1
|
Xiong Z, Xie Z, Li H, Peng C, Jia J, Liu X, Song J, Liu Y, Qin Y, Gong B. The influence of temperature and river runoff on phytoplankton community diversity in Beibu Gulf: insight from 18 S rDNA metabarcoding analysis. BMC Ecol Evol 2024; 24:129. [PMID: 39438801 PMCID: PMC11494792 DOI: 10.1186/s12862-024-02315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Sanniang Bay (SNB) and Dafeng River (DFR), located in the northern Beibu Gulf, is well-known as one of the eight habitats for humpback dolphins in China. This region is representative of typical estuarine and bay ecosystems and produce complex hydrodynamic seawater conditions. Moreover, anthropogenic pressure, such as eutrophication and large-scale infrastructure projects, have caused ongoing habitat deterioration and loss. It is urgent to know the phytoplankton community and their relationships with environmental factors in this region. RESULTS In this study, we assessed the diversity and assembly mechanisms of phytoplankton communities, as well as their relationship with the physicochemical characteristics of seawater in SNB and DFR region using 18 S rDNA metabarcoding analysis. The results showed that seasonal changes markedly impacted the alpha diversity of the phytoplankton community. From March to July, with the average temperature increasing from 25.2℃ to 28.1℃,the Shannon or Species Richness were negatively correlated with temperature. During hot season (in Sep, average temperature 32.1℃), phytoplankton diversity was negatively correlated with nutrients (NH4 +, NO3-, PO43-, TN). Additionally, during the rainy season, the Bray-Curtis similarity of the phytoplankton community was significantly lower than during the dry season. In March, the distance among the sampling sites was most strongly and positively correlated with the Bray-Curtis dissimilarity. Stochastic processes, specifically dispersal limitation and ecological drift, are the primary drivers of community assembly, while deterministic assembly processes (mainly heterogeneous selection) contribute a relatively minor portion (< 17%). CONCLUSIONS Rising temperature diminished the diversity of phytoplankton in SNB and DFR, and nutrient inputs and eutrophication in estuarine areas will aggravate the loss of phytoplankton diversity.
Collapse
Affiliation(s)
- Zheng Xiong
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Zongsheng Xie
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Haochen Li
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Chunyan Peng
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Jixin Jia
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Xiaobo Liu
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Jingjing Song
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Ying Liu
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Yuyue Qin
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China
| | - Bin Gong
- The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China.
| |
Collapse
|
2
|
Zhu J, Chen G, Tang S, Cheng K, Wu K, Cai Z, Zhou J. The micro-ecological feature of colonies is a potential strategy for Phaeocystis globosa bloom formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174134. [PMID: 38909792 DOI: 10.1016/j.scitotenv.2024.174134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Phaeocystis globosa is among the dominant microalgae associated with harmful algal blooms. P. globosa has a polymorphic life cycle and its ecological success has been attributed to algal colony formation, however, few studies have assessed differences in microbial communities and their functional profiles between intra- and extra-colonies during P. globosa blooms. To address this, environmental and metagenomics tools were used to conduct a time-series analysis of the bacterial composition and metabolic characteristics of intra- and extra-colonies during a natural P. globosa bloom. The results show that bacterial composition, biodiversity, and network interactions differed significantly between intra- and extra-colonies. Dominant extra-colonial bacteria were Bacteroidia and Saccharimonadis, while dominant intra-colonial bacteria included Alphaproteobacteria and Gammaproteobacteria. Despite the lower richness and diversity observed in the intra-colonial bacterial community, relative to extra-colonies, the complexity and interconnectedness of the intra-colonial networks were higher. Regarding bacterial function, more functional genes were enriched in substance metabolism (polysaccharides, iron element and dimethylsulfoniopropionate) and signal communication (quorum sensing, indoleacetic acid-IAA) pathways in intra- than in extra-colonies. Conceptual model construction showed that microbial cooperative synthesis of ammonium, vitamin B12, IAA, and siderophores were strongly related to the P. globosa bloom, particularly in the intra-colonial environment. Overall, our data highlight the differences in bacterial structure and functions within and outside the colony during P. globosa blooms. These findings represent fundamental information indicating that phenotypic heterogeneity is a selective strategy that improves microbial population competitiveness and environmental adaptation, benefiting P. globosa bloom formation and persistence.
