1
|
Raka RN, Zhang L, Chen R, Xue X. Antibiotic Resistance Genes in Global Food Transformation System: Edible Insects vs. Livestock. Foods 2024; 13:3257. [PMID: 39456319 PMCID: PMC11506948 DOI: 10.3390/foods13203257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Antibiotic-resistant genes (ARGs) pose a significant threat to the global food transformation system. The increasing prevalence of ARGs in food has elicited apprehension about public health safety. The widespread dissemination of ARGs in food products, driven by the inappropriate use of antibiotics, presents significant adversity for the safety of emerging future food sources such as edible insects. As the world faces increasing challenges related to food security, climate change, and antibiotic resistance, edible insects offer a sustainable and resilient food source. The intriguing possibility of edible insects serving as a less conducive environment for ARGs compared to livestock warrants further exploration and investigation. In this recent work, we listed ARGs from edible insects detected so far by in vitro approaches and aimed to construct a fair comparison with ARGs from livestock based on relevant genes. We also presented our argument by analyzing the factors that might be responsible for ARG abundance in livestock vs. edible insects. Livestock and edible insects have diverse gut microbiota, and their diets differ with antibiotics. Consequently, their ARG abundance may vary as well. In addition, processed edible insects have lower levels of ARGs than raw ones. We hypothesize that edible insects could potentially contain a lower abundance of ARGs and exhibit a diminished ability to disseminate ARGs relative to livestock. A regulatory framework could help intercept the increasing prevalence of ARGs. Due diligence should also be taken when marketing edible insects for consumption.
Collapse
Affiliation(s)
| | | | | | - Xiaofeng Xue
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (R.N.R.)
| |
Collapse
|
2
|
Jaleta M, Junker V, Kolte B, Börger M, Werner D, Dolsdorf C, Schwenker J, Hölzel C, Zentek J, Amon T, Nübel U, Kabelitz T. Improvements of weaned pigs barn hygiene to reduce the spread of antimicrobial resistance. Front Microbiol 2024; 15:1393923. [PMID: 38812683 PMCID: PMC11135127 DOI: 10.3389/fmicb.2024.1393923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
The spread of antimicrobial resistance (AMR) in animal husbandry is usually attributed to the use of antibiotics and poor hygiene and biosecurity. We therefore conducted experimental trials to improve hygiene management in weaned pig houses and assessed the impact on the spread. For each of the two groups examined, the experimental group (EG) and the control group (CG), three replicate batches of piglets from the same pig breeder, kept in pre-cleaned flat decks, were analyzed. In the flat decks of the experimental groups, the hygiene conditions (cleaning, disinfection, dust removal and fly control) were improved, while regular hygiene measures were carried out in the control groups. The occurrence and spread of AMR were determined in Escherichia coli (E. coli; resistance indicator) using cultivation-dependent (CFU) and -independent (qPCR) methods as well as whole genome sequencing of isolates in samples of various origins, including feces, flies, feed, dust and swabs. Surprisingly, there were no significant differences (p > 0.05) in the prevalence of resistant E. coli between the flat decks managed with conventional techniques and those managed with improved techniques. Selective cultivation delivered ampicillin- and sulfonamide-resistant E. coli proportions of up to 100% and 1.2%, respectively. While 0.5% E. coli resistant to cefotaxime and no ciprofloxacin resistance were detected. There was a significant difference (p < 0.01) in the abundance of the blaTEM-1 gene in fecal samples between EG and CG groups. The colonization of piglets with resistant pathogens before arrival, the movement of flies in the barn and the treatment of bacterial infections with antibiotics obscured the effects of hygiene improvement. Biocide tolerance tests showed no development of resistance to the farm regular disinfectant. Managing hygiene alone was insufficient for reducing antimicrobial resistances in piglet rearing. We conclude that the complex factors contributing to the presence and distribution of AMR in piglet barns underscore the necessity for a comprehensive management strategy.
