1
|
Xing J, Han R, Zhao J, Zhang Y, Zhang M, Zhang Y, Zhang H, Nang SC, Zhai Y, Yuan L, Wang S, Wu H. Revisiting therapeutic options against resistant klebsiella pneumoniae infection: Phage therapy is key. Microbiol Res 2025; 293:128083. [PMID: 39904002 DOI: 10.1016/j.micres.2025.128083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Multi-drug resistant and carbapenem-resistant hypervirulent Klebsiella pneumoniae strains are spreading globally at an alarming rate, emerging as one of the most serious threats to global public health. The formidable challenges posed by the current arsenal of antimicrobials highlight the urgent need for novel strategies to combat K. pneumoniae infections. This review begins with a comprehensive analysis of the global dissemination of virulence factors and critical resistance profiles in K. pneumoniae, followed by an evaluation of the accessibility of novel therapeutic approaches for treating K. pneumoniae in clinical settings. Among these, phage therapy stands out for its considerable potential in addressing life-threatening K. pneumoniae infections. We critically examine the existing preclinical and clinical evidence supporting phage therapy, identifying key limitations that impede its broader clinical adoption. Additionally, we rigorously explore the role of genetic engineering in expanding the host range of K. pneumoniae phages, and discuss the future trajectory of this technology. In light of the 'Bad Bugs, No Drugs' era, we advocate leveraging artificial intelligence and deep learning to optimize and expand the application of phage therapy, representing a crucial advancement in the fight against the escalating threat of K. pneumoniae infections.
Collapse
Affiliation(s)
- Jiabao Xing
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Rongjia Han
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jinxin Zhao
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yuying Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yichao Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hang Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Sue C Nang
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yajun Zhai
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Li Yuan
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shanmei Wang
- Department of Microbiology Laboratory, Henan Provincial People's Hospital, Zhengzhou, China.
| | - Hua Wu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
2
|
Kumar S, Verma A, Singh A, Naranje KM, Misra R. Colistin-resistant Klebsiella pneumoniae sepsis in neonates and infants: an alarming crisis in an Indian NICU. J Trop Pediatr 2025; 71:fmae044. [PMID: 39953790 DOI: 10.1093/tropej/fmae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Emergence of multidrug-resistant strain of Klebsiella pneumoniae has led to limited number of antimicrobial options for treatment. Even though outbreaks of colistin-carbapenem-resistant K. pneumoniae (CCRKp) are evolving, reported literature is scarce. This is a retrospective case series of three infants who acquired CCRKp sepsis during an outbreak in a Level III neonatal intensive care unit (NICU) of a tertiary care centre in Northern India. Data were retrieved from medical records of patients. Three babies developed new onset clinical worsening during an outbreak of sepsis. All had respiratory comorbidities and previous antibiotic exposure prior to isolation of CCRKp sepsis from blood. The organism was sensitive to combination of ceftazidime plus avibactam and tetracyclines in two infants; in one other newborn, no sensitive antibiotic was found. Two neonates deceased due to multiorgan dysfunction. An outbreak investigation revealed one common source of sterile water used in a humidifier. The outbreak was resolved by temporarily closing the NICU, segregating the infected infants and using corrective measures such as procuring a fresh batch of sterile water bottles, disinfecting the NICU, and reinforcing the use of antiseptic techniques. The emergence of CCRKp is alarming, particularly in low- and middle-income countries and tropical regions where such outbreaks are difficult to control due to limited healthcare infrastructure. These findings highlight the urgent need for stringent antimicrobial stewardship practices, enhanced infection control, and tailored interventions in resource-limited settings. It is also to be emphasized that the main mechanism of carbapenem resistance in Kp organisms in Asia seems to be different from the West and is mainly mediated by metallo-beta-lactamases and Class D carbapenemases.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Neonatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Akanksha Verma
- Department of Neonatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Anita Singh
- Department of Neonatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Kirti M Naranje
- Department of Neonatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Richa Misra
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| |
Collapse
|
3
|
Geleta D, Abebe G, Tilahun T, Ahmed H, Workneh N, Beyene G. Prevalence and pathogen profiles of bacteremia in neonates hospitalized for clinical Sepsis in Ethiopia: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:1424. [PMID: 39695487 DOI: 10.1186/s12879-024-10312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Bacteremia is prevalent in neonates, largely attributed to factors inherent in the neonatal period. However, the prevalence of proven bacteremia in Ethiopian neonates has not been previously synthesized. Accordingly, this systematic review and meta-analysis aimed to analyze the prevalence of bacteremia and pathogen profiles in neonates hospitalized for clinical sepsis in Ethiopia. METHODS This systematic review and meta-analysis followed the preferred reporting items for systematic review and meta-analysis (PRISMA) 2020. The literature search was conducted across five databases including PubMed, Google Scholar, Web of Science, Science Direct, and Research for Life spanning from January 2015 to July 2023. The search strategy used MeSH terms and involved screening titles and abstracts, reviewing full-text articles, and including only observational studies published in English within the specified timeframe. Data extraction and quality assessment were performed by three experienced reviewers using a validated data collection tool and the Joanna Briggs Institute quality assessment tool, respectively. The prevalence of neonatal bacteremia was determined through a random effects model, with heterogeneity among studies assessed using the Q statistic and the I2 statistic. Publication bias was evaluated using a funnel plot and Egger's regression test, and STATA version 16.0 was used for all analysis at 95% confidence level. RESULTS A meta-analysis of nine studies revealed a bacteremia prevalence of 40.0% (95% CI: 34.0-46.0%). Subgroup analysis indicated variations in prevalence based on regions and study designs, with Oromia at 44.0% (95% CI: 28.0, 61.0%) and Amhara at 39.0% (95% CI: 27.0, 51.0%). Longitudinal studies exhibited a higher prevalence (47.0%, 95% CI: 27.0-68.0%) compared to cross-sectional designs (38.0%, 95% CI: 32.0-44.0%). Gram-negative bacteria were identified as the predominant etiological agents, representing 59.5% (95% CI: 56.8-62.3%) of cases. Among the bacterial species, Staphylococcus aureus emerged as the most prevalent (20.0%, 95% CI: 18.0%, 22.0%), followed by coagulase-negative staphylococci and Klebsiella pneumoniae, each contributing to 17.0% (95% CI: 15.0%, 20.0%) of bacteremia cases. CONCLUSION The study revealed a significant high prevalence of bacteremia, with differences noted across regions and study designs. Key pathogens identified were Staphylococcus aureus, Klebsiella pneumoniae and coagulase-negative staphylococci. It is advisable to implement surveillance systems, targeted prevention strategies, diagnostic stewardship, and further research on regional variations and bacterial profiles to effectively enhance the ominous future.
Collapse
Affiliation(s)
- Daniel Geleta
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Oromia, Ethiopia.
| | - Gemeda Abebe
- School of Medical Laboratory Sciences, Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Oromia, Ethiopia
| | - Tsion Tilahun
- Department of Pediatrics and Child Health, Faculty of Medicine, Jimma University, Jimma, Oromia, Ethiopia
| | - Hunde Ahmed
- Department of Pediatrics and Child Health, Faculty of Medicine, Jimma University, Jimma, Oromia, Ethiopia
| | - Netsanet Workneh
- Department of Pediatrics and Child Health, Faculty of Medicine, Jimma University, Jimma, Oromia, Ethiopia
| | - Getenet Beyene
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Oromia, Ethiopia
| |
Collapse
|
4
|
Gamaleldin P, Alseqely M, Evans BA, Omar H, Abouelfetouh A. Comparison of genotypic features between two groups of antibiotic resistant Klebsiella pneumoniae clinical isolates obtained before and after the COVID-19 pandemic from Egypt. BMC Genomics 2024; 25:983. [PMID: 39434011 PMCID: PMC11492754 DOI: 10.1186/s12864-024-10661-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/25/2024] [Indexed: 10/23/2024] Open
Abstract
Klebsiella pneumoniae is a common pathogen capable of causing a wide range of infections. Antibiotic resistance complicates treatment of these infections significantly. We are comparing resistance levels and genotypes among two collections of K. pneumoniae clinical isolates from Alexandria Main University Hospital (AMUH). We used disc diffusion and Minimum Inhibitory Concentration (MIC) by microbroth dilution to assess resistance levels and performed whole genome sequencing (WGS) to describe multilocus sequence types (MLST) and resistance gene presence. Among a collection of 56 K. pneumoniae clinical isolates (19 from 2019 to 37 from 2021), multidrug resistance (MDR) was 33% and 10%, extended drug resistance (XDR) was 24% and 46% and pan-drug resistance (PDR) was 43% and 43%, respectively. We identified 15 MLST STs including two novel types (ST-6118 and ST-6119 ). ST-101 and ST-383 were common between the two collections; ST-101 was the most common genotype in 2019 (28.6%) and ST-147 was most common in 2021 (25%). Ampicillin/sulbactam, amikacin, cefepime, ceftriaxone and ertapenem MICs were significantly higher in 2021. Prevalence of aph(3') - Ia, aph(3')-VI, mphA was significantly higher in 2021. The increasing resistance levels and the persistence of some MDR/XDR genotypes is concerning. Understanding mechanisms of resistance will inform infection control and antimicrobial stewardship plans to prevent evolution and spread of XDR and PDR strains.
