1
|
Sautrey G. An Update on Theoretical and Metrological Aspects of the Surface Hydrophobicity of Virus and Virus-Like Particles. Adv Biol (Weinh) 2024:e2400221. [PMID: 39435562 DOI: 10.1002/adbi.202400221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Viruses are biological entities embodied in protein-based nanoparticles devoid of metabolic activity. Hence, the colloidal, interfacial, and chemical reactivity of virus particles (VPs) profoundly affects the fate of natural and artificial viruses in biotic or abiotic aqueous systems. These rely on the physical chemistry at the outer surface of VPs. In other words, whether wild or synthetic VPs and regardless of the scientific fields involved, taming viruses implies thus managing the physical chemistry at the VP external surface. The surface hydrophobicity (SH) of VPs is a critical feature that must be looked at. Still, the literature dealing with nanoscale hydrophobic domains at the proteinaceous surface of VPs underlying their global SH is like a fragmented puzzle. This article provides an overview of the topic from the perspective of modern protein biophysics for updating the classic physicochemical picture of outer VP/water interfaces hitherto accepted. Patterns of non-polar and "false-polar" patches, expressing variable hydrophobic degrees according to neighboring polar patches, are now drawn. The extensive discussion of reviewed data generates such fresh ideas to explore in the coming years for better modeling the SH of wild virions or engineered virus-based nanoparticles, paving the way for new directions in fundamental virology and virus-based chemistry.
Collapse
Affiliation(s)
- Guillaume Sautrey
- LCPME UMR 7564 Université de Lorraine - CNRS, 405 rue de Vandoeuvre, Villers-lès-Nancy, 54600, France
| |
Collapse
|
2
|
Chaplin M, Leung K, Szczuka A, Hansen B, Rockey NC, Henderson JB, Wigginton KR. Linear Mixed Model of Virus Disinfection by Free Chlorine to Harmonize Data Collected across Broad Environmental Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12260-12271. [PMID: 38923944 PMCID: PMC11238732 DOI: 10.1021/acs.est.4c02885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Despite the critical importance of virus disinfection by chlorine, our fundamental understanding of the relative susceptibility of different viruses to chlorine and robust quantitative relationships between virus disinfection rate constants and environmental parameters remains limited. We conducted a systematic review of virus inactivation by free chlorine and used the resulting data set to develop a linear mixed model that estimates chlorine inactivation rate constants for viruses based on experimental conditions. 570 data points were collected in our systematic review, representing 82 viruses over a broad range of environmental conditions. The harmonized inactivation rate constants under reference conditions (pH = 7.53, T = 20 °C, [Cl-] < 50 mM) spanned 5 orders of magnitude, ranging from 0.0196 to 1150 L mg-1 min-1, and uncovered important trends between viruses. Whereas common surrogate bacteriophage MS2 does not serve as a conservative chlorine disinfection surrogate for many human viruses, CVB5 was one of the most resistant viruses in the data set. The model quantifies the role of pH, temperature, and chloride levels across viruses, and an online tool allows users to estimate rate constants for viruses and conditions of interest. Results from the model identified potential shortcomings in current U.S. EPA drinking water disinfection requirements.