Collapse
Affiliation(s)
- Megarsa Jaleta
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Dahlem Research School, Freie Universität Berlin, Berlin, Germany
| | - Vera Junker
- Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Baban Kolte
- Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
| | - Maria Börger
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Claudia Dolsdorf
- Teaching and Research Station for Animal Breeding and Husbandry (LVAT), Ruhlsdorf, Germany
| | - Julia Schwenker
- Faculty of Agricultural and Nutritional Sciences Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christina Hölzel
- Faculty of Agricultural and Nutritional Sciences Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Free University Berlin, Berlin, Germany
| | - Thomas Amon
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Animal Hygiene and Environmental Health (ITU), Free University Berlin, Berlin, Germany
| | - Ulrich Nübel
- Leibniz-Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Technical University Braunschweig, Institute of Microbiology, Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Tina Kabelitz
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| |
Collapse
|
3
|
Barbosa JA, Yang CT, Finatto AN, Cantarelli VS, de Oliveira Costa M. T-independent B-cell effect of agents associated with swine grower-finisher diarrhea. Vet Res Commun 2024; 48:991-1001. [PMID: 38044397 DOI: 10.1007/s11259-023-10257-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
Swine dysentery, spirochetal colitis, and salmonellosis are production-limiting enteric diseases of global importance to the swine industry. Despite decades of efforts, mitigation of these diseases still relies on antibiotic therapy. A common knowledge gap among the 3 agents is the early B-cell response to infection in pigs. Thus, this study aimed to characterize the porcine B-cell response to Brachyspira hyodysenteriae, Brachyspira hampsonii (virulent and avirulent strains), Brachyspira pilosicoli, and Salmonella Typhimurium, the agents of the syndromes mentioned above. Immortalized porcine B-cell line derived from a crossbred pig with lymphoma were co-incubated for 8 h with each pathogen, as well as E. coli lipopolysaccharide (LPS) and a sham-inoculum (n = 3/treatment). B-cell viability following treatments was evaluated using trypan blue, and the expression levels of B-cell activation-related genes was profiled using reverse transcription quantitative PCR. Only S. Typhimurium and LPS led to increased B-cell mortality. B. pilosicoli downregulated B-lymphocyte antigen (CD19), spleen associated tyrosine Kinase (syk), tyrosine-protein kinase (lyn), and Tumour Necrosis Factor alpha (TNF-α), and elicited no change in immunoglobulin-associated beta (CD79b) and swine leukocyte antigen class II (SLA-DRA) expression levels, when compared to the sham-inoculated group. In contrast, all other treatments significantly upregulated CD79b and stimulated responses in other B-cell downstream genes. These findings suggest that B. pilosicoli does not elicit an immediate T-independent B-cell response, nor does it trigger antigen-presenting mechanisms. All other agents activated at least one trigger within the T-independent pathways, as well as peptide antigen presenting mechanisms. Future research is warranted to verify these findings in vivo.
Collapse
Affiliation(s)
- Jéssica A Barbosa
- Animal Science Department, Federal University of Lavras, Lavras, Minas Gerais, Brazil
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Christine T Yang
- Department of Integrated Sciences, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Arthur N Finatto
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Vinícius S Cantarelli
- Animal Science Department, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Matheus de Oliveira Costa
- Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
4
|
O’Neill L, Manzanilla EG, Ekhlas D, Leonard FC. Antimicrobial Resistance in Commensal Escherichia coli of the Porcine Gastrointestinal Tract. Antibiotics (Basel) 2023; 12:1616. [PMID: 37998818 PMCID: PMC10669415 DOI: 10.3390/antibiotics12111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial resistance (AMR) in Escherichia coli of animal origin presents a threat to human health. Although animals are not the primary source of human infections, humans may be exposed to AMR E. coli of animal origin and their AMR genes through the food chain, direct contact with animals, and via the environment. For this reason, AMR in E. coli from food producing animals is included in most national and international AMR monitoring programmes and is the subject of a large body of research. As pig farming is one of the largest livestock sectors and the one with the highest antimicrobial use, there is considerable interest in the epidemiology of AMR in E. coli of porcine origin. This literature review presents an overview and appraisal of current knowledge of AMR in commensal E. coli of the porcine gastrointestinal tract with a focus on its evolution during the pig lifecycle and the relationship with antimicrobial use. It also presents an overview of the epidemiology of resistance to extended spectrum cephalosporins, fluoroquinolones, and colistin in pig production. The review highlights the widespread nature of AMR in the porcine commensal E. coli population, especially to the most-used classes in pig farming and discusses the complex interplay between age and antimicrobial use during the pig lifecycle.
