRNA gene sequence similarity, average nucleotide identity and digital DNA-DNA hybridization values between strains MDT2-1-1T and Sabulicella rubraurantiaca SYSU D01096T were 99.4%, 89.7% and 38.9%, respectively. Considering the results from phylogeny, phenotypic and genotypic data, strain MDT2-1-1T (=CGMCC 1.11170T = NBRC 110485T) was suggested to represent a novel species of the genus Sabulicella, for which the name Sabulicella glaciei sp. nov. is proposed. Furthermore, based on the phylogenomic analysis, it is recommended that Roseomonas rubea, Roseomonas ponticola and Roseomonas oleicola be reclassified as Neoroseomonas rubea comb. nov., Falsiroseomonas ponticola comb. nov. and Falsiroseomonas oleicola comb. nov., respectively. Considering the illegitimate status of the genera names Pararoseomonas and Pseudoroseomonas, the species within the genera Pararoseomonas and Pseudoroseomonas should be transferred to Muricoccus and Teichococcus, respectively. Therefore, we proposed the following new combinations: Muricoccus aeriglobus comb. nov., Muricoccus aerilatus comb. nov., Muricoccus harenae comb. nov., Muricoccus nepalensis comb. nov., Muricoccus pecuniae comb. nov., Muricoccus radiodurans comb. nov., Muricoccus vinaceus comb. nov., Teichococcus aerofrigidensis comb. nov., Teichococcus aerophilus comb. nov., Teichococcus aestuarii comb. nov., Teichococcus cervicalis comb. nov., Teichococcus coralli comb. nov., Teichococcus deserti comb. nov., Teichococcus globiformis comb. nov., Teichococcus hibiscisoli comb. nov., Teichococcus musae comb. nov., Teichococcus oryzae comb. nov., Teichococcus rhizosphaerae comb. nov., Teichococcus ruber comb. nov., Teichococcus suffuscus comb. nov., Teichococcus vastitatis comb. nov., and Teichococcus wenyumeiae comb. nov.
Collapse
Affiliation(s)
- Qing Liu
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Yu-Hua Xin
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
33
|
Durante-Rodríguez G, de Francisco-Polanco S, García JL, Díaz E. Characterization of a MHYT domain-coupled transcriptional regulator that responds to carbon monoxide. Nucleic Acids Res 2024; 52:8849-8860. [PMID: 38966994 PMCID: PMC11347149 DOI: 10.1093/nar/gkae575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
The MHYT domain, identified over two decades ago for its potential to detect diatomic gases like CO, O2 or NO, has awaited experimental validation as a protein sensory domain. Here, we characterize the MHYT domain-containing transcriptional regulator CoxC, which governs the expression of the cox genes responsible for aerobic CO oxidation in the carboxidotrophic bacterium Afipia carboxidovorans OM5. The C-terminal LytTR-type DNA-binding domain of CoxC binds to an operator region consisting of three direct repeats sequences overlapping the -35 box at the target PcoxB promoter, which is consistent with the role of CoxC as a specific transcriptional repressor of the cox genes. Notably, the N-terminal transmembrane MHYT domain endows CoxC with the ability to sense CO as an effector molecule, as demonstrated by the relief of CoxC-mediated repression and binding to the PcoxB promoter upon CO exposure. Furthermore, copper serves as the essential divalent cation for the interaction of CO with CoxC, thereby confirming previous hypothesis regarding the role of copper in the gas-sensing mechanism of MHYT domains. CoxC represents the prototype of a novel subfamily of single-component LytTR transcriptional regulators, characterized by the fusion of a DNA-binding domain with a membrane-bound MHYT sensor domain.
Collapse
Affiliation(s)
- Gonzalo Durante-Rodríguez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Calle Ramiro de Maeztu, 9, 28040 Madrid. Spain
| | - Sofía de Francisco-Polanco
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Calle Ramiro de Maeztu, 9, 28040 Madrid. Spain
| | - José Luis García
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Calle Ramiro de Maeztu, 9, 28040 Madrid. Spain
| | - Eduardo Díaz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Calle Ramiro de Maeztu, 9, 28040 Madrid. Spain
| |
Collapse
|
34
|
Börner J, Grützner J, Gerken F, Klug G. The Impact of the Major Endoribonucleases RNase E and RNase III and of the sRNA StsR on Photosynthesis Gene Expression in Rhodobacter sphaeroides Is Growth-Phase-Dependent. Int J Mol Sci 2024; 25:9123. [PMID: 39201809 PMCID: PMC11354728 DOI: 10.3390/ijms25169123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Rhodobacter sphaeroides is a facultative phototrophic bacterium that performs aerobic respiration when oxygen is available. Only when oxygen is present at low concentrations or absent are pigment-protein complexes formed, and anoxygenic photosynthesis generates ATP. The regulation of photosynthesis genes in response to oxygen and light has been investigated for decades, with a focus on the regulation of transcription. However, many studies have also revealed the importance of regulated mRNA processing. This study analyzes the phenotypes of wild type and mutant strains and compares global RNA-seq datasets to elucidate the impact of ribonucleases and the small non-coding RNA StsR on photosynthesis gene expression in Rhodobacter. Most importantly, the results demonstrate that, in particular, the role of ribonuclease E in photosynthesis gene expression is strongly dependent on growth phase.