Collapse
Affiliation(s)
- Mira Chaplin
- Civil
and Environmental Engineering, University
of Michigan, 1351 Beal Ave., Ann Arbor, Michigan 48109-2138, United States
| | - Kaming Leung
- Civil
and Environmental Engineering, University
of Michigan, 1351 Beal Ave., Ann Arbor, Michigan 48109-2138, United States
| | - Aleksandra Szczuka
- Civil
and Environmental Engineering, University
of Michigan, 1351 Beal Ave., Ann Arbor, Michigan 48109-2138, United States
| | - Brianna Hansen
- Civil
and Environmental Engineering, University
of Michigan, 1351 Beal Ave., Ann Arbor, Michigan 48109-2138, United States
| | - Nicole C. Rockey
- Civil
and Environmental Engineering, Duke University, Durham, North Carolina, 27708, United States
| | - James B. Henderson
- Department
of Internal Medicine, University of Michigan
Medical School, NCRC Bldg. 16 #471C, 2800 Plymouth Rd., Ann
Arbor, Michigan 48109-2138, United States
| | - Krista R. Wigginton
- Civil
and Environmental Engineering, University
of Michigan, 1351 Beal Ave., Ann Arbor, Michigan 48109-2138, United States
| |
Collapse
|
3
|
Heffron J, Samsami M, Juedemann S, Lavin J, Tavakoli Nick S, Kieke BA, Mayer BK. Mitigation of viruses of concern and bacteriophage surrogates via common unit processes for water reuse: A meta-analysis. WATER RESEARCH 2024; 252:121242. [PMID: 38342066 DOI: 10.1016/j.watres.2024.121242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
Water reuse is a growing global reality. In regulating water reuse, viruses have come to the fore as key pathogens due to high shedding rates, low infectious doses, and resilience to traditional wastewater treatments. To demonstrate the high log reductions required by emerging water reuse regulations, cost and practicality necessitate surrogates for viruses for use as challenge organisms in unit process evaluation and monitoring. Bacteriophage surrogates that are mitigated to the same or lesser extent than viruses of concern are routinely used for individual unit process testing. However, the behavior of these surrogates over a multi-barrier treatment train typical of water reuse has not been well-established. Toward this aim, we performed a meta-analysis of log reductions of common bacteriophage surrogates for five treatment processes typical of water reuse treatment trains: advanced oxidation processes, chlorination, membrane filtration, ozonation, and ultraviolet (UV) disinfection. Robust linear regression was applied to identify a range of doses consistent with a given log reduction of bacteriophages and viruses of concern for each treatment process. The results were used to determine relative conservatism of surrogates. We found that no one bacteriophage was a representative or conservative surrogate for viruses of concern across all multi-barrier treatments (encompassing multiple mechanisms of virus mitigation). Rather, a suite of bacteriophage surrogates provides both a representative range of inactivation and information about the effectiveness of individual processes within a treatment train. Based on the abundance of available data and diversity of virus treatability using these five key water reuse treatment processes, bacteriophages MS2, phiX174, and Qbeta were recommended as a core suite of surrogates for virus challenge testing.
Collapse
Affiliation(s)
- Joe Heffron
- U.S. Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, 2615 Yellowstone Dr., Marshfield, WI 54449, USA.
| | - Maryam Samsami
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Samantha Juedemann
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Jennifer Lavin
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Shadi Tavakoli Nick
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| | - Burney A Kieke
- Marshfield Clinic Research Institute, Center for Clinical Epidemiology and Population Health, 1000 N Oak Ave., Marshfield, WI 54449, USA
| | - Brooke K Mayer
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI 53233, USA
| |
Collapse
|
4
|
Chatterjee S, Chakraborty A, Banik J, Mahindru S, Sharma AK, Mukherjee M. SNAP@CQD as a promising therapeutic vehicle against HCoVs: An overview. Drug Discov Today 2023; 28:103601. [PMID: 37119964 PMCID: PMC10140467 DOI: 10.1016/j.drudis.2023.103601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
This report discusses potential therapies for treating human coronaviruses (HCoVs) and their economic impact. Specifically, we explore therapeutics that can support the body's immune response, including immunoglobulin (Ig)A, IgG and T-cell responses, to inhibit the viral replication cycle and improve respiratory function. We hypothesize that carbon quantum dots conjugated with S-nitroso-N-acetylpenicillamine (SNAP) could be a synergistic alternative cure for treating respiratory injuries caused by HCoV infections. To achieve this, we propose developing aerosol sprays containing SNAP moieties that release nitric oxide and are conjugated onto promising nanostructured materials. These sprays could combat HCoVs by inhibiting viral replication and improving respiratory function. Furthermore, they could potentially provide other benefits, such as providing novel possibilities for nasal vaccines in the future.