Collapse
Affiliation(s)
- Lorcan O’Neill
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| | - Edgar García Manzanilla
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| | - Daniel Ekhlas
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin D15 DY05, Ireland
| | - Finola C. Leonard
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| |
Collapse
|
5
|
Conceição S, Queiroga MC, Laranjo M. Antimicrobial Resistance in Bacteria from Meat and Meat Products: A One Health Perspective. Microorganisms 2023; 11:2581. [PMID: 37894239 PMCID: PMC10609446 DOI: 10.3390/microorganisms11102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
According to the 2030 Agenda of the United Nations, one of the sustainable development goals is to ensure sustainable consumption and production patterns. The need to ensure food safety includes, other than microbiological hazards, concerns with antimicrobial-resistant (AMR) bacteria. The emergence of resistant bacteria in the food industry is essentially due to the abusive, and sometimes incorrect, administration of antimicrobials. Although not allowed in Europe, antimicrobials are often administered to promote animal growth. Each time antimicrobials are used, a selective pressure is applied to AMR bacteria. Moreover, AMR genes can be transmitted to humans through the consumption of meat-harbouring-resistant bacteria, which highlights the One Health dimension of antimicrobial resistance. Furthermore, the appropriate use of antimicrobials to ensure efficacy and the best possible outcome for the treatment of infections is regulated through the recommendations of antimicrobial stewardship. The present manuscript aims to give the current state of the art about the transmission of AMR bacteria, particularly methicillin-resistant S. aureus, ESBL-producing Enterobacteriaceae, and vancomycin-resistant Enterococcus spp., along with other ESKAPE bacteria, from animals to humans through the consumption of meat and meat products, with emphasis on pork meat and pork meat products, which are considered the most consumed worldwide.
Collapse
Affiliation(s)
- Sara Conceição
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (S.C.); (M.C.Q.)
| | - Maria Cristina Queiroga
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (S.C.); (M.C.Q.)
- Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Marta Laranjo
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (S.C.); (M.C.Q.)
- Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
6
|
Abdullahi IN, Lozano C, Simón C, Zarazaga M, Torres C. Within-Host Diversity of Coagulase-Negative Staphylococci Resistome from Healthy Pigs and Pig Farmers, with the Detection of cfr-Carrying Strains and MDR- S. borealis. Antibiotics (Basel) 2023; 12:1505. [PMID: 37887206 PMCID: PMC10604674 DOI: 10.3390/antibiotics12101505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The ecology and diversity of resistome in coagulase-negative staphylococci (CoNS) from healthy pigs and pig farmers are rarely available as most studies focused on the livestock-associated methicillin-resistant S. aureus. This study aims to characterize the antimicrobial resistance (AMR) mechanisms, intra-host species diversity (more than one species in a host), and intra-species AMR diversity (same species with more than one AMR profile) in CoNS recovered from the nasal cavities of healthy pigs and pig farmers. One-hundred-and-one CoNS strains previously recovered from 40 pigs and 10 pig farmers from four Spanish pig farms were tested to determine their AMR profiles. Non-repetitive strains were selected (n = 75) and their AMR genes, SCCmec types, and genetic lineages were analyzed by PCR/sequencing. Of the non-repetitive strains, 92% showed a multidrug resistance (MDR) phenotype, and 52% were mecA-positive, which were associated with SCCmec types V (46.2%), IVb (20.5%), and IVc (5.1%). A total of 28% of the pigs and pig farmers had intra-host species diversity, while 26% had intra-species AMR diversity. High repertoires of AMR genes were detected, including unusual ones such as tetO, ermT, erm43, and cfr. Most important was the detection of cfr (in S. saprophyticus and S. epidermidis-ST16) in pigs and pig farmers; whereas MDR-S. borealis strains were identified in pig farmers. Pig-to-pig transmission of CoNS with similar AMR genes and SCCmec types was detected in 42.5% of pigs. The high level of multidrug, within-host, and intra-species resistome diversity in the nasal CoNS highlights their ability to be AMR gene reservoirs in healthy pigs and pig farmers. The detection of MDR-S. borealis and linezolid-resistant strains underscore the need for comprehensive and continuous surveillance of MDR-CoNS at the pig farm level.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (C.L.); (M.Z.)