Collapse
Affiliation(s)
- Janek Börner
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany (F.G.)
| | | | | | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany (F.G.)
| |
Collapse
|
35
|
Maduranga S, Valencia BM, Li X, Moallemi S, Rodrigo C. A systematic review and meta-analysis of comparative clinical studies on antibiotic treatment of brucellosis. Sci Rep 2024; 14:19037. [PMID: 39152180 PMCID: PMC11329684 DOI: 10.1038/s41598-024-69669-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Brucellosis is a difficult to treat infection that requires antibiotic combinations administered over several weeks for clearance of infection and relapse prevention. This systematic review summarizes current evidence for antibiotic treatment of human brucellosis. PubMed, EMBASE, Scopus, CINAHL, Web of Science, and China Academic Journal databases were searched for prospective studies that had compared different antibiotic regimens for treating human brucellosis in the last 25 years. Thirty-four studies recruiting 4182 participants were eligible. Standard dual therapy with doxycycline + rifampicin had a higher risk of treatment failure compared to triple therapy which added streptomycin (RR: 1.98, 95% CI 1.17-3.35, p = 0.01) or levofloxacin (RR: 2.98, 95% CI 1.67-5.32, p = 0.0002), but a similar or lower risk compared to alternative dual antibiotic combinations (p > 0.05). The same combination had a higher risk of relapses compared to triple therapy which added streptomycin (RR: 22.12, 95% CI 3.48-140.52, p = 0.001), or levofloxacin (RR: 4.61, 95% CI 2.20-9.66, p < 0.0001), but a similar or lower risk compared to other dual antibiotic combinations (p > 0.05). Triple antibiotic therapy is more effective than standard dual therapy with rifampicin and doxycycline. However, the latter is also efficacious and suitable for uncomplicated disease.
Collapse
Affiliation(s)
- Sachith Maduranga
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Kirby Institute, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Braulio Mark Valencia
- Kirby Institute, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Xiaoying Li
- Kirby Institute, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Samaneh Moallemi
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
- Kirby Institute, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Chaturaka Rodrigo
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
- Kirby Institute, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
36
|
Middlebrook EA, Katani R, Fair JM. OrthoPhyl-streamlining large-scale, orthology-based phylogenomic studies of bacteria at broad evolutionary scales. G3 (BETHESDA, MD.) 2024; 14:jkae119. [PMID: 38839049 PMCID: PMC11304591 DOI: 10.1093/g3journal/jkae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
There are a staggering number of publicly available bacterial genome sequences (at writing, 2.0 million assemblies in NCBI's GenBank alone), and the deposition rate continues to increase. This wealth of data begs for phylogenetic analyses to place these sequences within an evolutionary context. A phylogenetic placement not only aids in taxonomic classification but informs the evolution of novel phenotypes, targets of selection, and horizontal gene transfer. Building trees from multi-gene codon alignments is a laborious task that requires bioinformatic expertise, rigorous curation of orthologs, and heavy computation. Compounding the problem is the lack of tools that can streamline these processes for building trees from large-scale genomic data. Here we present OrthoPhyl, which takes bacterial genome assemblies and reconstructs trees from whole genome codon alignments. The analysis pipeline can analyze an arbitrarily large number of input genomes (>1200 tested here) by identifying a diversity-spanning subset of assemblies and using these genomes to build gene models to infer orthologs in the full dataset. To illustrate the versatility of OrthoPhyl, we show three use cases: E. coli/Shigella, Brucella/Ochrobactrum and the order Rickettsiales. We compare trees generated with OrthoPhyl to trees generated with kSNP3 and GToTree along with published trees using alternative methods. We show that OrthoPhyl trees are consistent with other methods while incorporating more data, allowing for greater numbers of input genomes, and more flexibility of analysis.
Collapse
Affiliation(s)
- Earl A Middlebrook
- Genomics and Bioanalytics Group, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA
| | - Robab Katani
- 401 Huck Life Sciences Building, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Jeanne M Fair
- Genomics and Bioanalytics Group, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA
| |
Collapse
|
37
|
Melnikov OI, Rozova ON, Reshetnikov AS, Khmelenina VN, Mustakhimov II. Mannitol as a Growth Substrate for Facultative Methylotroph Methylobrevis pamukkalensis PK2. Curr Microbiol 2024; 81:300. [PMID: 39110243 DOI: 10.1007/s00284-024-03795-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
Biochemistry of carbon assimilation in aerobic methylotrophs growing on reduced C1 compounds has been intensively studied due to the vital role of these microorganisms in nature. The biochemical pathways of carbon assimilation in methylotrophs growing on multi-carbon substrates are insufficiently explored. Here we elucidated the metabolic route of mannitol assimilation in the alphaproteobacterial facultative methylotroph Methylobrevis pamukkalensis PK2. Two key enzymes of mannitol metabolism, mannitol-2-dehydrogenase (MTD) and fructokinase (FruK), were obtained as His-tagged proteins by cloning and expression of mtd and fruK genes in Escherichia coli and characterized. Genomic analysis revealed that further transformation of fructose-6-phosphate proceeds via the Entner-Doudoroff pathway. During growth on mannitol + methanol mixture, the strain PK2 consumed both substrates simultaneously demonstrating independence of C1 and C6 metabolic pathways. Genome screening showed that genes for mannitol utilization enzymes are present in other alphaproteobacterial methylotrophs predominantly capable of living in association with plants. The capability to utilize a variety of carbohydrates (sorbitol, glucose, fructose, arabinose and xylose) suggests a broad adaptability of the strain PK2 to live in environments where availability of carbon substrate dynamically changes.