Collapse
Affiliation(s)
- Satyaki Chatterjee
- Amity Institute of Click Chemistry Research and Studies (AICCRS), Amity University, Noida, UP 201301, India
| | - Arnab Chakraborty
- Amity Institute of Click Chemistry Research and Studies (AICCRS), Amity University, Noida, UP 201301, India
| | - Jyotiparna Banik
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, ON M5S 3E5, Canada
| | - Sanya Mahindru
- Amity Institute of Biotechnology, Amity University, Noida 201303, India
| | - Arun K Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies (AICCRS), Amity University, Noida, UP 201301, India; Amity Institute of Biotechnology, Amity University, Noida 201303, India.
| |
Collapse
|
5
|
Bastin G, Gantzer C, Schvoerer E, Sautrey G. The presence of RNA cargo is suspected to modify the surface hydrophobicity of the MS2 phage. Virology 2023; 585:139-144. [PMID: 37343460 DOI: 10.1016/j.virol.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
The surface hydrophobicity of native or engineered non-enveloped viruses and virus-like particles (VLPs) is a key parameter regulating their fate in living and artificial aqueous systems. Its modulation is mainly depending on the structure and environment of particles. Nevertheless, unexplained variations have been reported between structurally similar viruses and with pH. This indicates that some modulating factors of their hydrophobicity remain to be identified. Herein we investigate the potential involvement of RNA cargo in the MS2 phage used as non-enveloped RNA virus model, by examining the SDS-induced electrophoretic mobility shift (SEMS) determined for native MS2 virions and corresponding RNA-free VLPs at various pH. Interestingly, the SEMS of VLPs was larger and more variable from pH 5 to 9 compared to native virions. These observations are discussed in term of RNA-dependent changes in surface hydrophobicity, suggesting that RNA cargo may be a major modulator/regulator of this viral parameter.
Collapse
Affiliation(s)
| | | | - Evelyne Schvoerer
- Université de Lorraine, CNRS, LCPME, F-54000, Nancy, France; Laboratoire de Virologie - Microbiologie, Hôpital Universitaire de Nancy, F-54500, Vandœuvre-lès-Nancy, France.
| | | |
Collapse
|
6
|
Gao Y, Sun Z, Guo Y, Qiang Z, Ben W. Virus inactivation by sequential ultraviolet-chlorine disinfection: Synergistic effect and mechanism. CHEMOSPHERE 2023; 314:137632. [PMID: 36565762 PMCID: PMC9770000 DOI: 10.1016/j.chemosphere.2022.137632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The COVID-19 outbreak has raised concerns about the efficacy of the disinfection process followed in water treatment plants in preventing the spread of viruses. Ultraviolet (UV) and chlorine multi-barrier disinfection processes are commonly used in water treatment plants; however, their effects on virus inactivation are still unclear. In this study, the effects of different disinfection processes (i.e., UV, free chlorine, and their combination) on waterborne viruses were analyzed using bacteriophage surrogates (i.e., MS2 and PR772) as alternative indicators. The results showed that the inactivation rates of PR772 by either UV or free chlorine disinfection were higher than those of MS2. PR772 was approximately 1.5 times more sensitive to UV disinfection and 8.4 times more sensitive to chlorine disinfection than MS2. Sequential UV-chlorine disinfection had a synergistic effect on virus inactivation, which was enhanced by an increase in the UV dose. As compared with single free chlorine disinfection, UV irradiation at 40 mJ cm-2 enhanced MS2 and PR772 inactivation significantly with a 2.7-fold (MS2) and a 1.7-fold (PR772) increase in the inactivation rate constants on subsequent chlorination in phosphate buffered saline. The synergistic effect was also observed in real wastewater samples, in which the MS2 inactivation rate increased 1.4-fold on subsequent chlorination following UV irradiation at 40 mJ cm-2. The mechanism of the synergistic effect of sequential UV-chlorine disinfection was determined via sodium dodecyl sulfate-polyacrylamide gel electrophoresis, using MS2 as an indicator. The results showed that the synergistic effect was due to damage to MS2 surface proteins caused by previous UV disinfection, which enhanced the sensitivity of MS2 to chlorination. This study provides a feasible approach for the efficient inactivation of viruses in water supply and drainage.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Sun
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Ying Guo
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Ben
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China.