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (C.L.); (M.Z.)
| | - Carmen Simón
- Faculty of Veterinary Medicine, University of Zaragoza, 50001 Zaragoza, Spain;
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (C.L.); (M.Z.)
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (C.L.); (M.Z.)
| |
Collapse
|
7
|
Almansour AM, Alhadlaq MA, Alzahrani KO, Mukhtar LE, Alharbi AL, Alajel SM. The Silent Threat: Antimicrobial-Resistant Pathogens in Food-Producing Animals and Their Impact on Public Health. Microorganisms 2023; 11:2127. [PMID: 37763971 PMCID: PMC10537193 DOI: 10.3390/microorganisms11092127] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) is a global health problem without geographic boundaries. This increases the risk of complications and, thus, makes it harder to treat infections, which can result in higher healthcare costs and a greater number of deaths. Antimicrobials are often used to treat infections from pathogens in food-producing animals, making them a potential source of AMR. Overuse and misuse of these drugs in animal agriculture can lead to the development of AMR bacteria, which can then be transmitted to humans through contaminated food or direct contact. It is therefore essential to take multifaceted, comprehensive, and integrated measures, following the One Health approach. To address this issue, many countries have implemented regulations to limit antimicrobial use. To our knowledge, there are previous studies based on AMR in food-producing animals; however, this paper adds novelty related to the AMR pathogens in livestock, as we include the recent publications of this field worldwide. In this work, we aim to describe the most critical and high-risk AMR pathogens among food-producing animals, as a worldwide health problem. We also focus on the dissemination of AMR genes in livestock, as well as its consequences in animals and humans, and future strategies to tackle this threat.
Collapse
Affiliation(s)
- Ayidh M. Almansour
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Meshari A. Alhadlaq
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Khaloud O. Alzahrani
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Lenah E. Mukhtar
- Antimicrobial Resistance Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia;
| | - Abdulmohsen L. Alharbi
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia; (M.A.A.); (K.O.A.); (A.L.A.)
| | - Sulaiman M. Alajel
- Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh 11671, Saudi Arabia;
| |
Collapse
|
8
|
Martins-Silva P, Dias CDP, Vilar LC, de Queiroz Silva S, Rossi CC, Giambiagi-deMarval M. Dispersion and persistence of antimicrobial resistance genes among Staphylococcus spp. and Mammaliicoccus spp. isolated along a swine manure treatment plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34709-34719. [PMID: 36515883 DOI: 10.1007/s11356-022-24725-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Staphylococcus spp. and Mammaliicoccus spp. colonize the skin and mucosa of humans and other animals and are responsible for several opportunistic infections. Staphylococci antibiotic resistance may be present in the environment due to the spread of treated and untreated manure from the livestock industry due to antibiotic use to disease control or growth promoter. In this work, we analyzed the species distribution and antimicrobial susceptibility of Staphylococcus and Mammaliicoccus species along different sites of a swine manure treatment plant from Southeastern Brazil. Bacterial colonies were obtained on mannitol salt agar, selected after catalase test and Gram staining, and finally identified by mass spectrometry and sequencing of the tuf gene. According to the results, S.cohnii and S. simulans were the most prevalent species. Antibiotic resistance test revealed that several strains were resistant to multiple drugs, with high levels of chloramphenicol resistance (98%), followed by erythromycin (79%), tetracycline (73%), gentamicin (46%), ciprofloxacin (42%), cefoxitin (18%), sulfamethoxazole + trimethoprim (12%), and linezolid (4%). In addition, gene detection by PCR showed that all strains carried at least 2 resistance genes and one of them carried all 11 genes investigated. Using the GTG5-PCR approach, a high genetic similarity was observed between some strains that were isolated from different points of the treatment plant. Although some were seemingly identical, differences in their resistance phenotype and genotype suggest horizontal gene transfer. The presence of resistant bacteria and resistance genes along the treatment system highlights the potential risk of contamination by people in direct contact with these animals and the soil since the effluent is used as a biofertilizer in the surrounding environment.