Collapse
Affiliation(s)
- Oleg I Melnikov
- Laboratory of Methylotrophy, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Prospect Nauki 5, 142290, Pushchino, Russian Federation
| | - Olga N Rozova
- Laboratory of Methylotrophy, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Prospect Nauki 5, 142290, Pushchino, Russian Federation.
| | - Alexander S Reshetnikov
- Laboratory of Methylotrophy, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Prospect Nauki 5, 142290, Pushchino, Russian Federation
| | - Valentina N Khmelenina
- Laboratory of Methylotrophy, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Prospect Nauki 5, 142290, Pushchino, Russian Federation
| | - Ildar I Mustakhimov
- Laboratory of Methylotrophy, Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Prospect Nauki 5, 142290, Pushchino, Russian Federation
| |
Collapse
|
38
|
Yin XF, Ye T, Chen HL, Liu J, Mu XF, Li H, Wang J, Hu YJ, Cao H, Kang WQ. The microbiome compositional and functional differences between rectal mucosa and feces. Microbiol Spectr 2024; 12:e0354923. [PMID: 38916335 PMCID: PMC11302734 DOI: 10.1128/spectrum.03549-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
In recent years, most studies on the gut microbiome have primarily focused on feces samples, leaving the microbial communities in the intestinal mucosa relatively unexplored. To address this gap, our study employed shotgun metagenomics to analyze the microbial compositions in normal rectal mucosa and matched feces from 20 patients with colonic polyps. Our findings revealed a pronounced distinction of the microbial communities between these two sample sets. Compared with feces, the mucosal microbiome contains fewer genera, with Burkholderia being the most discriminating genus between feces and mucosa, highlighting its significant influence on the mucosa. Furthermore, based on the microbial classification and KEGG Orthology (KO) annotation results, we explored the association between rectal mucosal microbiota and factors such as age, gender, BMI, and polyp risk level. Notably, we identified novel biomarkers for these phenotypes, such as Clostridium ramosum and Enterobacter cloacae in age. The mucosal microbiota showed an enrichment of KO pathways related to sugar transport and short chain fatty acid metabolism. Our comprehensive approach not only bridges the knowledge gap regarding the microbial community in the rectal mucosa but also underscores the complexity and specificity of microbial interactions within the human gut, particularly in the Chinese population. IMPORTANCE This study presents a system-level map of the differences between feces and rectal mucosal microbial communities in samples with colorectal cancer risk. It reveals the unique microecological characteristics of rectal mucosa and its potential influence on health. Additionally, it provides novel insights into the role of the gut microbiome in the pathogenesis of colorectal cancer and paves the way for the development of new prevention and treatment strategies.
Collapse
Affiliation(s)
- Xiao-Fei Yin
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Taoyu Ye
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
| | - Han-Lin Chen
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Junyan Liu
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
| | - Xue-Feng Mu
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Hao Li
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
| | - Jun Wang
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
- Shenzhen Digital Life Institute, Shenzhen, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Yuan-Jia Hu
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Hongzhi Cao
- iCarbonX(zhuhai) Company Limited, Zhuhai, China
- Shenzhen Digital Life Institute, Shenzhen, China
- Department of Digital Health, South China Hospital of Shenzhen University, Shenzhen, China
| | - Wen-Quan Kang
- Department of Gastroenterology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
39
|
Golubev S, Rasterkovskaya M, Sungurtseva I, Burov A, Muratova A. Phenanthrene-Degrading and Nickel-Resistant Neorhizobium Strain Isolated from Hydrocarbon-Contaminated Rhizosphere of Medicago sativa L. Microorganisms 2024; 12:1586. [PMID: 39203428 PMCID: PMC11356111 DOI: 10.3390/microorganisms12081586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Pollutant degradation and heavy-metal resistance may be important features of the rhizobia, making them promising agents for environment cleanup biotechnology. The degradation of phenanthrene, a three-ring polycyclic aromatic hydrocarbon (PAH), by the rhizobial strain Rsf11 isolated from the oil-polluted rhizosphere of alfalfa and the influence of nickel ions on this process were studied. On the basis of whole-genome and polyphasic taxonomy, the bacterium Rsf11 represent a novel species of the genus Neorhizobium, so the name Neorhizobium phenanthreniclasticum sp. nov. was proposed. Analysis of phenanthrene degradation by the Rsf1 strain revealed 1-hydroxy-2-naphthoic acid as the key intermediate and the activity of two enzymes apparently involved in PAH degradation. It was also shown that the nickel resistance of Rsf11 was connected with the extracellular adsorption of metal by EPS. The joint presence of phenanthrene and nickel in the medium reduced the degradation of PAH by the microorganism, apparently due to the inhibition of microbial growth but not due to the inhibition of the activity of the PAH degradation enzymes. Genes potentially involved in PAH catabolism and nickel resistance were discovered in the microorganism studied. N. phenanthreniclasticum strain Rsf11 can be considered as a promising candidate for use in the bioremediation of mixed PAH-heavy-metal contamination.