Collapse
Affiliation(s)
- Pansee Gamaleldin
- Department of Clinical Pharmacy, Alexandria Main University Hospital, Alexandria, Egypt
| | - Mustafa Alseqely
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 1 Khartoum Sq, Alexandria, 21521, Egypt.
| | | | - Hoda Omar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 1 Khartoum Sq, Alexandria, 21521, Egypt
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 1 Khartoum Sq, Alexandria, 21521, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alamein International University, New Alamein, Egypt
| |
Collapse
|
5
|
Alshehri SM, Abdullah NS, Algarni A, AlZomia AS, Assiry MM. Resistance Pattern of Klebsiella pneumoniae in Aseer Region, Saudi Arabia: A Ten-Year Hospital-Based Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1344. [PMID: 39202625 PMCID: PMC11356269 DOI: 10.3390/medicina60081344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: The frequency of multidrug-resistant Klebsiella pneumoniae (MDRKP) has dramatically increased worldwide in recent decades, posing an urgent threat to public health. The aim of this study was to assess the extent of K. pneumoniae in the Aseer region and explore the corresponding antimicrobial resistance profile over the last ten years. Materials and Methods: A record-based retrospective study was conducted in a tertiary hospital during the period of 2013 to 2022. The study targeted laboratory samples taken from patients admitted to the hospital and sent for K. pneumoniae culturing. We included only samples taken from the patient and confirmed by the lab. Data were extracted using a pre-structured data extraction sheet to avoid data-collection bias and confirm the inter-rater precision. Statistical Package for Social Sciences (SPSS) version 26 was employed for statistical analysis. All relationships were tested using Pearson X2 test for categorical data or chi-square for linear trend for resistance rate over years. Results: We obtained 3921 samples of isolated K. pneumoniae out of 28,420 bacterial samples. The isolation rate began at 11.3% in 2013, decreased to 6.1% in 2016, and then increased to a peak of 16.3% in 2021, before slightly decreasing to 12.8% in 2022. In total, 23.7% of K. pneumoniae samples were identified in urine samples, 19% in sputum samples, 14% in wound samples, and 11.7% in blood samples. The overall antibiotic resistance rate of K. pneumoniae from 2013 to 2022 showed a significant increase, particularly during 2020 and 2021, before decreasing again in 2022. The resistance rate decreased from 22.2% in 2013 to 18.6% in 2016 and increased to 54.6% and 56.4% during 2020 and 2021, respectively (p = 0.039). Conclusions: We observed a significant shift in K. pneumoniae resistance for some antibiotics during the study period, highlighting the urgent need for enhanced antimicrobial stewardship and infection-control measures.
Collapse
Affiliation(s)
- Saad Mohammed Alshehri
- Preventive Medicine and Public Health Physician, Ministry of Health, Abha 62515, Saudi Arabia
| | - Naif Saud Abdullah
- Community Medicine Consultant, Ministry of Health, Abha 62515, Saudi Arabia
| | - Abdullah Algarni
- Family Medicine Consultant, Aseer Central Hospital, Abha 62515, Saudi Arabia
| | | | - Mohammed Mushabub Assiry
- Senior Technician in the Department of Microbiology, Aseer Central Hospital, Abha 62515, Saudi Arabia
| |
Collapse
|
6
|
Ragheb SM, Osei Sekyere J. Molecular characterization of hypermucoviscous carbapenemase-encoding Klebsiella pneumoniae isolates from an Egyptian hospital. Ann N Y Acad Sci 2024; 1535:109-120. [PMID: 38577761 DOI: 10.1111/nyas.15126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/16/2024] [Accepted: 02/21/2024] [Indexed: 04/06/2024]
Abstract
This study aimed to screen antibiotic resistance and virulence genes in carbapenem-resistant hypermucoviscous Klebsiella pneumoniae isolates from an Egyptian hospital. Among 38 previously confirmed carbapenem-nonsusceptible K. pneumoniae isolates, a string test identified three isolates as positive for hypermucoviscosity. Phenotypic characterization and molecular detection of carbapenemase- and virulence-encoding genes were performed. PCR-based multilocus sequence typing and phylogenetics were used to determine the clonality and global epidemiology of the strains. The coexistence of virulence and resistance genes in the isolates was analyzed statistically using a chi-square test. Three isolates showed the presence of carbapenemase-encoding genes (blaNDM, blaVIM, and blaIMP), adhesion genes (fim-H-1 and mrkD), and siderophore genes (entB); the isolates belonged to sequence types (STs) 101, 1310, and 1626. The relatedness between these sequence types and the sequence types of globally detected hypermucoviscous K. pneumoniae that also harbor carbapenemases was determined. Our analysis showed that the resistance and virulence profiles were not homogenous. Phylogenetically, different clones clustered together. There was no significant association between the presence of resistance and virulence genes in the isolates. There is a need for periodic surveillance of the healthcare settings in Egypt and globally to understand the true epidemiology of carbapenem-resistant, hypermucoviscous K. pneumoniae.
Collapse
Affiliation(s)
- Suzan Mohammed Ragheb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - John Osei Sekyere
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
- Department of Dermatology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Institute of Biomarker Research, Medical Diagnostic Laboratories LLC, Genesis Biotechnology Group, Hamilton, New Jersey, USA
| |
Collapse
|
7
|
Hamed SM, Mohamed HO, Ashour HM, Fahmy LI. Comparative genomic analysis of strong biofilm-forming Klebsiella pneumoniae isolates uncovers novel IS Ecp1-mediated chromosomal integration of a full plasmid-like sequence. Infect Dis (Lond) 2024; 56:91-109. [PMID: 37897710 DOI: 10.1080/23744235.2023.2272624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The goal of the current study was to elucidate the genomic background of biofilm formation in Klebsiella pneumoniae. METHODS Clinical isolates were screened for biofilm formation using the crystal violet assay. Antimicrobial resistance (AMR) profiles were assessed by disk diffusion and broth microdilution tests. Biofilm formation was correlated to virulence and resistance genes screened by PCR. Draft genomes of three isolates that form strong biofilm were generated by Illumina sequencing. RESULTS Only the siderophore-coding gene iutA was significantly associated with more pronounced biofilm formation. ST1399-KL43-O1/O2v1 and ST11-KL15-O4 were assigned to the multidrug-resistant strain K21 and the extensively drug-resistant strain K237, respectively. ST1999-KL38-O12 was assigned to K57. Correlated with CRISPR/Cas distribution, more plasmid replicons and prophage sequences were identified in K21 and K237 compared to K57. The acquired AMR genes (blaOXA-48, rmtF, aac(6')-Ib and qnrB) and (blaNDM-1, blaCTX-M, aph(3')-VI, qnrS, and aac(6')-Ib-cr) were found in K237 and K21, respectively. The latter showed a novel ISEcp1-mediated chromosomal integration of replicon type IncM1 plasmid-like structure harboring blaCTX-M-14 and aph(3')-VI that uniquely interrupted rcsC. The plasmid-mediated heavy metal resistance genes merACDEPRT and arsABCDR were spotted in K21, which also exclusively carried the acquired virulence genes mrkABCDF and the hypervirulence-associated genes iucABCD-iutA, and rmpA/A2. Pangenome analysis revealed NTUH-K2044 accessory genes most frequently shared with K21. CONCLUSIONS While less virulent to Galleria mellonella than ST1999 (K57), the strong biofilm former, multidrug-resistant, NDM-producer K. pneumoniae K21 (ST1399-KL43-O1/O2v1) carries a novel chromosomally integrated plasmid-like structure and hypervirulence-associated genes and represents a serious threat to countries in the area.