Collapse
Affiliation(s)
- Priscila Martins-Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Camila de Paula Dias
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Lucas Cecílio Vilar
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Ciro César Rossi
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcia Giambiagi-deMarval
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
9
|
Li G, Li X, Hu J, Pan Y, Ma Z, Zhang L, Xiong W, Zeng D, Zeng Z. Molecular epidemiology and transmission of rmtB-positive Escherichia coli among ducks and environment. Poult Sci 2023; 102:102579. [PMID: 36913759 PMCID: PMC10023955 DOI: 10.1016/j.psj.2023.102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
This study aimed to investigate the transmission and molecular epidemiological characteristics of the rmtB gene in Escherichia coli (E. coli) strains isolated from duck farms in Guangdong Province of China from 2018 to 2021. A total of 164 (19.4%, 164/844) rmtB-positive E. coli strains were recovered from feces, viscera, and environment. We performed antibiotic susceptibility tests, pulsed-field gel electrophoresis (PFGE), and conjugation experiments. We obtained the genetic context of 46 rmtB-carrying E. coli isolates and constructed a phylogenetic tree via whole genome sequencing (WGS) and bioinformatic analysis. The isolation rate of rmtB-carrying E. coli isolates in duck farms increased yearly from 2018 to 2020 but decreased in 2021. All rmtB-harboring E. coli strains were multidrug resistant (MDR), and 99.4% of the strains were resistant to more than 10 drugs. Surprisingly, duck- and environment-associated strains similarly showed high MDR. Conjugation experiments revealed that the rmtB gene horizontally cocarried blaCTX-M and blaTEM gene dissemination via IncFII plasmids. Insertion sequences IS26, ISCR1, and ISCR3 were closely associated with the spread of rmtB-harboring E. coli isolates. WGS analysis indicated that ST48 was the most prevalent sequence type. The results of single nucleotide polymorphism (SNP) differences revealed potential clonal transmission between ducks and the environment. Based on One Health principles, we need to strictly use veterinary antibiotics, monitor the distribution of MDR strains, and evaluate the impact of plasmid-mediated rmtB gene on human, animal, and environmental health.
Collapse
Affiliation(s)
- Guihua Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoshen Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
| | - Jianxin Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
| | - Yu Pan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
| | - Zhenbao Ma
- Animal Husbandry and Fisheries Research Center of Guangdong Haid Group Co., Ltd., Guangzhou, Guangdong Province, China
| | - Lingxuan Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
| | - Dongping Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Vonderohe CE, Brizgys LA, Richert JA, Radcliffe JS. Swine production: how sustainable is sustainability? Anim Front 2022; 12:7-17. [PMID: 36530511 PMCID: PMC9749816 DOI: 10.1093/af/vfac085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Affiliation(s)
- C E Vonderohe
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA
| | - L A Brizgys
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J A Richert
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J S Radcliffe
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Belloso Daza MV, Milani G, Cortimiglia C, Pietta E, Bassi D, Cocconcelli PS. Genomic Insights of Enterococcus faecium UC7251, a Multi-Drug Resistant Strain From Ready-to-Eat Food, Highlight the Risk of Antimicrobial Resistance in the Food Chain. Front Microbiol 2022; 13:894241. [PMID: 35814695 PMCID: PMC9262338 DOI: 10.3389/fmicb.2022.894241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
The presence of multi-drug resistant (MDR) bacteria in ready-to-eat foods comprises a threat for public health due to their ability to acquire and transfer antibiotic-resistant determinants that could settle in the microbiome of the human digestive tract. In this study, Enterococcus faecium UC7251 isolated from a fermented dry sausage was characterized phenotypically and genotypically to hold resistance to multiple antibiotics including aminoglycosides, macrolides, β-lactams, and tetracyclines. We further investigated this strain following a hybrid sequencing and assembly approach (short and long reads) and determined the presence of various mobile genetic elements (MGEs) responsible of horizontal gene transfer (HGT). On the chromosome of UC7251, we found one integrative and conjugative element (ICE) and a conjugative transposon Tn916-carrying tetracycline resistance. UC7251 carries two plasmids: one small plasmid harboring a rolling circle replication and one MDR megaplasmid. The latter was identified as mobilizable and containing a putative integrative and conjugative element-like region, prophage sequences, insertion sequences, heavy-metal resistance genes, and several antimicrobial resistance (AMR) genes, confirming the phenotypic resistance characteristics. The transmissibility potential of AMR markers was observed through mating experiments, where Tn916-carried tetracycline resistance was transferred at intra- and inter-species levels. This work highlights the significance of constant monitoring of products of animal origin, especially RTE foodstuffs, to stimulate the development of novel strategies in the race for constraining the spread of antibiotic resistance.