Collapse
Affiliation(s)
| | | | | | | | - Anna Muratova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia; (S.G.); (M.R.); (I.S.); (A.B.)
| |
Collapse
|
40
|
Daugaliyeva A, Daugaliyeva S, Kydyr N, Peletto S. Molecular typing methods to characterize Brucella spp. from animals: A review. Vet World 2024; 17:1778-1788. [PMID: 39328439 PMCID: PMC11422631 DOI: 10.14202/vetworld.2024.1778-1788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/18/2024] [Indexed: 09/28/2024] Open
Abstract
Brucellosis is an infectious disease of animals that can infect humans. The disease causes significant economic losses and threatens human health. A timely and accurate disease diagnosis plays a vital role in the identification of brucellosis. In addition to traditional diagnostic methods, molecular methods allow diagnosis and typing of the causative agent of brucellosis. This review will discuss various methods, such as Bruce-ladder, Suiladder, high-resolution melt analysis, restriction fragment length polymorphism, multilocus sequence typing, multilocus variable-number tandem repeat analysis, and whole-genome sequencing single-nucleotide polymorphism, for the molecular typing of Brucella and discuss their advantages and disadvantages.
Collapse
Affiliation(s)
- Aida Daugaliyeva
- LLP "Kazakh Research Institute for Livestock and Fodder Production," St. Zhandosova 51, Almaty 050035, Kazakhstan
| | - Saule Daugaliyeva
- LLP "Scientific Production Center of Microbiology and Virology," Bogenbay Batyr Str. 105, Almaty 050010, Kazakhstan
| | - Nazerke Kydyr
- LLP "Kazakh Research Institute for Livestock and Fodder Production," St. Zhandosova 51, Almaty 050035, Kazakhstan
| | - Simone Peletto
- Experimental Zooprofilactic Institute of Piedmont, Liguria and Aosta Valley, Via Bologna 148, 10154 Turin, Italy
| |
Collapse
|
41
|
Kumar P, Verma A, Yadav P, Das J, Kumar L, Krishnamurthi S. Phylogenomic evaluation of Mangrovimicrobium sediminis gen. nov. sp. nov., the first nitrogen fixing member of the family Halieaceae adapted to mangrove habitat and reclassification of Halioglobus pacificus to Pseudohaliglobus pacificus comb. nov. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172995. [PMID: 38719044 DOI: 10.1016/j.scitotenv.2024.172995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
The taxonomic position and genomic characteristics of a nitrogen fixing and polymer degrading marine bacterium, strain SAOS 164 isolated from a mangrove sediment sample was investigated. Sequence analysis based on 16S rRNA gene identified it as a member of family Halieaceae with closest similarity to Haliea salexigens DSM 19537T (96.3 %), H. alexandrii LZ-16-2T (96.2 %) and Parahaliea maris HSLHS9T (96.0 %) but was distantly related to the genera Haliea, Parahaliea and Halioglobus in phylogenetic trees. In order to ascertain the exact taxonomic position, phylogeny based on RpoBC proteins, whole genome, core and orthologous genes, and comparative analysis of metabolic potential retrieved the strain in an independent lineage clustering along with the genera Halioglobus, Pseudohalioglobus and Seongchinamella. Further, various genome based delimitation parameters represented by mol % GC content, percentage of conserved proteins (POCP), and amino acid identity (AAI) along with chemotaxonomic markers (i.e. fatty acids and polar lipids) supported the inferences of genome based phylogeny and indicated that the strain SAOS 164 belongs to a novel genus. The genome was mapped to 4.8 Mb in size with 65.1 % DNA mol% G + C content. In-silico genomic investigation and phenotyping revealed diverse metabolite genes/pathways related to polymer hydrolysis, nitrogen fixation, light induced growth, carbohydrate, sulfur, phosphorus and amino acid metabolism, virulence factors, defense mechanism, and stress-responsive elements facilitating survival in the mangrove habitat. Based on polyphasic taxonomic approach including genome analyses, a novel genus Mangrovimicrobium sediminis gen. nov. sp. nov. (=SAOS 164T = MTCC 12907T = KCTC 52755T = JCM 32136T) is proposed. Additionally, the reclassification of Halioglobus pacificus (=DSM 27932T = KCTC 23430T = S1-72T) to Pseudhalioglobus pacificus comb. nov. is also proposed.