Collapse
Affiliation(s)
- Samira M Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Hend O Mohamed
- Department of Biological Control Research, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL, USA
| | - Lamiaa I Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
8
|
Jiang M, Chen X, Li H, Peng X, Peng B. Exogenous L-Alanine promotes phagocytosis of multidrug-resistant bacterial pathogens. EMBO Rep 2023; 24:e49561. [PMID: 37943703 PMCID: PMC10702822 DOI: 10.15252/embr.201949561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Multidrug-resistant bacteria present a major threat to public health that urgently requires new drugs or treatment approaches. Here, we conduct integrated proteomic and metabolomics analyses to screen for molecular candidates improving survival of mice infected with Vibrio parahaemolyticus, which indicate that L-Alanine metabolism and phagocytosis are strongly correlated with mouse survival. We also assess the role of L-Alanine in improving mouse survival by in vivo bacterial challenge experiments using various bacteria species, including V. parahaemolyticus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Functional studies demonstrate that exogenous L-Alanine promotes phagocytosis of these multidrug-resistant pathogen species. We reveal that the underlying mechanism involves two events boosted by L-Alanine: TLR4 expression and L-Alanine-enhanced TLR4 signaling via increased biosynthesis and secretion of fatty acids, including palmitate. Palmitate enhances binding of lipopolysaccharide to TLR4, thereby promoting TLR4 dimer formation and endocytosis for subsequent activation of the PI3K/Akt and NF-κB pathways and bacteria phagocytosis. Our data suggest that modulation of the metabolic environment is a plausible approach for combating multidrug-resistant bacteria infection.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory of Bio‐Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Laboratory for Marine Biology and Biotechnology and Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Institute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Xin‐Hai Chen
- State Key Laboratory of Bio‐Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
| | - Hui Li
- State Key Laboratory of Bio‐Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Laboratory for Marine Biology and Biotechnology and Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Xuan‐Xian Peng
- State Key Laboratory of Bio‐Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Laboratory for Marine Biology and Biotechnology and Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| | - Bo Peng
- State Key Laboratory of Bio‐Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)Sun Yat‐sen UniversityGuangzhouChina
- Laboratory for Marine Biology and Biotechnology and Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina
| |
Collapse
|
9
|
Moussa B, Hmami F, Arhoun B, El Fakir S, Massik AM, Belchkar S, Hibaoui L, Oumokhtar B. Intense Intestinal Carriage of Carbapenemase-Producing Klebsiella pneumoniae Co-harboring OXA-48, KPC, VIM, and NDM Among Preterm Neonates in a Moroccan Neonatal Intensive Care Unit. Cureus 2023; 15:e50095. [PMID: 38186478 PMCID: PMC10770769 DOI: 10.7759/cureus.50095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
INTRODUCTION This study aimed to investigate the prevalence and the carbapenemase production ability of Klebsiella pneumoniae isolates from premature neonates' intestinal tracts in a Moroccan neonatal intensive care unit Methodology: Active rectal screening was performed among 339 preterm infants. The collected isolates were subjected to antibiotic susceptibility testing, phenotypic analysis of carbapenemase production, and molecular detection of carbapenemase genes. RESULTS Out of 293 K. pneumoniae isolates collected, 31.05% (91) were resistant to carbapenem and produced carbapenemase, resulting in a 22.12% rate of intestinal carriage. Among the carbapenem-resistant K. pneumoniae isolates, 40.65% (37) had co-harbored carbapenemase genes. All isolates contained the blaOXA-48 gene, and the blaNDM, blaVIM, and blaKPC genes were detected in 30.76%, 9.89%, and 2.19% of the isolates, respectively. Out of 30.76% of these isolates had both the blaOXA-48 and blaNDM genes, 8.79% had both blaOXA-48 and blaVIM, and only 2.20% had both blaOXA-48 and blaKPC genes. Furthermore, 88.57% of carbapenem-resistantK. pneumoniae isolates co-harboring carbapenemase genes were genetically related strains. CONCLUSIONS This study revealed a high prevalence of intestinal carriage of carbapenem-resistant K. pneumoniae. Therefore, implementing effective screening and diagnostic measures, and focusing on antimicrobial stewardship are essential to preventing the spread of these resistant strains and minimizing the risk they pose to premature infants.
Collapse
Affiliation(s)
- Benboubker Moussa
- Human Pathology Biomedicine and Environment Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, MAR
| | - Fouzia Hmami
- Neonatal Intensive Care Unit, University Hospital Hassan II, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, MAR
| | - Btissam Arhoun
- Microbiology and Molecular Biology Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, MAR
| | - Samira El Fakir
- Department of Epidemiology and Public Health, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, MAR
| | - Abdelhamid M Massik
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, MAR
| | - Salim Belchkar
- Epidemiology and Health Science Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, MAR
| | - Lahbib Hibaoui
- Biomedical and Translational Research Laboratory, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, MAR
| | - Bouchra Oumokhtar
- Microbiology and Molecular Biology Laboratory, Microorganisms Team, Genomics and Oncogene Factors, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, MAR
| |
Collapse
|
10
|
Okasha H, Dahroug H, Gouda AE, Shemis MA. A novel antibacterial approach of Cecropin-B peptide loaded on chitosan nanoparticles against MDR Klebsiella pneumoniae isolates. Amino Acids 2023; 55:1965-1980. [PMID: 37966500 PMCID: PMC10724327 DOI: 10.1007/s00726-023-03356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
Egypt has witnessed the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae, which has posed a serious healthcare challenge. The proper treatment choice for MDR-KP infections is not well determined which renders the problem more complicated, thus making the control of such infections a serious challenge for healthcare professionals. This study aims to encapsulate the cationic antimicrobial peptide; Cecropin-B (Cec-B), to increase its lifetime, drug targeting, and efficacy and study the antimicrobial effect of free and encapsulated recombinant rCec-B peptide on multidrug-resistant K. pneumoniae (MDR-KP) isolates. Fifty isolates were collected from different clinical departments at Theodore Bilharz Research Institute. Minimal inhibitory concentrations (MICs) of rCec-B against MDR-KP isolates were determined by the broth microdilution test. In addition, encapsulation of rCec-B peptide into chitosan nanoparticles and studying its bactericidal effect against MDR-KP isolates were also performed. The relative expression of efflux pump and porin coding genes (ArcrB, TolC, mtdK, and Ompk35) was detected by quantitative PCR in treated MDR-KP bacterial isolates compared to untreated isolates. Out of 60 clinical MDR isolates, 50 were MDR-KP. 60% of the isolates were XDR while 40% were MDR. rCec-B were bactericidal on 21 isolates, then these isolates were subjected to treatment using free nanocapsule in addition to the encapsulated peptide. Free capsules showed a mild cytotoxic effect on MDR-KP at the highest concentration. MIC of encapsulated rCec-B was higher than the free peptide. The expression level of genes encoding efflux and porin (ArcrB, TolC, mtdK, and Ompk35) was downregulated after treatment with encapsulated rCec-B. These findings indicate that encapsulated rCec-B is a promising candidate with potent antibacterial activities against drug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Hend Okasha
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Heba Dahroug
- Microbiology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Abdullah E Gouda
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed Abbas Shemis
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
11
|
Alkompoz AK, Hamed SM, Zaid ASA, Almangour TA, Al-Agamy MH, Aboshanab KM. Correlation of CRISPR/Cas and Antimicrobial Resistance in Klebsiella pneumoniae Clinical Isolates Recovered from Patients in Egypt Compared to Global Strains. Microorganisms 2023; 11:1948. [PMID: 37630508 PMCID: PMC10459600 DOI: 10.3390/microorganisms11081948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
The CRISPR/Cas system has been long known to interfere with the acquisition of foreign genetic elements and was recommended as a tool for fighting antimicrobial resistance. The current study aimed to explore the prevalence of the CRISPR/Cas system in Klebsiella pneumoniae isolates recovered from patients in Egypt in comparison to global strains and correlate the CRISPR/Cas to susceptibility to antimicrobial agents. A total of 181 clinical isolates were PCR-screened for cas and selected antimicrobial resistance genes (ARGs). In parallel, 888 complete genome sequences were retrieved from the NCBI database for in silico analysis. CRISPR/Cas was found in 46 (25.4%) isolates, comprising 18.8% type I-E and 6.6% type I-E*. Multidrug resistance (MDR) and extensive drug resistance (XDR) were found in 73.5% and 25.4% of the isolates, respectively. More than 95% of the CRISPR/Cas-bearing isolates were MDR (65.2%) or XDR (32.6%). No significant difference was found in the susceptibility to the tested antimicrobial agents among the CRISPR/Cas-positive and -negative isolates. The same finding was obtained for the majority of the screened ARGs. Among the published genomes, 23.2% carried CRISPR/Cas, with a higher share of I-E* (12.8%). They were confined to specific sequence types (STs), most commonly ST147, ST23, ST15, and ST14. More plasmids and ARGs were carried by the CRISPR/Cas-negative group than others, but their distribution in the two groups was not significantly different. The prevalence of some ARGs, such as blaKPC, blaTEM, and rmtB, was significantly higher among the genomes of the CRISPR/Cas-negative strains. A weak, nonsignificant positive correlation was found between the number of spacers and the number of resistance plasmids and ARGs. In conclusion, the correlation between CRISPR/Cas and susceptibility to antimicrobial agents or bearing resistance plasmids and ARGs was found to be nonsignificant. Plasmid-targeting spacers might not be naturally captured by CRISPR/Cas. Spacer match analysis is recommended to provide a clearer image of the exact behavior of CRISPR/Cas towards resistance plasmids.