Collapse
|
12
|
Tsekouras N, Athanasakopoulou Z, Diezel C, Kostoulas P, Braun SD, Sofia M, Monecke S, Ehricht R, Chatzopoulos DC, Gary D, Krähmer D, Spyrou V, Christodoulopoulos G, Billinis C, Papatsiros VG. Cross-Sectional Survey of Antibiotic Resistance in Extended Spectrum β-Lactamase-Producing Enterobacteriaceae Isolated from Pigs in Greece. Animals (Basel) 2022; 12:1560. [PMID: 35739896 PMCID: PMC9219512 DOI: 10.3390/ani12121560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to estimate the prevalence of extended-spectrum β-lactamase-producing (ESBL) bacteria in swine. Thus, 214 fecal samples were collected from suckling and weaned piglets from 34 farms in Greece (out of an overall population of about 14,300 sows). A subset of 78 (36.5%) ESBL producers were identified as E. coli (69/78, 88.5%), K. pneumoniae spp. pneumoniae (3.8%), P. mirabilis (5.1%), E. cloacae complex (1.3%) and S. enterica spp. diarizonae (1.3%). Resistance to at least one class of non-β-lactam antibiotics was detected in 78 isolates. Among the E. coli strains, resistance was identified with regard to aminoglycosides (n = 31), fluoroquinolones (n = 49), tetracycline (n = 26) and trimethoprim/sulfamethoxazole (n = 46). Of the three K. pneumoniae spp. pneumoniae, two displayed resistances to aminoglycosides and all were resistant to fluoroquinolones, tetracyclines and trimethoprim/sulfamethoxazole. As for the four P. mirabilis isolates, three had a resistant phenotype for aminoglycosides and all were resistant to imipenem, fluoroquinolones, tetracyclines and trimethoprim/sulfamethoxazole. Molecular characterization of the isolates revealed the presence of CTX-M, SHV and TEM genes, as well as of genes conferring resistance to fluoroquinolones, aminoglycosides, sulfonamides, trimethoprim, macrolides and colistin. High levels of antimicrobial resistance (AMR) were demonstrated in Greek swine herds posing a concern for the efficacy of treatments at the farm level as well as for public health.
Collapse
Affiliation(s)
- Nikolaos Tsekouras
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (N.T.); (G.C.)
| | - Zoi Athanasakopoulou
- Department of Microbiology and Parasitology, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (C.B.)
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Polychronis Kostoulas
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (P.K.); (D.C.C.)
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Marina Sofia
- Department of Microbiology and Parasitology, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (C.B.)
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (C.D.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07745 Jena, Germany
| | - Dimitris C. Chatzopoulos
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (P.K.); (D.C.C.)
| | - Dominik Gary
- INTER-ARRAY by fzmb GmbH, 99947 Bad Langensalza, Germany; (D.G.); (D.K.)
| | - Domenique Krähmer
- INTER-ARRAY by fzmb GmbH, 99947 Bad Langensalza, Germany; (D.G.); (D.K.)
| | - Vassiliki Spyrou
- Faculty of Animal Science, University of Thessaly, 41110 Larissa, Greece;
| | - Georgios Christodoulopoulos
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (N.T.); (G.C.)
| | - Charalambos Billinis
- Department of Microbiology and Parasitology, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (C.B.)
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece; (P.K.); (D.C.C.)
| | - Vasileios G. Papatsiros
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (N.T.); (G.C.)
| |
Collapse
|
13
|
Monger XC, Saucier L, Gilbert AA, Vincent AT. Stabilization of swine faecal samples influences taxonomic and functional results in microbiome analyses. MethodsX 2022; 9:101716. [PMID: 35601955 PMCID: PMC9118172 DOI: 10.1016/j.mex.2022.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
Stabilization of faecal samples improves the integrity of extracted DNA. Microbiome results are affected by sample stabilization. Results are similar for samples that were stabilized when frozen, to samples that were stabilized before freezing.