| |
Collapse
|
7
|
Michalski J, Sommer J, Rossmanith P, Syguda A, Clapa T, Mester P. Antimicrobial and Virucidal Potential of Morpholinium-Based Ionic Liquids. Int J Mol Sci 2023; 24:ijms24021686. [PMID: 36675201 PMCID: PMC9863300 DOI: 10.3390/ijms24021686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Witnessed by the ongoing spread of antimicrobial resistant bacteria as well as the recent global pandemic of the SARS-CoV-2 virus, the development of new disinfection strategies is of great importance, and novel substance classes as effective antimicrobials and virucides are urgently needed. Ionic liquids (ILs), low-melting salts, have been already recognized as efficient antimicrobial agents with prospects for antiviral potential. In this study, we examined the antiviral activity of 12 morpholinium based herbicidal ionic liquids with a tripartite test system, including enzyme inhibition tests, virucidal activity determination against five model viruses and activity against five bacterial species. The antimicrobial and enzymatic tests confirmed that the inhibiting activity of ILs corresponds with the number of long alkyl side chains and that [Dec2Mor]+ based ILs are promising candidates as novel antimicrobials. The virucidal tests showed that ILs antiviral activity depends on the type and structure of the virus, revealing enveloped Phi6 phage as highly susceptible to the ILs action, while the non-enveloped phages PRD1 and MS2 proved completely resistant to ionic liquids. Furthermore, a comparison of results obtained for P100 and P001 phages demonstrated for the first time that the susceptibility of viruses to ionic liquids can be dependent on differences in the phage tail structure.
Collapse
Affiliation(s)
- Jakub Michalski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Julia Sommer
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Unit for Food Microbiology, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, 1210 Vienna, Austria
- Epitome GmbH, The ICON Vienna, Tower 17, Gertrude-Fröhlich-Sandner-Str. 2–4, 1100 Vienna, Austria
| | - Peter Rossmanith
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Unit for Food Microbiology, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, 1210 Vienna, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Anna Syguda
- Department of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Tomasz Clapa
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Patrick Mester
- Christian Doppler Laboratory for Monitoring of Microbial Contaminants, Unit for Food Microbiology, Department of Veterinary Public Health and Food Science, University of Veterinary Medicine, 1210 Vienna, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
- Correspondence:
| |
Collapse
|
8
|
Tang J, Zheng H, Cai J, Liu J, Wang Y, Deng J. Research progress of electrochemical oxidation and self-action of electric field for medical wastewater treatment. Front Microbiol 2023; 13:1083974. [PMID: 36687586 PMCID: PMC9853389 DOI: 10.3389/fmicb.2022.1083974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
A large number of pathogenic microorganisms exist in medical wastewater, which could invade the human body through the water and cause harm to human health. With the global pandemic coronavirus (COVID-19), public health safety become particularly important, and medical wastewater treatment is an important part of it. In particular, electrochemical disinfection technology has been widely studied in medical wastewater treatment due to its greenness, high efficiency, convenient operation, and other advantages. In this paper, the development status of electrochemical disinfection technology in the treatment of medical wastewater is reviewed, and an electrochemical three-stage disinfection system is proposed for the treatment of medical wastewater. Moreover, prospects for the electrochemical treatment of medical wastewater will be presented. It is hoped that this review could provide insight and guidance for the research and application of electrochemical disinfection technology to treat medical wastewater.GRAPHICAL ABSTRACT.