Collapse
Affiliation(s)
- Pravin Kumar
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR- Institute of Microbial Technology, Sector-39A, Chandigarh 160036, India
| | - Ashish Verma
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR- Institute of Microbial Technology, Sector-39A, Chandigarh 160036, India; Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden; Umeå Marine Sciences Centre, Hörnefors, Sweden
| | - Pooja Yadav
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR- Institute of Microbial Technology, Sector-39A, Chandigarh 160036, India
| | - Joyasree Das
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR- Institute of Microbial Technology, Sector-39A, Chandigarh 160036, India
| | - Lalit Kumar
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR- Institute of Microbial Technology, Sector-39A, Chandigarh 160036, India
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR- Institute of Microbial Technology, Sector-39A, Chandigarh 160036, India.
| |
Collapse
|
42
|
Fukui Y, Nakamura Y, Imaizumi H, Kamoshida M. Microbial influence on the larval survival of Japanese eel Anguilla japonica: Antibiotic-mediated alterations and biomarker isolation. PLoS One 2024; 19:e0306634. [PMID: 38976712 PMCID: PMC11230566 DOI: 10.1371/journal.pone.0306634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
In rearing systems for the Japanese eel Anguilla japonica, although it is assumed that microorganisms influence larval survival and mortality, particularly during the early stages of growth, the effects of bacterial communities on larval survival have yet to be sufficiently determined. In this study, we compared the bacterial communities associated with larval survival at three stages of eel growth. To artificially alter bacterial communities and assess larval survival, eel larvae were treated with 11 types of antibiotic, and larval survival and bacterial characteristics were compared between the antibiotic-treated and antibiotic-free control groups. Throughout the three growth stages, eels treated with four antibiotics (polymyxin B, tetracycline, novobiocin, and erythromycin) had survival rates higher than those in the control groups. The bacterial communities of surviving larvae in the control and antibiotic groups and dead larvae in the control groups were subsequently analyzed using 16S rRNA gene amplicon sequencing. PERMANOVA analysis indicated that these three larval groups were characterized by significantly different bacterial communities. We identified 14 biomarker amplicon sequence variants (ASVs) of bacterial genera such as Oceanobacter, Alcanivorax, Marinobacter, Roseibium, and Sneathiella that were enriched in surviving larvae in the antibiotic treatment groups. In contrast, all four biomarker ASVs enriched in dead larvae of the control groups were from bacteria in the genus Vibrio. Moreover, 52 bacterial strains corresponding to nine biomarkers were isolated using a culture method. To the best of our knowledge, this is the first study to evaluate the bacterial communities associated with the survival and mortality of larvae in during the early stages of Japanese eel growth and to isolate biomarker bacterial strains. These findings will provide valuable insights for enhancing larval survival in the eel larval rearing systems from a microbiological perspective.
Collapse
Affiliation(s)
- Youhei Fukui
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Minamiise, Japan
| | - Yoji Nakamura
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama, Japan
| | - Hitoshi Imaizumi
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Minamiizu, Japan
| | - Masaaki Kamoshida
- Headquarters, Japan Fisheries Research and Education Agency, Yokohama, Japan
| |
Collapse
|
43
|
Martin EC, Bowie AG, Wellfare Reid T, Neil Hunter C, Hitchcock A, Swainsbury DJ. Sulfoquinovosyl diacylglycerol is required for dimerisation of the Rhodobacter sphaeroides reaction centre-light harvesting 1 core complex. Biochem J 2024; 481:823-838. [PMID: 38780411 PMCID: PMC11346425 DOI: 10.1042/bcj20240125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The reaction centre-light harvesting 1 (RC-LH1) core complex is indispensable for anoxygenic photosynthesis. In the purple bacterium Rhodobacter (Rba.) sphaeroides RC-LH1 is produced both as a monomer, in which 14 LH1 subunits form a C-shaped antenna around 1 RC, and as a dimer, where 28 LH1 subunits form an S-shaped antenna surrounding 2 RCs. Alongside the five RC and LH1 subunits, an additional polypeptide known as PufX provides an interface for dimerisation and also prevents LH1 ring closure, introducing a channel for quinone exchange that is essential for photoheterotrophic growth. Structures of Rba. sphaeroides RC-LH1 complexes revealed several new components; protein-Y, which helps to form the quinone channel; protein-Z, of unknown function and seemingly unique to dimers; and a tightly bound sulfoquinovosyl diacylglycerol (SQDG) lipid that interacts with two PufX arginine residues. This lipid lies at the dimer interface alongside weak density for a second molecule, previously proposed to be an ornithine lipid. In this work we have generated strains of Rba. sphaeroides lacking protein-Y, protein-Z, SQDG or ornithine lipids to assess the roles of these previously unknown components in the assembly and activity of RC-LH1. We show that whilst the removal of either protein-Y, protein-Z or ornithine lipids has only subtle effects, SQDG is essential for the formation of RC-LH1 dimers but its absence has no functional effect on the monomeric complex.