Collapse
Affiliation(s)
- Jianming Zhu
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong Province, PR China
| | - Si Tang
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Keke Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Kebi Wu
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China.
| |
Collapse
|
3
|
Wang Q, Yu J, Li X, Zhang Y, Zhang J, Wang J, Mu J, Yu X, Hui R. Seasonal and anthropogenic influences on bacterioplankton communities: ecological impacts in the coastal waters of Qinhuangdao, Northern China. Front Microbiol 2024; 15:1431548. [PMID: 38962120 PMCID: PMC11220261 DOI: 10.3389/fmicb.2024.1431548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Marine bacterioplankton play a crucial role in the cycling of carbon, nitrogen, and phosphorus in coastal waters. And the impact of environmental factors on bacterial community structure and ecological functions is a dynamic ongoing process. To systematically assess the relationship between environmental changes and bacterioplankton communities, this study delved into the spatiotemporal distribution and predicted metabolic characteristics of bacterioplankton communities at two estuarine beaches in Northern China. Coastal water samples were collected regularly in spring, summer, and autumn, and were analyzed in combination with environmental parameters and bacterioplankton community. Results indicated significant seasonal variations in bacterioplankton communities as Bacteroidetes and Actinobacteria were enriched in spring, Cyanobacteria proliferated in summer. While Pseudomonadota and microorganisms associated with organic matter decomposition prevailed in autumn, closely linked to seasonal variation of temperature, light and nutrients such as nitrogen and phosphorus. Particularly in summer, increased tourism activities and riverine inputs significantly raised nutrient levels, promoting the proliferation of specific photosynthetic microorganisms, potentially linked to the occurrence of phytoplankton blooms. Spearman correlation analysis further revealed significant correlations between bacterioplankton communities and environmental factors such as salinity, chlorophyll a, and total dissolved phosphorus (TDP). Additionally, the metabolic features of the spring bacterioplankton community were primarily characterized by enhanced activities in the prokaryotic carbon fixation pathways, reflecting rapid adaptation to increased light and temperature, as well as significant contributions to primary productivity. In summer, the bacterial communities were involved in enhanced glycolysis and biosynthetic pathways, reflecting high energy metabolism and responses to increased light and biomass. In autumn, microorganisms adapted to the accelerated decomposition of organic matter and the seasonal changes in environmental conditions through enhanced amino acid metabolism and material cycling pathways. These findings demonstrate that seasonal changes and human activities significantly influence the structure and function of bacterioplankton communities by altering nutrient dynamics and physical environmental conditions. This study provides important scientific insights into the marine biological responses under global change.
Collapse
Affiliation(s)
- Qiuzhen Wang
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
- Hebei Key Laboratory of Nutrition Regulation and Disease Control for Aquaculture, Qinhuangdao, China
| | - Jia Yu
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
| | - Xiaofang Li
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
| | - Yong Zhang
- Department of Ocean Survey, Qinhuangdao Marine Center of the Ministry of Natural Resources, Qinhuangdao, China
| | - Jianle Zhang
- Department of Ocean Survey, Qinhuangdao Marine Center of the Ministry of Natural Resources, Qinhuangdao, China
| | - Jianyan Wang
- Department of Life Sciences, National Natural History Museum of China, Beijing, China
| | - Jiandong Mu
- Ecological Environment Research Department, Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao, China
| | - Xinping Yu
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
| | - Ruixue Hui
- Ocean College, Hebei Agricultural University, Qinhuangdao, China
| |
Collapse
|
4
|
Yang S, Hou Q, Li N, Wang P, Zhao H, Chen Q, Qin X, Huang J, Li X, Liao N, Jiang G, Dong K, Zhang T. Rare subcommunity maintains the stability of ecosystem multifunctionality by deterministic assembly processes in subtropical estuaries. Front Microbiol 2024; 15:1365546. [PMID: 38706965 PMCID: PMC11066265 DOI: 10.3389/fmicb.2024.1365546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Microorganisms, especially rare microbial species, are crucial in estuarine ecosystems for driving biogeochemical processes and preserving biodiversity. However, the understanding of the links between ecosystem multifunctionality (EMF) and the diversity of rare bacterial taxa in estuary ecosystems remains limited. Employing high-throughput sequencing and a variety of statistical methods, we assessed the diversities and assembly process of abundant and rare bacterioplankton and their contributions to EMF in a subtropical estuary. Taxonomic analysis revealed Proteobacteria as the predominant phylum among both abundant and rare bacterial taxa. Notably, rare taxa demonstrated significantly higher taxonomic diversity and a larger species pool than abundant taxa. Additionally, our findings highlighted that deterministic assembly processes predominantly shape microbial communities, with heterogeneous selection exerting a stronger influence on rare taxa. Further analysis reveals that rare bacterial beta-diversity significantly impacts to EMF, whereas alpha diversity did not. The partial least squares path modeling (PLS-PM) analysis demonstrated that the beta diversity of abundant and rare taxa, as the main biotic factor, directly affected EMF, while temperature and total organic carbon (TOC) were additional key factors to determine the relationship between beta diversity and EMF. These findings advance our understanding of the distribution features and ecological knowledge of the abundant and rare taxa in EMF in subtropical estuaries, and provide a reference for exploring the multifunctionality of different biospheres in aquatic environments.