Collapse
Affiliation(s)
- Jun Tang
- Department of Neurothoracic Surgery, The Third People's Hospital of Hubei Province Yangluo Campus, Jianghan University, Wuhan, China
| | - Heng Zheng
- Department of Neurothoracic Surgery, The Third People's Hospital of Hubei Province Yangluo Campus, Jianghan University, Wuhan, China
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Jinzhong Cai
- Department of Interventional Radiology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jiang Liu
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Yangyang Wang
- Department of Neurothoracic Surgery, The Third People's Hospital of Hubei Province Yangluo Campus, Jianghan University, Wuhan, China
- College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Jun Deng
- College of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- Department of Emergency, The Third People's Hospital of Hubei Province, Jianghan University, Wuhan, China
| |
Collapse
|
9
|
Faleiro L, Marques A, Martins J, Jordão L, Nogueira I, Gumerova NI, Rompel A, Aureliano M. The Preyssler-Type Polyoxotungstate Exhibits Anti-Quorum Sensing, Antibiofilm, and Antiviral Activities. BIOLOGY 2022; 11:994. [PMID: 36101375 PMCID: PMC9311568 DOI: 10.3390/biology11070994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/31/2022]
Abstract
The increase in bacterial resistance to antibiotics has led researchers to find new compounds or find combinations between different compounds with potential antibacterial action and with the ability to prevent the development of antibiotic resistance. Polyoxotungstates (POTs) are inorganic clusters that may fulfill that need, either individually or in combination with antibiotics. Herein, we report the ability of the polyoxotungstates (POTs) with Wells-Dawson P2W18, P2W17, P2W15, and Preyssler P5W30 type structures to differently affect Gram-negative and Gram-positive microorganisms, either susceptible or resistant to antibiotics. The compound P5W30 showed the highest activity against the majority of the tested bacterial strains in comparison with the other tested POTs (P2W15, P2W17 and P2W18) that did not show inhibition zones for the Gram-negative bacteria, A. baumanii I73775, E. coli DSM 1077, E. coli I73194, K. pneumoniae I7092374, and P. aeruginosa C46281). Generally, the results evidenced that Gram-positive bacteria are more susceptible to the POTs tested. The compound P5W30 was the one most active against S. aureus ATCC 6538 and MRSA16, reaching <0.83 mg·mL−1 (100 μM) and 4.96 mg·mL−1 (600 μM), respectively. Moreover, it was verified by NMR spectroscopy that the most promising POT, P5W30, remains intact under all the experimental conditions, after 24 h at 37 °C. This prompted us to further evaluate the anti-quorum sensing activity of P5W30 using the biosensor Chromobacterium violaceum CV026, as well as its antibiofilm activity both individually and in combination with the antibiotic cefoxitin against the methicillin-resistant Staphylococcus aureus 16 (MRSA16). P5W30 showed a synergistic antibacterial effect with the antibiotic cefoxitin and chloramphenicol against MRSA16. Moreover, the antibiofilm activity of P5W30 was more pronounced when used individually, in comparison with the combination with the antibiotic cefoxitin. Finally, the antiviral activity of P5W30 was tested using the coliphage Qβ, showing a dose-dependent response. The maximum inactivation was observed at 750 μM (6.23 mg·mL−1). In sum, P5W30 shows anti-quorum sensing and antibiofilm activities besides being a potent antibacterial agent against S. aureus and to exhibit antiviral activities against enteric viruses.
Collapse
Affiliation(s)
- Leonor Faleiro
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (A.M.); (J.M.)
- Algarve Biomedical Center—Research Institute, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Ana Marques
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (A.M.); (J.M.)
- Algarve Biomedical Center—Research Institute, 8005-139 Faro, Portugal
| | - João Martins
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (A.M.); (J.M.)
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Luísa Jordão
- Departamento de Saúde Ambiental (DSA), Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Unidade de Investigação e Desenvolvimento, 1649-016 Lisboa, Portugal;
| | - Isabel Nogueira
- MicroLab, Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Nadiia I. Gumerova
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Wien, Austria; (N.I.G.); (A.R.)
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Wien, Austria; (N.I.G.); (A.R.)
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (A.M.); (J.M.)