Collapse
Affiliation(s)
| | - Samira M. Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Giza 12451, Egypt;
| | - Ahmed S. Abu Zaid
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Thamer A. Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohamed H. Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
12
|
Hu Y, Yang Y, Feng Y, Fang Q, Wang C, Zhao F, McNally A, Zong Z. Prevalence and clonal diversity of carbapenem-resistant Klebsiella pneumoniae causing neonatal infections: A systematic review of 128 articles across 30 countries. PLoS Med 2023; 20:e1004233. [PMID: 37339120 DOI: 10.1371/journal.pmed.1004233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/04/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae is the most common pathogen causing neonatal infections, leading to high mortality worldwide. Along with increasing antimicrobial use in neonates, carbapenem-resistant K. pneumoniae (CRKP) has emerged as a severe challenge for infection control and treatment. However, no comprehensive systematic review is available to describe the global epidemiology of neonatal CRKP infections. We therefore performed a systematic review of available data worldwide and combined a genome-based analysis to address the prevalence, clonal diversity, and carbapenem resistance genes of CRKP causing neonatal infections. METHODS AND FINDINGS We performed a systematic review of studies reporting population-based neonatal infections caused by CRKP in combination with a genome-based analysis of all publicly available CRKP genomes with neonatal origins. We searched multiple databases (PubMed, Web of Science, Embase, Ovid MEDLINE, Cochrane, bioRxiv, and medRxiv) to identify studies that have reported data of neonatal CRKP infections up to June 30, 2022. We included studies addressing the prevalence of CRKP infections and colonization in neonates but excluded studies lacking the numbers of neonates, the geographical location, or independent data on Klebsiella or CRKP isolates. We used narrative synthesis for pooling data with JMP statistical software. We identified 8,558 articles and excluding those that did not meet inclusion criteria. We included 128 studies, none of which were preprints, comprising 127,583 neonates in 30 countries including 21 low- and middle-income countries (LMICs) for analysis. We found that bloodstream infection is the most common infection type in reported data. We estimated that the pooled global prevalence of CRKP infections in hospitalized neonates was 0.3% (95% confidence interval [CI], 0.2% to 0.3%). Based on 21 studies reporting patient outcomes, we found that the pooled mortality of neonatal CRKP infections was 22.9% (95% CI, 13.0% to 32.9%). A total of 535 neonatal CRKP genomes were identified from GenBank including Sequence Read Archive, of which 204 were not linked to any publications. We incorporated the 204 genomes with a literature review for understanding the species distribution, clonal diversity, and carbapenemase types. We identified 146 sequence types (STs) for neonatal CRKP strains and found that ST17, ST11, and ST15 were the 3 most common lineages. In particular, ST17 CRKP has been seen in neonates in 8 countries across 4 continents. The vast majority (75.3%) of the 1,592 neonatal CRKP strains available for analyzing carbapenemase have genes encoding metallo-β-lactamases and NDM (New Delhi metallo-β-lactamase) appeared to be the most common carbapenemase (64.3%). The main limitation of this study is the absence or scarcity of data from North America, South America, and Oceania. CONCLUSIONS CRKP contributes to a considerable number of neonatal infections and leads to significant neonatal mortality. Neonatal CRKP strains are highly diverse, while ST17 is globally prevalent and merits early detection for treatment and prevention. The dominance of blaNDM carbapenemase genes imposes challenges on therapeutic options in neonates and supports the continued inhibitor-related drug discovery.
Collapse
Affiliation(s)
- Ya Hu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yongqiang Yang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Qingqing Fang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Chengcheng Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Feifei Zhao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Chen J, Li J, Huang F, Fang J, Cao Y, Zhang K, Zhou H, Cai J, Cui W, Chen C, Zhang G. Clinical characteristics, risk factors and outcomes of Klebsiella pneumoniae pneumonia developing secondary Klebsiella pneumoniae bloodstream infection. BMC Pulm Med 2023; 23:102. [PMID: 36978069 PMCID: PMC10052803 DOI: 10.1186/s12890-023-02394-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Abstract
Purpose
The clinical characteristics of Klebsiella pneumoniae (KP) pneumonia and KP bloodstream infection (KP-BSI) are often reported, while the risk factors for KP pneumonia developing into secondary KP-BSI (KP-pneumonia/KP-BSI) are largely unknown. Therefore, this study attempted to investigate the clinical characteristics, risk factors and outcomes of KP-pneumonia/KP-BSI.
Methods
A retrospective observational study was conducted at a tertiary hospital between January 1, 2018, and December 31, 2020. The patients were divided into groups of KP pneumonia alone and KP pneumonia/KP-BSI, and the clinical information were collected from medical records electronic system.
Results
A total of 409 patients were finally recruited. According to the multivariate logistic regression analysis, male sex (adjusted odds ratio [aOR] 3.7; 95% CI, 1.44–9.5), immunosuppression (aOR, 13.52; 95% CI, 2.53,72.22), APACHE II score higher than 21 (aOR, 3.39; 95% CI, 1.41–8.12), serum procalcitonin (PCT) levels above 1.8 ng/ml (aOR, 6.37; 95% CI, 2.67–15.27), ICU stay of more than 2.5 days before pneumonia onset (aOR, 1.09; 95% CI, 1.02,1.17), mechanical ventilation (aOR, 4.96; 95% CI, 1.2,20.5), Klebsiella pneumoniae isolates producing extended spectrum β-lactamase (ESBL-positive KP) (aOR, 12.93; 95% CI, 5.26–31.76), and inappropriate antibacterial therapy (aOR, 12.38; 95% CI, 5.36–28.58) were independent factors of KP pneumonia/KP BSI. In comparison with the patients with KP pneumonia alone, the patients with KP pneumonia/KP BSI showed an almost 3 times higher incidence of septic shock (64.4% vs. 20.1%, p < 0.01), a longer duration of mechanical ventilation, and longer lengths of ICU stay and total hospital stay (median days, 15 vs. 4,19 vs. 6, 34 vs. 17, respectively, both p < 0.01). Additionally, the overall in-hospital crude mortality rate in the patients with KP-pneumonia/KP-BSI was more than two times higher than that in those with KP pneumonia alone (61.5% vs. 27.4%, p < 0.01).
Conclusion
Factors including male sex, immunosuppression, APACHE II score higher than 21, serum PCT levels above 1.8 ng/ml, ICU stay of more than 2.5 days before pneumonia onset, mechanical ventilation, ESBL-positive KP, and inappropriate antibacterial therapy are independent risk factors for KP pneumonia/KP-BSI. Of note, the outcomes in patients with KP pneumonia worsen once they develop secondary KP-BSI, which merits more attention.
Collapse
|
14
|
Sharma A, Thakur A, Thakur N, Kumar V, Chauhan A, Bhardwaj N. Changing Trend in the Antibiotic Resistance Pattern of Klebsiella Pneumonia Isolated From Endotracheal Aspirate Samples of ICU Patients of a Tertiary Care Hospital in North India. Cureus 2023; 15:e36317. [PMID: 37077586 PMCID: PMC10106535 DOI: 10.7759/cureus.36317] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 03/20/2023] Open
Abstract
Introduction Klebsiella pneumonia is one of the most prevalent bacteria that cause nosocomial infections, particularly in critically ill patients in the intensive care unit (ICU). Multi-drug-resistant Klebsiella pneumoniae (MDRKP) has become an urgent risk to public health as its prevalence has sharply surged around the globe in recent decades. Therefore, this research was conducted to evaluate shifts over a four-year period in drug susceptibility patterns among Klebsiella pneumoniae isolates from mechanically ventilated intensive care unit patients. Materials and methods This is a retrospective observational study conducted in a tertiary care multi-specialty hospital and teaching institute in North India and was approved by the institutional ethics committee. The research comprised Klebsiella pneumoniae isolates from endotracheal aspirates (ETA) of patients on mechanical ventilation admitted to the general intensive care unit (ICU) of our tertiary care facility. The data from January to June 2018 and January to June 2022 were collected. According to the antimicrobial resistance profile of the strains, they were categorized as susceptible, resistant to one or two antimicrobial categories, multidrug-resistant (MDR), extensively drug-resistant (XDR), or pan-drug-resistant (PDR). The criteria for MDR, XDR, and PDR were proposed by the European Centre for Disease Prevention and Control (ECDC). IBM Statistical Package for the Social Sciences (SPSS) for Windows, Version 24.0, Armonk, NY, IBM Corp., was used for data input and analysis. Results A total of 82 cases of Klebsiella pneumonia were included in the study. Of these 82 isolates, 40 were isolated over a period of six months from January to June 2018, and the remaining 42 were isolated from January to June 2022. Among the 2018 group, five strains (12.5%) were classified as susceptible, three (7.5%) as resistant, seven (17.5%) as MDR, and 25 (62.5%) as XDR. The highest percentages of antimicrobial resistance in the 2018 group were observed with amoxicillin/clavulanic acid (90%), ciprofloxacin (100%), piperacillin/tazobactam (92.5%), and cefoperazone/sulbactam (95%). In comparison, the 2022 group showed no strain as susceptible; nine strains (21.4%) were classified as resistant; three strains (7%) as MDR; and 30 strains (93%) were classified as XDR. There was a significant increase in resistance to amoxicillin, from 10% in 2018 to nil in 2022. Overall, the rate of resistant Klebsiella pneumonia (K. pneumonia) increased from 7.5% (3/40) in 2018 to 21.4% (9/42) in 2022, while XDR Klebsiella pneumonia among the mechanically ventilated ICU patients significantly increased from 62.5% (25/40) in 2018 to 71% (30/42) in 2022. Conclusion K. pneumoniae antibiotic resistance is a real threat in Asia and requires close monitoring to be controlled. More careful attempts should be made to create a new generation of antimicrobials since the prevalence of resistance to existing medications is rising. Antibiotic resistance should be monitored and reported by healthcare institutions regularly.