Studies on the microbiome of different species are on the rise, due to a growing interest in animal health and the safety of food products of animal origin. A challenge with studying animals’ microbiomes is to find methods that obtain a good representation of the microbial community of interest. Good unbiased sampling protocols are the basis for a solid experimental design, but may need to be done in environments where sample preservation could be difficult. In this study, we evaluate by shotgun sequencing the impact of stabilizing swine faeces samples using a commercial stabilizer (PERFORMAbiome • GUT | PB-200, DNA Genotek). Using stabilizer makes it possible to obtain DNA that is significantly less degraded than when the samples are not stabilized. Also, the results on the taxonomy and on the bacterial functions encoded in the microbiome are impacted by whether or not the samples are stabilized. Finally, the stabilization of samples that had already been frozen and stored at -80°C led to extraction and DNA quality results similar to those obtained from samples that were stabilized before freezing.
Collapse
|
14
|
Pholwat S, Liu J, Taniuchi M, Haque R, Alam MM, Faruque ASG, Ferdous T, Ara R, Platts-Mills JA, Houpt ER. Use of Molecular Methods To Detect Shigella and Infer Phenotypic Resistance in a Shigella Treatment Study. J Clin Microbiol 2022; 60:e0177421. [PMID: 34669456 PMCID: PMC8769730 DOI: 10.1128/jcm.01774-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022] Open
Abstract
Molecular diagnostic methods improve the detection of Shigella, yet their ability to detect Shigella drug resistance on direct stool specimens is less clear. We tested 673 stool specimens from a Shigella treatment study in Bangladesh, including 154 culture-positive stool specimens and their paired Shigella isolates. We utilized a TaqMan array card that included quantitative PCR (qPCR) assays for 24 enteropathogens and 36 antimicrobial resistance (AMR) genes. Shigella was detected by culture in 23% of stool specimens (154/673), while qPCR detected Shigella at diarrhea-associated quantities in 49% (329/673; P < 0.05). qPCR for AMR genes on the Shigella isolates yielded >94% sensitivity and specificity compared with the phenotypic susceptibility results for azithromycin and ampicillin. The performance for trimethoprim-sulfamethoxazole susceptibility was less robust, and the assessment of ciprofloxacin was limited because most isolates were resistant. The detection of AMR genes in direct stool specimens generally yielded low specificities for predicting the resistance of the paired isolate, whereas the sensitivity and negative predictive values for predicting susceptibility were often higher. For example, the detection of ermB or mphA in stool yielded a specificity of 56% but a sensitivity of 91% and a negative predictive value of 91% versus the paired isolate's azithromycin resistance result. Patients who received azithromycin prior to presentation were universally culture negative (0/112); however, qPCR still detected Shigella at diarrhea-associated quantities in 34/112 (30%). In sum, molecular diagnostics on direct stool specimens greatly increase the diagnostic yield for Shigella, including in the setting of prior antibiotics. The molecular detection of drug resistance genes in direct stool specimens had low specificity for confirming resistance but could potentially "rule out" macrolide resistance.
Collapse
Affiliation(s)
- Suporn Pholwat
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jie Liu
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Mami Taniuchi
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammed Masud Alam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Abu Syed Golam Faruque
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tahsin Ferdous
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rifat Ara
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - James A. Platts-Mills
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
15
|
Yang D, Heederik DJJ, Mevius DJ, Scherpenisse P, Luiken REC, Van Gompel L, Skarżyńska M, Wadepohl K, Chauvin C, Van Heijnsbergen E, Wouters IM, Greve GD, Jongerius-Gortemaker BGM, Tersteeg-Zijderveld M, Zając M, Wasyl D, Juraschek K, Fischer J, Wagenaar JA, Smit LAM, Schmitt H. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:969-978. [PMID: 35061866 PMCID: PMC8969523 DOI: 10.1093/jac/dkac002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/26/2021] [Indexed: 11/29/2022] Open
Abstract
Objectives The occurrence and zoonotic potential of antimicrobial resistance (AMR) in pigs and broilers has been studied intensively in past decades. Here, we describe AMR levels of European pig and broiler farms and determine the potential risk factors. Methods We collected faeces from 181 pig farms and 181 broiler farms in nine European countries. Real-time quantitative PCR (qPCR) was used to quantify the relative abundance of four antimicrobial resistance genes (ARGs) [aph(3′)-III, erm(B), sul2 and tet(W)] in these faeces samples. Information on antimicrobial use (AMU) and other farm characteristics was collected through a questionnaire. A mixed model using country and farm as random effects was performed to evaluate the relationship of AMR with AMU and other farm characteristics. The correlation between individual qPCR data and previously published pooled metagenomic data was evaluated. Variance component analysis was conducted to assess the variance contribution of all factors. Results The highest abundance of ARG was for tet(W) in pig faeces and erm(B) in broiler faeces. In addition to the significant positive association between corresponding ARG and AMU levels, we also found on-farm biosecurity measures were associated with relative ARG abundance in both pigs and broilers. Between-country and between-farm variation can partially be explained by AMU. Different ARG targets may have different sample size requirements to represent the overall farm level precisely. Conclusions qPCR is an efficient tool for targeted assessment of AMR in livestock-related samples. The AMR variation between samples was mainly contributed to by between-country, between-farm and within-farm differences, and then by on-farm AMU.