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
10
|
Qiao Z, Ye Y, Szczuka A, Harrison KR, Dodd MC, Wigginton KR. Reactivity of Viral Nucleic Acids with Chlorine and the Impact of Virus Encapsidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:218-227. [PMID: 34905340 DOI: 10.1021/acs.est.1c04239] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Free chlorine disinfection is widely applied to inactivate viruses by reacting with their biomolecules, which include nucleic acids, proteins, and lipids. Knowing the reactivities of viral genomes with free chlorine and the protection that encapsidation provides would ultimately help predict virus susceptibility to the disinfectant. The relative reactivities of different viral genome types and the impact of viral higher order structure with free chlorine are poorly characterized. Here, we studied the reactivity of viral genomes representing four genome types from virus particles with diverse structures, namely, (+)ssRNA (MS2), dsRNA (φ6), ssDNA (φX174), and dsDNA (T3) with free chlorine. We compared the reactivities of these viral nucleic acids when they were suspended in phosphate buffer solutions (naked forms) and when they were in the native virus particles (encapsidated forms). The reactivities of nucleic acids were tracked by polymerase chain reaction (PCR)-based assays. The naked dsDNA of T3 was the least reactive with free chlorine, with an average second order rate constant normalized by the number of bases in the measured regions (in M-1 s-1 b-1) that was 34×, 65×, and 189× lower than those of the dsRNA of φ6, ssRNA of MS2, and ssDNA of φX174, respectively. Moreover, different regions in the ssRNA genome of MS2 and the dsRNA genome of φ6 exhibited statistically different reaction kinetics. The genomes within virus particles reacted slower than the naked genomes overall, but the extent of these differences varied among the four viruses. The results on viral nucleic acid reactivity help explain different susceptibilities of viruses to inactivation by free chlorine and also provide a valuable comparison of the susceptibilities of different nucleic acids to oxidants.
Collapse
Affiliation(s)
- Zhong Qiao
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yinyin Ye
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Civil, Structural, and Environmental Engineering, University at Buffalo, Buffalo, New York 14260, United States
| | - Aleksandra Szczuka
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katherine R Harrison
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael C Dodd
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Krista R Wigginton
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
New method to quantify hydrophobicity of non-enveloped virions in aqueous media by capillary zone electrophoresis. Virology 2022; 568:23-30. [DOI: 10.1016/j.virol.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/21/2022]
|
12
|
Aerobic Conditions and Endogenous Reactive Oxygen Species Reduce the Production of Infectious MS2 Phage by Escherichia coli. Viruses 2021; 13:v13071376. [PMID: 34372580 PMCID: PMC8310082 DOI: 10.3390/v13071376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Most of the defective/non-infectious enteric phages and viruses that end up in wastewater originate in human feces. Some of the causes of this high level of inactivity at the host stage are unknown. There is a significant gap between how enteric phages are environmentally transmitted and how we might design molecular tools that would only detect infectious ones. Thus, there is a need to explain the low proportion of infectious viral particles once replicated. By analyzing lysis plaque content, we were able to confirm that, under aerobic conditions, Escherichia coli produce low numbers of infectious MS2 phages (I) than the total number of phages indicated by the genome copies (G) with an I/G ratio of around 2%. Anaerobic conditions of replication and ROS inhibition increase the I/G ratio to 8 and 25%, respectively. These data cannot only be explained by variations in the total numbers of MS2 phages produced or in the metabolism of E. coli. We therefore suggest that oxidative damage impacts the molecular replication and assembly of MS2 phages.