Collapse
Affiliation(s)
- Shu Yang
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | - Qinghua Hou
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Nan Li
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Re-sources, Hangzhou, China
| | - Huaxian Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | - Qingxiang Chen
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Xinyi Qin
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | | | - Xiaoli Li
- School of Agriculture, Ludong University, Yantai, China
| | - Nengjian Liao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Gonglingxia Jiang
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Republic of Korea
| | - Tianyu Zhang
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
5
|
Han B, Shi R, Zhang S, Lian A, Kuang Z, Wu F, Huang L, Huang H. Responses of microeukaryotic community structure to a Phaeocystis globosa bloom in a semi-enclosed subtropical bay. MARINE ENVIRONMENTAL RESEARCH 2024; 195:106374. [PMID: 38277816 DOI: 10.1016/j.marenvres.2024.106374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
The occurrence of Phaeocystis globosa, a harmful algal bloom species in Chinese coastal waters, has significant impacts on marine organisms and poses a threat to the safety of coastal nuclear power plants. Although previous studies have established a close association between P. globosa blooms and the bacterial community, the relationship between the microeukaryotic community and P. globosa blooms remains poorly understood. In this study, the variations in the microeukaryotic community resulting from a P. globosa bloom were analyzed using 18S rRNA gene amplicon sequencing. The results indicated that the diversity of the microeukaryotic community during the bloom phase was significantly higher than that during the dissipation phase. The microeukaryotic community compositions varied significantly between the two phases of the P. globosa bloom. During the bloom phase, the dominant microeukaryotic was Viridiplantae, which was then replaced by Dinoflagellata during the dissipation phase. Co-occurrence network analysis showed that the relationship among the microeukaryotic community during the bloom phase was more complex than that during the dissipation phase, and the keystone taxa varied as the bloom progressed. Additionally, microeukaryotic community assembly was primarily driven by stochastic processes during the bloom phase based on the β-nearest taxon distance, whereas it was driven by both deterministic processes and stochastic processes during the dissipation phase. Overall, our findings provide novel insight into the mechanisms and interactions involved in microeukaryotic community dynamics in environments disturbed by P. globosa blooms.
Collapse
Affiliation(s)
- Beibei Han
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Rongjun Shi
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Shufei Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Anji Lian
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Zexing Kuang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Fengxia Wu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Lingfeng Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China.