Collapse
|
15
|
Ye J, Hou F, Chen G, Zhong T, Xue J, Yu F, Lai Y, Yang Y, Liu D, Tian Y, Huang J. Novel copper-containing ferrite nanoparticles exert lethality to MRSA by disrupting MRSA cell membrane permeability, depleting intracellular iron ions, and upregulating ROS levels. Front Microbiol 2023; 14:1023036. [PMID: 36846790 PMCID: PMC9947852 DOI: 10.3389/fmicb.2023.1023036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Objective The widespread use of antibiotics has inevitably led to the emergence of multidrug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus (MRSA), making treatment of this infection a serious challenge. This study aimed to explore new treatment strategies for MRSA infection. Methods The structure of Fe3O4 NPs with limited antibacterial activity was optimized, and the Fe2+ ↔ Fe3+ electronic coupling was eliminated by replacing 1/2 Fe2+ with Cu2+. A new type of copper-containing ferrite nanoparticles (hereinafter referred to as Cu@Fe NPs) that fully retained oxidation-reduction activity was synthesized. First, the ultrastructure of Cu@Fe NPs was examined. Then, antibacterial activity was determined by testing the minimum inhibitory concentration (MIC) and safety for use as an antibiotic agent. Next, the mechanisms underlying the antibacterial effects of Cu@Fe NPs were investigated. Finally, mice models of systemic and localized MRSA infections was established for in vivo validation. Results It was found that Cu@Fe NPs exhibited excellent antibacterial activity against MRSA with MIC of 1 μg/mL. It effectively inhibited the development of MRSA resistance and disrupted the bacterial biofilms. More importantly, the cell membranes of MRSA exposed to Cu@Fe NPs underwent significant rupture and leakage of the cell contents. Cu@Fe NPs also significantly reduced the iron ions required for bacterial growth and contributed to excessive intracellular accumulation of exogenous reactive oxygen species (ROS). Therefore, these findings may important for its antibacterial effect. Furthermore, Cu@Fe NPs treatment led to a significant reduction in colony forming units within intra-abdominal organs, such as the liver, spleen, kidney, and lung, in mice with systemic MRSA infection, but not for damaged skin in those with localized MRSA infection. Conclusion The synthesized nanoparticles has an excellent drug safety profile, confers high resistant to MRSA, and can effectively inhibit the progression of drug resistance. It also has the potential to exert anti-MRSA infection effects systemically in vivo. In addition, our study revealed a unique multifaceted antibacterial mode of Cu@Fe NPs: (1) an increase in cell membrane permeability, (2) depletion of Fe ions in cells, (3) generation of ROS in cells. Overall, Cu@Fe NPs may be potential therapeutic agents for MRSA infections.
Collapse
Affiliation(s)
- Jinhua Ye
- Analytical Laboratory of Basic Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fangpeng Hou
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Clinical Laboratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Guanyu Chen
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, United States
| | - Tianyu Zhong
- Department of Clinical Laboratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junxia Xue
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital of Tongji University, Shanghai, China
| | - Yi Lai
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yingjie Yang
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dedong Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yuantong Tian
- Pharmacology Department, Gannan Medical University, Ganzhou, Jiangxi, China,*Correspondence: Yuantong Tian, ✉
| | - Junyun Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,Junyun Huang, ✉
| |
Collapse
|
16
|
Pathak A, Tejan N, Dubey A, Chauhan R, Fatima N, Jyoti, Singh S, Bhayana S, Sahu C. Outbreak of colistin resistant, carbapenemase ( bla NDM, bla OXA-232) producing Klebsiella pneumoniae causing blood stream infection among neonates at a tertiary care hospital in India. Front Cell Infect Microbiol 2023; 13:1051020. [PMID: 36816594 PMCID: PMC9929527 DOI: 10.3389/fcimb.2023.1051020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Infections caused by multi-drug resistant Klebsiella pneumoniae are a leading cause of mortality and morbidity among hospitalized patients. In neonatal intensive care units (NICU), blood stream infections by K. pneumoniae are one of the most common nosocomial infections leading to poor clinical outcomes and prolonged hospital stays. Here, we describe an outbreak of multi-drug resistant K. pneumoniae among neonates admitted at the NICU of a large tertiary care hospital in India. The outbreak involved 5 out of 7 neonates admitted in the NICU. The antibiotic sensitivity profiles revealed that all K. pneumoniae isolates were multi-drug resistant including carbapenems and colistin. The isolates belonged to three different sequence types namely, ST-11, ST-16 and ST-101. The isolates harboured carbapenemase genes, mainly bla NDM-1, bla NDM-5 and bla OXA-232 besides extended-spectrum β-lactamases however the colistin resistance gene mcr-1, mcr-2 and mcr-3 could not be detected. Extensive environmental screening of the ward and healthcare personnel led to the isolation of K. pneumoniae ST101 from filtered incubator water, harboring bla NDM-5, bla OXA-232 and ESBL genes (bla CTX-M) but was negative for the mcr genes. Strict infection control measures were applied and the outbreak was contained. This study emphasizes that early detection of such high-risk clones of multi-drug resistant isolates, surveillance and proper infection control practices are crucial to prevent outbreaks and further spread into the community.
Collapse
Affiliation(s)
- Ashutosh Pathak
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Nidhi Tejan
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Akanksha Dubey
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Radha Chauhan
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Nida Fatima
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Jyoti
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sushma Singh
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sahil Bhayana
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Chinmoy Sahu
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
17
|
Jara J, Jurado R, Almendro-Vedia VG, López-Montero I, Fernández L, Rodríguez JM, Orgaz B. Interspecies relationships between nosocomial pathogens associated to preterm infants and lactic acid bacteria in dual-species biofilms. Front Cell Infect Microbiol 2022; 12:1038253. [PMID: 36325465 PMCID: PMC9618709 DOI: 10.3389/fcimb.2022.1038253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 12/08/2023] Open
Abstract
The nasogastric enteral feeding tubes (NEFTs) used to feed preterm infants are commonly colonized by bacteria with the ability to form complex biofilms in their inner surfaces. Among them, staphylococci (mainly Staphylococcus epidermidis and Staphylococcus aureus) and some species belonging to the Family Enterobacteriaceae are of special concern since they can cause nosocomial infections in this population. NETF-associated biofilms can also include lactic acid bacteria (LAB), with the ability to compete with pathogenic species for nutrients and space. Ecological interactions among the main colonizers of these devices have not been explored yet; however, such approach could guide future strategies involving the pre-coating of the inner surfaces of NEFTs with well adapted LAB strains in order to reduce the rates of nosocomial infections in neonatal intensive care units (NICUs). In this context, this work implied the formation of dual-species biofilms involving one LAB strain (either Ligilactobacillus salivarius 20SNG2 or Limosilactobacillus reuteri 7SNG3) and one nosocomial strain (either Klebsiella pneumoniae 9SNG3, Serratia marcescens 10SNG3, Staphylococcus aureus 45SNG3 or Staphylococcus epidermidis 46SNG3). The six strains used in this study had been isolated from the inner surface of NEFTs. Changes in adhesion ability of the pathogens were characterized using a culturomic approach. Species interactions and structural changes of the resulting biofilms were analyzed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). No aggregation was observed in dual-species biofilms between any of the two LAB strains and either K. pneumoniae 9SNG3 or S. marcescens 10SNG3. In addition, biofilm thickness and volume were reduced, suggesting that both LAB strains can control the capacity to form biofilms of these enterobacteria. In contrast, a positive ecological relationship was observed in the combination L. reuteri 7SNG3-S. aureus 45SNG3. This relationship was accompanied by a stimulation of S. aureus matrix production when compared with its respective monospecies biofilm. The knowledge provided by this study may guide the selection of potentially probiotic strains that share the same niche with nosocomial pathogens, enabling the establishment of a healthier microbial community inside NEFTs.