Collapse
Affiliation(s)
- Elizabeth C. Martin
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - Adam G.M. Bowie
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - Taylor Wellfare Reid
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - C. Neil Hunter
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, U.K
| | | |
Collapse
|
44
|
Ahn S, Choi DHS, Weerawongwiwat V, Kim JH, Sukhoom A, Kim W. Aquibaculum arenosum gen. nov., sp. nov., a novel member of the family Rhodovibrionaceae, isolated from sea sand. Int J Syst Evol Microbiol 2024; 74:006458. [PMID: 38995165 PMCID: PMC11316597 DOI: 10.1099/ijsem.0.006458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
A Gram-negative, non-motile, and creamy-white coloured bacterium, designated CAU 1616T, was isolated from sea sand collected at Ayajin Beach, Goseong-gun, Republic of Korea. The bacterium was found to grow optimally at 37 °C, pH 8.0-8.5, and with 1-5 % (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequences placed strain CAU 1616T within the order Rhodospirillales. The highest 16S rRNA gene sequence similarity was to Fodinicurvata fenggangensis YIM D812T (94.1 %), Fodinicurvata sediminis YIM D82T (93.7 %), Fodinicurvata halophila BA45ALT (93.6 %) and Algihabitans albus HHTR 118T (92.3 %). Comparing strain CAU 1616T with closely related species (Fodinicurvata fenggangensis YIM D812T and Fodinicurvata sediminis YIM D82T), the average nucleotide identity based on blast+ values were 69.7-69.8 %, the average amino acid identity values were 61.3-61.4 %, and the digital DNA-DNA hybridization values were 18.4-18.5 %. The assembled draft genome of strain CAU 1616T had 29 contigs with an N50 value of 385.8 kbp, a total length of 3 490 371 bp, and a DNA G+C content of 65.1 mol%. The predominant cellular fatty acids were C18 : 1 2-OH, C19 : 0 cyclo ω8c, and summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c). The major respiratory quinone was Q-10. Based on phenotypic, phylogenetic, and chemotaxonomic evidence, strain CAU 1616T represents a novel genus in the family Rhodovibrionaceae, for which the name Aquibaculum arenosum gen. nov., sp. nov. is proposed. The type strain is CAU 1616T (=KCTC 82428T=MCCC 1K06089T).
Collapse
Affiliation(s)
- Soyeon Ahn
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - David Hyung-Sun Choi
- Faculty of Arts and Science, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Veeraya Weerawongwiwat
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Ampaitip Sukhoom
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| |
Collapse
|
45
|
Liu WJ, Zhang Y, Cao K, Li JX, Wen YQ, Sun C, Xu L. Aurantiacibacter hainanensis sp. nov. and Qipengyuania zhejiangensis sp. nov., two novel Erythrobacteraceae species isolated from tidal flat sediments. Int J Syst Evol Microbiol 2024; 74. [PMID: 39052323 DOI: 10.1099/ijsem.0.006469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Two Gram-stain-negative, rod-shaped, non-motile, aerobic and carotenoid-producing strains, belonging to the family Erythrobacteraceae, designated as H149T and Z2T, were isolated from tidal flat sediment samples collected in Hainan and Zhejiang, PR China, respectively. Growth of strain H149T occurred at 15-42 °C, 0-10.0 % (w/v) NaCl, and pH 6.0-8.5, with the optima at 35-37 °C, 3.0-3.5 % (w/v) NaCl and pH 7.0. Strain Z2T grew at 15-37 °C, 0-6.0 % (w/v) NaCl, and pH 6.0-9.5, with the optima at 25-30 °C, 0.5-1.0 % (w/v) NaCl and pH 6.0-6.5. Ubiquinone-10 was the sole ubiquinone in two strains. The predominant cellular fatty acids of strain H149T were C16 : 0, summed feature 3 and summed feature 8, while those of strain Z2T were C17 : 1 ω6c, summed feature 3 and summed feature 8. Strains H149T and Z2T shared diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and sphingoglycolipid as major polar lipids. The 16S rRNA gene sequence identity analysis indicated that strain H149T had the highest sequence identity of 98.4 % with Aurantiacibacter odishensis KCTC 23981T, and strain Z2T had that of 98.2 % with Qipengyuania pacifica NZ-96T. Phylogenetic trees based on 16S rRNA gene and core-genome sequences revealed that strains H149T and Z2T formed two independent clades in the genera Aurantiacibacter and Qipengyuania, respectively. Strain H149T had average nucleotide identity values of 74.0-81.3 % and in silico DNA-DNA hybridization values of 18.5-23.1 % with Aurantiacibacter type strains, while strain Z2T had values of 73.3-78.7 % and 14.5-33.3 % with Qipengyuania type strains. The genomic DNA G+C contents of strains H149T and Z2T were 64.3 and 61.8 %, respectively. Based on the genetic, genomic, phylogenetic, physiological and chemotaxonomic results, strains H149T (=KCTC 8397T=MCCC 1K08920T) and Z2T (=KCTC 8396T=MCCC 1K08946T) are concluded to represent two novel Erythrobacteraceae species for which the names Aurantiacibacter hainanensis sp. nov. and Qipengyuania zhejiangensis sp. nov. are proposed, respectively.