Collapse
|
13
|
Ritz T, Salsman ML, Young DA, Lippert AR, Khan DA, Ginty AT. Boosting nitric oxide in stress and respiratory infection: Potential relevance for asthma and COVID-19. Brain Behav Immun Health 2021; 14:100255. [PMID: 33842899 PMCID: PMC8019595 DOI: 10.1016/j.bbih.2021.100255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/12/2023] Open
Abstract
Nitric oxide (NO) is a ubiquitous signaling molecule that is critical for supporting a plethora of processes in biological organisms. Among these, its role in the innate immune system as a first line of defense against pathogens has received less attention. In asthma, levels of exhaled NO have been utilized as a window into airway inflammation caused by allergic processes. However, respiratory infections count among the most important triggers of disease exacerbations. Among the multitude of factors that affect NO levels are psychological processes. In particular, longer lasting states of psychological stress and depression have been shown to attenuate NO production. The novel SARS-CoV-2 virus, which has caused a pandemic, and with that, sustained levels of psychological stress globally, also adversely affects NO signaling. We review evidence on the role of NO in respiratory infection, including COVID-19, and stress, and argue that boosting NO bioavailability may be beneficial in protection from infections, thus benefitting individuals who suffer from stress in asthma or SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Thomas Ritz
- Department of Psychology, Southern Methodist University, 6116 N. Central Expressway, Suite 1160, Dallas, TX, USA
| | - Margot L Salsman
- Department of Psychology, Southern Methodist University, 6116 N. Central Expressway, Suite 1160, Dallas, TX, USA
| | - Danielle A Young
- Department of Psychology and Neuroscience, Baylor University, One Bear Place, 97334, Baylor Sciences Building, Suite B.309, Waco, TX, USA
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Fondren Science Building 303, P.O. Box, 750314, Dallas, TX, USA
| | - Dave A Khan
- Department of Internal Medicine, Allergy and Immunology, The University of Texas Southwestern Medical Center, 5323, Harry Hines Blvd., Dallas, TX, USA
| | - Annie T Ginty
- Department of Psychology and Neuroscience, Baylor University, One Bear Place, 97334, Baylor Sciences Building, Suite B.309, Waco, TX, USA
| |
Collapse
|
14
|
Chassaing M, Bastin G, Robin M, Majou D, Belliot G, de Rougemont A, Boudaud N, Gantzer C. Free Chlorine and Peroxynitrite Alter the Capsid Structure of Human Norovirus GII.4 and Its Capacity to Bind Histo-Blood Group Antigens. Front Microbiol 2021; 12:662764. [PMID: 33927710 PMCID: PMC8076513 DOI: 10.3389/fmicb.2021.662764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/23/2021] [Indexed: 12/02/2022] Open
Abstract
Human noroviruses (HuNoVs) are one of the leading causes of acute gastroenteritis worldwide. HuNoVs are frequently detected in water and foodstuffs. Free chlorine and peroxynitrite (ONOO−) are two oxidants commonly encountered by HuNoVs in humans or in the environment during their natural life cycle. In this study, we defined the effects of these two oxidants on GII.4 HuNoVs and GII.4 virus-like particles (VLPs). The impact on the capsid structure, the major capsid protein VP1 and the ability of the viral capsid to bind to histo-blood group antigens (HBGAs) following oxidative treatments were analyzed. HBGAs are attachment factors that promote HuNoV infection in human hosts. Overall, our results indicate that free chlorine acts on regions involved in the stabilization of VP1 dimers in VLPs and affects their ability to bind to HBGAs. These effects were confirmed in purified HuNoVs. Some VP1 cross-links also take place after free chlorine treatment, albeit to a lesser extent. Not only ONOO− mainly produced VP1 cross-links but can also dissociate VLPs depending on the concentration applied. Nevertheless, ONOO− has less effect on HuNoV particles.
Collapse
Affiliation(s)
- Manon Chassaing
- Food Safety Department, ACTALIA, Saint-Lô, France.,Université de Lorraine, CNRS, LCPME, Nancy, France
| | | | - Maëlle Robin
- Food Safety Department, ACTALIA, Saint-Lô, France
| | | | - Gaël Belliot
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France.,UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France
| | - Alexis de Rougemont
- National Reference Centre for Gastroenteritis Viruses, Laboratory of Virology, University Hospital of Dijon, Dijon, France.,UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France
| | | | | |
Collapse
|