Collapse
Affiliation(s)
- Josué Jara
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Rubén Jurado
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Víctor G. Almendro-Vedia
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Iván López-Montero
- Departamento de Química Física, Facultad de Químicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Leonides Fernández
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Miguel Rodríguez
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Belén Orgaz
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
18
|
Irfan M, Almotiri A, AlZeyadi ZA. Antimicrobial Resistance and Its Drivers-A Review. Antibiotics (Basel) 2022; 11:1362. [PMID: 36290020 PMCID: PMC9598832 DOI: 10.3390/antibiotics11101362] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) is a critical issue in health care in terms of mortality, quality of services, and financial damage. In the battle against AMR, it is crucial to recognize the impacts of all four domains, namely, mankind, livestock, agriculture, and the ecosystem. Many sociocultural and financial practices that are widespread in the world have made resistance management extremely complicated. Several pathways, including hospital effluent, agricultural waste, and wastewater treatment facilities, have been identified as potential routes for the spread of resistant bacteria and their resistance genes in soil and surrounding ecosystems. The overuse of uncontrolled antibiotics and improper treatment and recycled wastewater are among the contributors to AMR. Health-care organizations have begun to address AMR, although they are currently in the early stages. In this review, we provide a brief overview of AMR development processes, the worldwide burden and drivers of AMR, current knowledge gaps, monitoring methodologies, and global mitigation measures in the development and spread of AMR in the environment.
Collapse
Affiliation(s)
- Mohammad Irfan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Ad Dawadmi 17464, Saudi Arabia
| | | | | |
Collapse
|
19
|
Neonatal Sepsis: The impact of Hypervirulent Klebsiella pneumonia in a Tertiary Care Hospital. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neonatal sepsis is a blood-stream infection that affects newborns under the age of 28 days. Sepsis is common in NICUs and has a high prevalence of Klebsiella species. As a result, the study aims to find the antibiotic resistance profile, virulence factors, and the prognosis of K. pneumoniae-infected neonates. A prospective study was conducted which included 140 neonates with clinical sepsis. Characterization of Klebsiella pneumonia isolates was done by conventional methods. Drug resistance and virulence factors were detected by phenotypic methods. Genotypic methods included 16s rRNA amplification and sequencing. Detection of multidrug-resistant genes by PCR was performed. K. pneumoniae (26.9%) was the most common pathogen isolated. A high prevalence of ESBL was detected (58.8%). The prevalence of CRKP and MβL was about 29.4%, and 23.5% respectively. Two strains were Strong biofilm producers and nine isolates showed Beta hemolysis.7 strains were positive for the string test. Four strains were positive for the wcaG gene. 3 positive for magA (K1) and 2 were for gene wzy (K2). Three isolates carried blaCTX–M, four isolates harbored blaVIM, two for IMP, and one for NDM and KPC gene. K. pneumoniae isolates in the NICU increased in frequency and antibiotic resistance. It is a serious hazard to the healthcare system, and it necessitates strict infection control methods in healthcare settings, as well as antibiotic stewardship to prevent the overuse of antibiotics in neonatal sepsis.
Collapse
|
20
|
Adane T, Worku M, Tigabu A, Aynalem M. Hematological Abnormalities in Culture Positive Neonatal Sepsis. Pediatric Health Med Ther 2022; 13:217-225. [PMID: 35698626 PMCID: PMC9188337 DOI: 10.2147/phmt.s361188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
Background In neonatal sepsis, anemia, leukocytosis, thrombocytopenia, and a shortened coagulation time are the most common hematologic abnormalities. However, there is inadequate information regarding the hematological abnormalities in neonatal sepsis. Thus, we aimed to determine the magnitude of hematological abnormalities in neonatal sepsis. Methods This is a cross-sectional study that included 143 neonates with culture proven sepsis aged 1–28 days from September 2020 to November 2021 at the University of Gondar Specialized Referral Hospital. The sociodemographic data was collected using a pre-tested structured questionnaire, and the clinical and laboratory data was collected using a data collection sheet. A total of 2 mL of venous blood was taken using a vacutainer collection device for the complete blood count (CBC) and blood culture analysis. A univariate and multivariate logistic regression model was used to investigate factors associated with hematological abnormalities in neonatal sepsis. Statistical significance was declared when a p-value was less than 0.05. Results The prevalence of anemia, thrombocytopenia, and leucopenia in neonatal sepsis was 49% (95% CI: 40.89–57.06), 44.7% (95% CI: 36.8–52.9), and 26.6% (95% CI: 22.01–29.40), respectively. On the other hand, leukocytosis and thrombocytosis were found in 7.7% (95% CI: 4.35–13.25) and 11.9% (95% CI: 7.56–18.21), respectively. Being female (AOR: 3.3; 95% CI: 1.20–3.82) and being aged less than 7 days (AOR: 2.44; 95% CI: 1.6–6.9) were found to be significant predictors of anemia. Conclusion The magnitude of anemia, leucopenia, and thrombocytopenia is high in neonatal sepsis. Furthermore, being female and being younger than 7 days were risk factors for anemia. Thus, the diagnosis and treatment of anemia, leucopenia, and thrombocytopenia prevents further complications in neonatal sepsis.
Collapse
Affiliation(s)
- Tiruneh Adane
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
- Correspondence: Tiruneh Adane, Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, PO Box 196, Gondar, Ethiopia, Tel +251 949914917, Email
| | - Minichil Worku
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Abiye Tigabu
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Melak Aynalem
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
21
|
Edward EA, Mohamed NM, Zakaria AS. Whole Genome Characterization of the High-Risk Clone ST383 Klebsiella pneumoniae with a Simultaneous Carriage of blaCTX-M-14 on IncL/M Plasmid and blaCTX-M-15 on Convergent IncHI1B/IncFIB Plasmid from Egypt. Microorganisms 2022; 10:1097. [PMID: 35744615 PMCID: PMC9228323 DOI: 10.3390/microorganisms10061097] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, Egypt has witnessed the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae, which has posed a serious healthcare challenge. The accelerated dissemination of blaCTX-M genes among these MDR K. pneumoniae, particularly blaCTX-M-14 and blaCTX-M-15, have been noted. In this study, we investigated the occurrence of blaCTX-M-IV among K. pneumoniae recovered from the laboratory of a major hospital in Alexandria. The 23 tested isolates showed an MDR phenotype and the blaCTX-M-IV gene was detected in ≈22% of the isolates. The transformation of plasmids harboring blaCTX-M-IV to chemically competent cells of Escherichia coli DH5α was successful in three out of five of the tested blaCTX-M-IV-positive isolates. Whole genome sequencing of K22 indicated that the isolate belonged to the high-risk clone ST383, showing a simultaneous carriage of blaCTX-M-14 on IncL/M plasmid, i.e., pEGY22_CTX-M-14, and blaCTX-M-15 on a hybrid IncHI1B/IncFIB plasmid, pEGY22_CTX-M-15. Alignment of both plasmids revealed high similarity with those originating in the UK, Germany, Australia, Russia, China, Saudi Arabia, and Morocco. pEGY22_CTX-M-15 was a mosaic plasmid that demonstrated convergence of MDR and virulence genes. The emergence of such a plasmid with enhanced genetic plasticity constitutes the perfect path for the evolution of K. pneumoniae isolates causing invasive untreatable infections especially in a country with a high burden of infectious diseases such as Egypt. Therefore there is an imperative need for countrywide surveillances to monitor the prevalence of these superbugs with limited therapeutic options.
Collapse
Affiliation(s)
| | | | - Azza S. Zakaria
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria 25435, Egypt; (E.A.E.); (N.M.M.)
| |
Collapse
|
22
|
Abdelaziz NA. Phenotype-genotype correlations among carbapenem-resistant Enterobacterales recovered from four Egyptian hospitals with the report of SPM carbapenemase. Antimicrob Resist Infect Control 2022; 11:13. [PMID: 35063019 PMCID: PMC8783469 DOI: 10.1186/s13756-022-01061-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
Background Carbapenem-resistant Enterobacterales (CRE), currently listed by the World Health Organization (WHO) as top priority critical pathogens, are a major global menace to human health. In low- and middle-income countries (LMICs) the threat is mounting fueled by selective pressures caused by antibiotic abuse and inadequate diagnostic resources. Methods This study phenotypically and genotypically characterized carbapenem resistance among 115 Enterobacterales isolates including 76 Klebsiella (K.) pneumoniae, 19 Escherichia (E.) coli, 14 Shigella (S.) sonnei, 5 Enterobacter (E.) cloacae, and 1 Proteus (P.) mirabilis. Results Ninety-three isolates (80.9%) were carbapenem-resistant with an alarming 57.5% carbapenem non-susceptibility in isolates collected from the outpatient department. Molecular characterization of the carbapenemases (CPases) encoding genes showed that blaNDM (80.5%) was the most prevalent; it was detected in 62 isolates (54 K. pneumoniae, 6 E. coli and 2 S. sonnei), followed by blaVIM (36.4%) which was observed in 28 isolates (24 K. pneumoniae, 3 E. coli and 1 E. cloacae). Other CPases included blaKPC (28.6%; in 20 K. pneumoniae, 1 E. coli and 1 S. sonnei), blaOXA-48 (26%; in 17 K. pneumoniae, 1 E. coli,1 E. cloacae and 1 P. mirabilis), blaIMP (6.5%; in 5 K. pneumoniae) and blaSPM (1.3%; in K. pneumoniae). Notably more than half of the Enterobacterales isolates (54.5%) co-harboured more than one CPase-encoding gene. Co-existence of blaNDM and blaVIM genes was the most dominant (31.2%), followed by association of blaNDM and blaKPC (24.7%), then blaVIM and blaKPC (13%). Moreover, the effects of different genotypes on meropenem MIC values were assessed, and a statistically significant difference between the genotype (Ambler classes A and B) and the genotype (Ambler classes B and D) was recorded. Conclusion The current findings may serve for a better understanding of the context of CRE in Egypt, associated drivers and CPases. Supplementary Information The online version contains supplementary material available at 10.1186/s13756-022-01061-7.