Collapse
Affiliation(s)
- Wen-Jia Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd., Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, PR China
| | - Yu Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd., Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, PR China
| | - Ke Cao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jia-Xi Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yu-Qiao Wen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Cong Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd., Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, PR China
| | - Lin Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd., Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, PR China
| |
Collapse
|
46
|
Fan J, Liu X, Wang Z, Cui N, Zhang Y, Zhang Y, Song J, Li T, Wang Y. Roseibium algae sp. nov., isolated from a marine alga ( Grateloupia sp.). Int J Syst Evol Microbiol 2024; 74. [PMID: 39073406 DOI: 10.1099/ijsem.0.006475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
A novel Gram-stain-negative, rod-shaped, non-spore-forming, aerobic, motile bacterium with a single polar or subpolar flagellum, designated strain H3510T, was isolated from marine alga collected on sea shore of Yantai, PR China. The organism grew optimally at 28 °C and pH 7.0 and in presence of 3.0 % (w/v) NaCl. The strain exhibited positive catalase activity but negative oxidase and nitrate reduction activities. The predominant cellular fatty acids were C18 : 1 ω7c and/or C18 : 1 ω6c, 11-methyl C18 : 1 ω7c, and C16 : 0. Additionally, the major polar lipids were phosphatidylglycerol, phosphatidylmonomethylethanolamine, diphosphatidylglycerol, and phosphatidylethanolamine; the respiratory quinone was ubiquinone 10 (Q-10). The genomic DNA G+C content of strain H3510T was 54.2%. The novel strain showed the closest relationship with Roseibium polysiphoniae KMM 9699T with 98.2 % 16S rRNA gene sequence similarity. The calculated values for average nucleotide identity and DNA-DNA hybridization between strain H3510T and the phylogenetically related Roseibium species were in the range of 71.3-74.9 % and 13.7-19.9 %, respectively. Based on polyphasic analyses, strain H3510T was identified as representing a novel species of the genus Roseibium, for which the name Roseibium algae sp. nov. is proposed. The type strain is H3510T (=KCTC 8206T=MCCC 1K04325T). The heterologously expressed inositol 2-dehydrogenase gene from strain H3510T displayed high oxidation activity on myo-inositol and showed potential in the production of rare stereoisomers of inositol, such as scyllo-inositol.
Collapse
Affiliation(s)
- Jiwu Fan
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, PR China
| | - Xinqi Liu
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, PR China
| | - Ziwei Wang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, PR China
| | - Ning Cui
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, PR China
| | - Yao Zhang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, PR China
| | - Yanfeng Zhang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, PR China
| | - Jiale Song
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, PR China
| | - Tao Li
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, PR China
| | - Yan Wang
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, PR China
| |
Collapse
|
47
|
Asif A, Koner S, Chen JS, Hussain A, Huang SW, Hussain B, Hsu BM. Uncovering the microbial community structure and physiological profiles of terrestrial mud volcanoes: A comprehensive metagenomic insight towards their trichloroethylene biodegradation potentiality. ENVIRONMENTAL RESEARCH 2024; 258:119457. [PMID: 38906444 DOI: 10.1016/j.envres.2024.119457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Mud volcanoes are dynamic geological features releasing methane (CH4), carbon dioxide (CO2), and hydrocarbons, harboring diverse methane and hydrocarbon-degrading microbes. However, the potential application of these microbial communities in chlorinated hydrocarbons bioremediation purposes such as trichloroethylene (TCE) has not yet been explored. Hence, this study investigated the mud volcano's microbial diversity functional potentiality in TCE degradation as well as their eco-physiological profiling using metabolic activity. Geochemical analysis of the mud volcano samples revealed variations in pH, temperature, and oxidation-reduction potential, indicating diverse environmental conditions. The Biolog Ecoplate™ carbon substrates utilization pattern showed that the Tween 80 was highly consumed by mud volcanic microbial community. Similarly, MicroResp® analysis results demonstrated that presence of additive C-substrates condition might enhanced the cellular respiration process within mud-volcanic microbial community. Full-length 16 S rRNA sequencing identified Proteobacteria as the dominant phylum, with genera like Pseudomonas and Hydrogenophaga associated with chloroalkane degradation, and methanotrophic bacteria such as Methylomicrobium and Methylophaga linked to methane oxidation. Functional analysis uncovered diverse metabolic functions, including sulfur and methane metabolism and hydrocarbon degradation, with specific genes involved in methane oxidation and sulfur metabolism. These findings provide insights into the microbial diversity and metabolic capabilities of mud volcano ecosystems, which could facilitate their effective application in the bioremediation of chlorinated compounds.
Collapse
Affiliation(s)
- Aslia Asif
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ashiq Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Shih-Wei Huang
- Center for Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung, Taiwan; Institute of Environmental Toxin and Emerging Contaminant, Cheng Shiu University, Kaohsiung, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
48
|
Deb S, Wild MA, LeClair T, Shah DH. Discovery of novel treponemes associated with pododermatitis in elk ( Cervus canadensis). Appl Environ Microbiol 2024; 90:e0010524. [PMID: 38742897 PMCID: PMC11218636 DOI: 10.1128/aem.00105-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Pododermatitis, also known as treponeme-associated hoof disease (TAHD), presents a significant challenge to elk (Cervus canadensis) populations in the northwestern USA, with Treponema spp. consistently implicated in the lesion development. However, identifying species-specific Treponema strains from these lesions is hindered by its culture recalcitrance and limited genomic information. This study utilized shotgun sequencing, in silico genome reconstruction, and comparative genomics as a culture-independent approach to identify metagenome-assembled Treponema genomes (MATGs) from skin scraping samples collected from captive elk experimentally challenged with TAHD. The genomic analysis revealed 10 new MATGs, with 6 representing novel genomospecies associated with pododermatitis in elk and 4 corresponding to previously identified species-Treponema pedis and Treponema phagedenis. Importantly, genomic signatures of novel genomospecies identified in this study were consistently detected in biopsy samples of free-ranging elk diagnosed with TAHD, indicating a potential etiologic association. Comparative metabolic profiling of the MATGs against other Treponema genomes showed a distinct metabolic profile, suggesting potential host adaptation or geographic uniqueness of these newly identified genomospecies. The discovery of novel Treponema genomospecies enhances our understanding of the pathogenesis of pododermatitis and lays the foundation for the development of improved molecular surveillance tools to monitor and manage the disease in free-ranging elk.IMPORTANCETreponema spp. play an important role in the development of pododermatitis in free-ranging elk; however, the species-specific detection of Treponema from pododermatitis lesions is challenging due to culture recalcitrance and limited genomic information. The study utilized shotgun sequencing and in silico genome reconstruction to identify novel Treponema genomospecies from elk with pododermatitis. The discovery of the novel Treponema species opens new avenues to develop molecular diagnostic and epidemiologic tools for the surveillance of pododermatitis in elk. These findings significantly enhance our understanding of the genomic landscape of the Treponemataceae consortium while offering valuable insights into the etiology and pathogenesis of emerging pododermatitis in elk populations.