Collapse
Affiliation(s)
- Dongsheng Yang
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Corresponding author. E-mail:
| | - Dick J. J. Heederik
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Dik J. Mevius
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Peter Scherpenisse
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Roosmarijn E. C. Luiken
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Liese Van Gompel
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Magdalena Skarżyńska
- Department of Microbiology, National Veterinary Research Institute, Pulawy, Poland
| | - Katharina Wadepohl
- Außenstelle für Epidemiologie, Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Claire Chauvin
- ANSES, Epidemiology, Health and Welfare Unit, Paris, France
| | - Eri Van Heijnsbergen
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Inge M. Wouters
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Gerdit D. Greve
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Monique Tersteeg-Zijderveld
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Magdalena Zając
- Department of Microbiology, National Veterinary Research Institute, Pulawy, Poland
| | - Dariusz Wasyl
- Department of Microbiology, National Veterinary Research Institute, Pulawy, Poland
| | - Katharina Juraschek
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jennie Fischer
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Lidwien A. M. Smit
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Heike Schmitt
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | |
Collapse
|
16
|
Mitchaothai J, Srikijkasemwat K. Antimicrobial resistance in fecal Escherichia coli from different pig production systems. Anim Biosci 2021; 35:138-146. [PMID: 34474532 PMCID: PMC8738921 DOI: 10.5713/ab.21.0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
Objective The objective of the current study was to investigate the influences of conventional (CO) and deep litter (DE) systems on antimicrobial resistance in fecal Escherichia coli (E. coli). Methods A cross-sectional study was carried out to detect antimicrobial resistance to E. coli in swine fecal samples in CO and DE systems located in western and northeastern Thailand. Individual rectal swab samples were taken only from healthy pigs. A total of 215 individual and healthy pigs were randomly selected for isolation and antimicrobial susceptibility test of E. coli by the disc diffusion method. The test panel included amoxicillin (AMX), colistin, doxycycline (DOX), enrofloxacin, gentamicin (GEN), kanamycin, neomycin (NEO), and trimethoprim-sulfamethoxazole (SXT). Results There were significant (p<0.05) lower resistance levels for GEN, NEO, and SXT in the DE farms compared to those in the CO farms. There was a lower number of antimicrobial resistance agents (p<0.001) in the DE farms compared to those in the CO farms. This result was consistent with those in western (p<0.01) and northeastern (p<0.01) Thailand. Overall, antibiograms of AMX-SXT and AMX-DOX-SXT were found in the CO (19.09% and 20.91%, respectively) and the DE (16.19% and 24.76%, respectively) farms. No antimicrobial resistance (5.71%) was found and AMX (13.33%) resistant pigs in the DE farms, whereas the pattern of AMX-GEN-SXT (6.36%) and AMX-DOX-GEN-SXT (11.82%) resistant pigs was found in the CO farms. Conclusion The DE system for pig farming was superior to conventional pig farming by lowering the resistance level of fecal E. coli to GEN, NEO, and SXT, with decreasing the number of antimicrobial resistance agents and inducing a small proportion of pigs to be free from antimicrobial resistance.
Collapse
Affiliation(s)
- Jamlong Mitchaothai
- Department of Animal Production Technology and Fisheries, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Kanokrat Srikijkasemwat
- Department of Animal Production Technology and Fisheries, Faculty of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|