Collapse
Affiliation(s)
- Neveen A Abdelaziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, POB: 12451, Sixth of October City, Giza, Egypt.
| |
Collapse
|
23
|
Sharma S, Banerjee T, Kumar A, Yadav G, Basu S. Extensive outbreak of colistin resistant, carbapenemase (bla OXA-48, bla NDM) producing Klebsiella pneumoniae in a large tertiary care hospital, India. Antimicrob Resist Infect Control 2022; 11:1. [PMID: 34991724 PMCID: PMC8740481 DOI: 10.1186/s13756-021-01048-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extensive drug resistance in Klebsiella pneumoniae (K. pneumoniae) causing major outbreaks in large hospitals is an emerging challenge. We describe a near fatal outbreak of colistin resistant, carbapenem resistant K. pneumoniae (CRKp) producing metallo beta-lactamases (blaNDM) and blaOXA-48 in the neonatal intensive care unit (NICU) at the background of a larger outbreak involving multiple parts of the hospital and the challenges in its containment. METHODS Following identification of an outbreak due to colistin resistant CRKp between April to June 2017 in the NICU, a thorough surveillance of similar cases and the hospital environment was performed to trace the source. All the isolated K. pneumoniae were tested for susceptibility to standard antibiotics by disc diffusion and microbroth dilution methods. Molecular detection of extended spectrum beta lactamases (ESBLs) and carbapenemases (classes A, B, D) genes was done. Enterobacterial repetitive intergenic consensus (ERIC) PCR and multi-locus sequence typing (MLST) was done to determine the genetic relatedness of the isolates. Characteristics of different sequence types were statistically compared (Student's t-test). RESULTS A total of 45 K. pneumoniae isolates were studied from NICU (14 cases of neonatal sepsis), ICU (18 cases), other wards (7 cases) along with 6 isolates from hospital environment and human colonizers. The primary case was identified in the ICU. All the K. pneumoniae from NICU and 94.4% from the ICU were colistin resistant CRKp. Majority (59.37% and 56.25%) harbored blaSHV/blaCTXM and blaOXA-48 genes, respectively. Two distinct sequence types ST5235 and ST5313 were noted with colistin resistance, distribution within the NICU and mortality as significant attributes of ST5235 (p < 0.05). The outbreak was contained with strengthening of the infection control practices and unintended short duration closure of the hospital. CONCLUSION Large hospital outbreaks with considerable mortality can be caused by non-dominant clones of colistin resistant CRKp harboring blaOXA-48 and blaNDM carbapenemases in endemic regions. The exact global impact of these sequence types should be further studied to prevent future fatal outbreaks.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Tuhina Banerjee
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ghanshyam Yadav
- Department of Anaesthesiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sriparna Basu
- Department of Neonatology, All India Institute of Medical Sciences, Rishikesh, India
| |
Collapse
|
24
|
Methicillin and multidrug resistant pathogenic Staphylococcus aureus associated sepsis in hospitalized neonatal infections and antibiotic susceptibility. J Infect Public Health 2021; 14:1630-1634. [PMID: 34624718 DOI: 10.1016/j.jiph.2021.08.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Neonatal infection is infection of the newborn or neonate acquired in first four weeks of life or during prenatal development. Microorganism associated neonatal infections caused severe mortality in recent years. It is developed either prenatally or within 28 days of neonatal period. This infection is mainly transmitted from mother to child through placenta. It has been well associated with the premature rupture of membranes which markedly enhances the risk of neonatal sepsis. METHODS The present experiment was designed to analyze bacteria, their antibiotic resistance pattern and possible risk factors among neonatal patients with sepsis. The neonates specimen was subjected for the isolation of bacteria and antibiotic susceptibility test. Neonates were analyzed with previous clinical history such as, previous admission in hospitals, mode of delivery, birth weight, and feeding type in accordance with questionnaire. RESULTS Gram-positive bacteria isolates were found to be high (79 strains, 64.22%) than the Gram-negative bacteria (44 strains, 32.5%). Staphylococcus aureus (33 strains, 26.9%) was the major Gram-positive groups of bacteria. Multidrug resistance analysis accounted more S. aureus (26.9%) and 5 strains (15.15%) showed methicillin resistance, whereas 84.9% were found to be sensitive to methicillin. CONCLUSION In this study, S. aureus and K. pneumoniae were the highest frequency of isolates. The overall percentage of multidrug resistant isolates was high in this study. Highest degree of resistance was observed in ampicillin against all isolates. Hence much attention is required while diagnosing sepsis among neonates. To analyze the risk for neonatal sepsis, it is not preferable for caesarian mode of delivery. Moreover, frequent screening of mother, suitable prenatal care of newborns with proper clinical interventions isthe key elements to control sepsis.
Collapse
|
25
|
Antimicrobial Resistance and Comparative Genome Analysis of Klebsiella pneumoniae Strains Isolated in Egypt. Microorganisms 2021; 9:microorganisms9091880. [PMID: 34576775 PMCID: PMC8465295 DOI: 10.3390/microorganisms9091880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Klebsiella pneumoniae is an important human pathogen in both developing and industrialised countries that can causes a variety of human infections, such as pneumonia, urinary tract infections and bacteremia. Like many Gram-negative bacteria, it is becoming resistant to many frontline antibiotics, such as carbapenem and cephalosporin antibiotics. In Egypt, K. pneumoniae is increasingly recognised as an emerging pathogen, with high levels of antibiotic resistance. However, few Egyptian K. pneumoniae strains have been sequenced and characterised. Hence, here, we present the genome sequence of a multidrug resistant K. pneumoniae strain, KPE16, which was isolated from a child in Assiut, Egypt. We report that it carries multiple antimicrobial resistance genes, including a blaNDM-1 carbapenemase and extended spectrum β-lactamase genes (i.e., blaSHV-40, blaTEM-1B, blaOXA-9 and blaCTX-M-15). By comparing this strain with other Egyptian isolates, we identified common plasmids, resistance genes and virulence determinants. Our analysis suggests that some of the resistance plasmids that we have identified are circulating in K. pneumoniae strains in Egypt, and are likely a source of antibiotic resistance throughout the world.
Collapse
|
26
|
Development of an Immunochromatographic Strip Using Conjugated Gold Nanoparticles for the Rapid Detection of Klebsiella pneumoniae Causing Neonatal Sepsis. Pharmaceutics 2021; 13:pharmaceutics13081141. [PMID: 34452099 PMCID: PMC8401635 DOI: 10.3390/pharmaceutics13081141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Neonatal sepsis is a leading cause of death among newborns and infants, especially in the developing world. The problem is compounded by the delays in pinpointing the causative agent of the infection. This is reflected in increasing mortality associated with these cases and the spread of multi-drug-resistant bacteria. In this work, we deployed bioinformatics and proteomics analyses to determine a promising target that could be used for the identification of a major neonatal sepsis causative agent, Klebsiella pneumoniae. A 19 amino acid peptide from a hypothetical outer membrane was found to be very specific to the species, well conserved among its strains, surface exposed, and expressed in conditions simulating infection. Antibodies against the selected peptide were conjugated to gold nanoparticles and incorporated into an immunochromatographic strip. The developed strip was able to detect as low as 105 CFU/mL of K. pneumoniae. Regarding specificity, it showed negative results with both Escherichia coli and Enterobacter cloacae. More importantly, in a pilot study using neonatal sepsis cases blood specimens, the developed strip selectively gave positive results within 20 min with those infected with K. pneumoniae without prior sample processing. However, it gave negative results in cases infected with other bacterial species.