Collapse
Affiliation(s)
- Sushanta Deb
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Margaret A. Wild
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Thomas LeClair
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Devendra H. Shah
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA
| |
Collapse
|
49
|
Nakai R, Kusada H, Sassa F, Makino A, Morigasaki S, Hayashi H, Takaya N, Tamaki H. Roseiterribacter gracilis gen. nov., sp. nov., a novel filterable alphaproteobacterium isolated from soil using a gel-filled microwell array device. PLoS One 2024; 19:e0304366. [PMID: 38857291 PMCID: PMC11164329 DOI: 10.1371/journal.pone.0304366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/11/2024] [Indexed: 06/12/2024] Open
Abstract
Our previous studies indicate the abundant and diverse presence of yet-to-be-cultured microorganisms in the micropore-filtered fractions of various environmental samples. Here, we isolated a novel bacterium (designated as strain TMPK1T) from a 0.45-μm-filtered soil suspension by using a gel-filled microwell array device comprising 900 microwells and characterized its phylogenetic and physiological features. This strain showed low 16S rRNA gene sequence identities (<91%) and low average nucleotide identity values (<70%) to the closest validly described species, and belonged to a novel-family-level lineage within the order Rhodospirillales of Alphaproteobacteria. Strain TMPK1T exhibited small cell sizes (0.08-0.23 μm3) and had a high cyclopropane fatty acid content (>13%), and these characteristics were differentiated from other Rhodospirillales bacteria. A comprehensive habitability search using amplicon datasets suggested that TMPK1T and its close relatives are mainly distributed in soil and plant-associated environments. Based on these results, we propose that strain TMPK1T represents a novel genus and species named Roseiterribacter gracilis gen. nov., sp. nov. (JCM 34627T = KCTC 82790T). We also propose Roseiterribacteraceae fam. nov. to accommodate the genus Roseiterribacter.
Collapse
Affiliation(s)
- Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Hiroyuki Kusada
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Fumihiro Sassa
- Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Ayaka Makino
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Susumu Morigasaki
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hisayoshi Hayashi
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoki Takaya
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
50
|
Stoll DA, Grimmler C, Hetzer B, Masoura A, Kulling SE, Huch M. Bosea rubneri sp. nov. Isolated from Organically Grown Allium cepa. Curr Microbiol 2024; 81:212. [PMID: 38839619 PMCID: PMC11153308 DOI: 10.1007/s00284-024-03717-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
Strain ZW T0_25T was isolated from an onion sample (Allium cepa var. Hytech F1) within a storage trial and proofed to be a novel, aerobic, Gram-stain negative, rod-shaped bacterial strain. Analyses of the 16S rRNA gene sequence and of the whole draft genome sequences, i.e., digital DNA-DNA hybridization (dDDH), Average Nucleotide Identity (ANI) and Average Amino Acid Identity (AAI) showed that this strain represents a new species of the genus Bosea. The genome size of strain ZW T0_25T is 6.19 Mbp, and the GC content is 66.9%. As whole cell sugars, rhamnose, ribose and glucose were identified. Ubiquinone Q-10 is the major respiratory quinone with 97.8%. Polar lipids in strain ZW T0_25T are composed of one phosphatidylethanolamine, one phosphatidylglycerol, one aminophospholipid, two aminolipids, one glycolipid and two phospholipids whereas the fatty acid profile predominantly consists of C18:1 w7c (63.3%), C16:1 w7c (19.5%) and C16:0 (7.1%). Phenotypic traits were tested in the wet lab as well as predicted in silico from genome data. Therefore, according to this polyphasic approach, the new name Bosea rubneri sp. nov. with the type strain ZW T0_25T (= DSM 116094 T = LMG 33093 T) is proposed.
Collapse
Affiliation(s)
- Dominic A Stoll
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Christina Grimmler
- Department of Safety and Quality of Meat, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, E.-C.-Baumann-Straße 20, 95326, Kulmbach, Germany
| | - Birgit Hetzer
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Alexandra Masoura
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany
| | - Melanie Huch
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131, Karlsruhe, Germany.
| |
Collapse
|