Collapse
|
27
|
Almogbel M, Altheban A, Alenezi M, Al-Motair K, Menezes GA, Elabbasy M, Hammam S, Hays JP, Khan MA. CTX-M-15 Positive Escherichia coli and Klebsiella pneumoniae Outbreak in the Neonatal Intensive Care Unit of a Maternity Hospital in Ha'il, Saudi Arabia. Infect Drug Resist 2021; 14:2843-2849. [PMID: 34326652 PMCID: PMC8316756 DOI: 10.2147/idr.s317079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/01/2021] [Indexed: 12/28/2022] Open
Abstract
Objective The aim of this study was to retrospectively characterize E. coli and K. pneumoniae isolates obtained from neonates during a suspected NICU outbreak of infection in Ha’il, Saudi Arabia during a period of one month (April 2014). Methods Antibiotic susceptibility patterns, molecular characterization for antibiotic-resistant genes (blaTEM, blaSHV, and blaCTX-M), and genotyping by PFGE and MLST were performed. Results A total of 24 E. coli and 48 K. pneumoniae isolates were cultured from neonates that had been admitted to the NICU. Among E. coli, the majority of isolates (19/24) were ESBL-positive and all of these nineteen (100%) harbored the CTX-M-15 gene. A total of 15% (3/19) were co-producers of CTX-M-15 and SHV-12, and 68.4% (13/19) were co-producers of CTX-M-15 and TEM-1. Among K. pneumoniae isolates, 87.5% (42/48) were ESBL positive with 92.85% (39/42) of these isolates containing the CTX-M-15 gene. A total of 97% (38/39) of K. pneumoniae were co-producers of CTX-M-15 and SHV-12, and 88% (37/42) were positive for TEM-1. Furthermore, 85.7% (36/42) K. pneumoniae were co-producers of CTX-M-15 and TEM-1. The majority of E. coli isolates (18/19 isolates) were grouped into two genetic clusters by pulsed field gel electrophoresis (PFGE) and all the isolates were found to be ST-131 type. In contrast, K. pneumoniae (31/42) isolates belonged to a single genotypic lineage, and all (100%) isolates belonged to the ST-14 type. Conclusion This is the first report of CTX-M-15-positive, ESBL E. coli, and K. pneumoniae isolates recovered from an outbreak in an NICU in Ha’il, Saudi Arabia. It is alarming to note the high rate of outbreak isolates with simultaneous production of CTX-M-15 and SHV-12 conferring high-level resistance to oxyimino-cephalosporins.
Collapse
Affiliation(s)
- Mohammed Almogbel
- Molecular Diagnostic and Personalized Therapeutics Unit, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Ahmed Altheban
- College of Nursing, University of Ha'il, Ha'il, Saudi Arabia
| | | | - Khalid Al-Motair
- Molecular Diagnostic and Personalized Therapeutics Unit, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Godfred A Menezes
- Department of Medical Microbiology and Immunology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Mohammed Elabbasy
- Molecular Diagnostic and Personalized Therapeutics Unit, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | | | - John P Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), Rotterdam, The Netherlands
| | - Mushtaq A Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
28
|
Mukherjee S, Mitra S, Dutta S, Basu S. Neonatal Sepsis: The Impact of Carbapenem-Resistant and Hypervirulent Klebsiella pneumoniae. Front Med (Lausanne) 2021; 8:634349. [PMID: 34179032 PMCID: PMC8225938 DOI: 10.3389/fmed.2021.634349] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/26/2021] [Indexed: 01/12/2023] Open
Abstract
The convergence of a vulnerable population and a notorious pathogen is devastating, as seen in the case of sepsis occurring during the first 28 days of life (neonatal period). Sepsis leads to mortality, particularly in low-income countries (LICs) and lower-middle-income countries (LMICs). Klebsiella pneumoniae, an opportunistic pathogen is a leading cause of neonatal sepsis. The success of K. pneumoniae as a pathogen can be attributed to its multidrug-resistance and hypervirulent-pathotype. Though the WHO still recommends ampicillin and gentamicin for the treatment of neonatal sepsis, K. pneumoniae is rapidly becoming untreatable in this susceptible population. With escalating rates of cephalosporin use in health-care settings, the increasing dependency on carbapenems, a "last resort antibiotic," has led to the emergence of carbapenem-resistant K. pneumoniae (CRKP). CRKP is reported from around the world causing outbreaks of neonatal infections. Carbapenem resistance in CRKP is largely mediated by highly transmissible plasmid-encoded carbapenemase enzymes, including KPC, NDM, and OXA-48-like enzymes. Further, the emergence of a more invasive and highly pathogenic hypervirulent K. pneumoniae (hvKP) pathotype in the clinical context poses an additional challenge to the clinicians. The deadly package of resistance and virulence has already limited therapeutic options in neonates with a compromised defense system. Although there are reports of CRKP infections, a review on neonatal sepsis due to CRKP/ hvKP is scarce. Here, we discuss the current understanding of neonatal sepsis with a focus on the global impact of the CRKP, provide a perspective regarding the possible acquisition and transmission of the CRKP and/or hvKP in neonates, and present strategies to effectively identify and combat these organisms.
Collapse
Affiliation(s)
- Subhankar Mukherjee
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shravani Mitra
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
29
|
El-Kholy A, El-Mahallawy HA, Elsharnouby N, Abdel Aziz M, Helmy AM, Kotb R. Landscape of Multidrug-Resistant Gram-Negative Infections in Egypt: Survey and Literature Review. Infect Drug Resist 2021; 14:1905-1920. [PMID: 34079301 PMCID: PMC8163635 DOI: 10.2147/idr.s298920] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose This article is the first to review published reports on the prevalence of multidrug-resistant (MDR) gram-negative infections in Egypt and gain insights into antimicrobial resistance (AMR) surveillance and susceptibility testing capabilities of Egyptian medical centers. Materials and Methods A literature review and online survey were conducted. Results The online survey and literature review reported high prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (19–85.24% of E. coli, and 10–87% of K. pneumoniae), carbapenem-resistant Enterobacteriaceae (35–100% of K. pneumoniae and 13.8–100% of E. coli), carbapenem-resistant Acinetobacter baumannii (10–100%), and carbapenem-resistant Pseudomonas aeruginosa (15–70%) in Egypt. Risk factors for MDR Gram-negative infections were ventilated patients (67.4%), prolonged hospitalization (53.5%) and chronic disease (34.9%). Although antimicrobial surveillance capabilities were deemed at least moderate in most centers, lack of access to rapid AMR diagnostics, lack of use of local epidemiological data in treatment decision-making, lack of antimicrobial stewardship (AMS) programs, and lack of risk prediction tools were commonly reported by respondents. Conclusion This survey has highlighted the presence of knowledge gaps as well as limitations in the surveillance and monitoring capabilities of AMR in Egypt, with most laboratories lacking rapid diagnostics and molecular testing. Future efforts in Egypt should focus on tackling these issues via nationwide initiatives, including understanding the AMR trends in the country, capacity building of laboratories and their staff to correctly and timely identify AMR, and introducing newer antimicrobials for targeting emerging resistance mechanisms in Gram-negative species.
Collapse
Affiliation(s)
- Amani El-Kholy
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hadir A El-Mahallawy
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Noha Elsharnouby
- Department of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Ramy Kotb
- Pfizer Africa & Middle East Medical Affairs, Dubai, United Arab Emirates
| |
Collapse
|
30
|
Frequency of qnr and aac(6’)Ib-cr Genes Among ESBL-Producing Klebsiella pneumoniae Strains Isolated from Burn Patients in Kermanshah, Iran. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.100348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Assessment of bacteria such as Klebsiella pneumonia has shown that Plasmid-mediated quinolone resistance (PMQR) affects antibiotics resistance (e.g., quinolones). Objectives: We studied the prevalence of qnr and aac(6’)Ib-cr genes in extended-spectrum beta-lactamase (ESBL)-producing K. pneumonia strains isolated from burn wounds of patients in the city of Kermanshah, Iran. Methods: This descriptive-analytical study was conducted on 126 K. pneumonia strains isolated collected from burn wounds. Biochemical tests were used to detect the strains. The frequency of the ESBL-producing isolates was determined by phenotypic tests of the combination disk (CD) method after determining the antibiotic susceptibility pattern of the isolates through the Kirby-Bauer disc diffusion test. The prevalence of the qnr and aac(6’)-Ib-cr genes was determined using their special primers as well as polymerase chain reaction (PCR). Results: Of the 126 K. pneumonia isolates, 52 (41.3%) were identified as ESBL-producing strains. ESBL-producing isolates showed higher resistance against antibiotics than non-ESBL-producing ones. PMQR relevance and resistance to ciprofloxacin were, respectively, determined at 80.76% and 59.6%. The most frequent gene was aac(6’)-Ib-cr (n = 70, 55.6%), followed by the qnrB (n = 44, 34.9%). Conclusions: This study showed a high prevalence of qnr genes in ESBL-producing K. pneumonia isolates and antibiotic resistance. Given the horizontal transmission of antibiotic resistance genes among bacteria by mobile genetic elements, timely identification of infections caused by ESBL-producing and antimicrobial-resistant K. pneumonia strains is of paramount importance.
Collapse
|