| | - Honghui Huang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| |
Collapse
|
6
|
Zhu J, Tang S, Cheng K, Cai Z, Chen G, Zhou J. Microbial community composition and metabolic potential during a succession of algal blooms from Skeletonema sp. to Phaeocystis sp. Front Microbiol 2023; 14:1147187. [PMID: 37138603 PMCID: PMC10149697 DOI: 10.3389/fmicb.2023.1147187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Elucidating the interactions between algal and microbial communities is essential for understanding the dynamic mechanisms regulating algal blooms in the marine environment. Shifts in bacterial communities when a single species dominates algal blooms have been extensively investigated. However, bacterioplankton community dynamics during bloom succession when one algal species shift to another is still poorly understood. In this study, we used metagenomic analysis to investigate the bacterial community composition and function during algal bloom succession from Skeletonema sp. to Phaeocystis sp. The results revealed that bacterial community structure and function shifted with bloom succession. The dominant group in the Skeletonema bloom was Alphaproteobacteria, while Bacteroidia and Gammaproteobacteria dominated the Phaeocystis bloom. The most noticeable feature during the successions was the change from Rhodobacteraceae to Flavobacteriaceae in the bacterial communities. The Shannon diversity indices were significantly higher in the transitional phase of the two blooms. Metabolic reconstruction of the metagenome-assembled genomes (MAGs) showed that dominant bacteria exhibited some environmental adaptability in both blooms, capable of metabolizing the main organic compounds, and possibly providing inorganic sulfur to the host algae. Moreover, we identified specific metabolic capabilities of cofactor biosynthesis (e.g., B vitamins) in MAGs in the two algal blooms. In the Skeletonema bloom, Rhodobacteraceae family members might participate in synthesizing vitamin B1 and B12 to the host, whereas in the Phaeocystis bloom, Flavobacteriaceae was the potential contributor for synthesizing vitamin B7 to the host. In addition, signal communication (quorum sensing and indole-3-acetic acid molecules) might have also participated in the bacterial response to bloom succession. Bloom-associated microorganisms showed a noticeable response in composition and function to algal succession. The changes in bacterial community structure and function might be an internal driving factor for the bloom succession.
Collapse
Affiliation(s)
- Jianming Zhu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong, China
| | - Si Tang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong, China
- *Correspondence: Guofu Chen,
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
- Jin Zhou,
| |
Collapse
|
7
|
Xu S, Wang X, Liu J, Zhou F, Guo K, Chen S, Wang ZH, Wang Y. Bacteria Associated With Phaeocystis globosa and Their Influence on Colony Formation. Front Microbiol 2022; 13:826602. [PMID: 35250943 PMCID: PMC8891983 DOI: 10.3389/fmicb.2022.826602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Phaeocystis globosa (P. globosa) is one of the dominant algae during harmful algal blooms (HABs) in coastal regions of Southern China. P. globosa exhibits complex heteromorphic life cycles that could switch between solitary cells and colonies. The ecological success of P. globosa has been attributed to its colony formation, although underlying mechanisms remain unknown. Here, we investigated different bacterial communities associated with P. globosa colonies and their influence on colony formation of two P. globosa strains isolated from coastal waters of Guangxi (GX) and Shantou (ST). Eight operational taxonomic units (OTUs) were observed in ST co-cultures and were identified as biomarkers based on Linear discriminant analysis Effect Size (LEfSe) analysis, while seven biomarkers were identified in P. globosa GX co-cultures. Bacterial communities associated with the P. globosa GX were more diverse than those of the ST strain. The most dominant phylum in the two co-cultures was Proteobacteria, within which Marinobacter was the most abundant genus in both GX and ST co-cultures. Bacteroidota were only observed in the GX co-cultures and Planctomycetota were only observed in the ST co-cultures. Co-culture experiments revealed that P. globosa colony formation was not influenced by low and medium cell densities of Marinobacter sp. GS7, but was inhibited by high cell densities of Marinobacter sp. GS7. Overall, these results indicated that the associated bacteria are selected by different P. globosa strains, which may affect the colony formation and development of P. globosa.
Collapse
Affiliation(s)
- Shuaishuai Xu
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaodong Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jie Liu
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Fengli Zhou
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Kangli Guo
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Songze Chen
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhao-hui Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
- *Correspondence: Zhao-hui Wang,
| | - Yan Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
- Yan Wang,
| |
Collapse
|
8
|
Chen X, Zhao H, Jiang G, Tang J, Xu Q, Li X, Huang Y, Zou S, Dong K, Hou W, Pan L, Wang P, Huang L, Li N. Trophic states regulate assembly processes and network structures of small chromophytic phytoplankton communities in estuarine and coastal ecosystem. MARINE POLLUTION BULLETIN 2022; 175:113327. [PMID: 35077925 DOI: 10.1016/j.marpolbul.2022.113327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Small chromophytic phytoplankton (SCP) are anticipated to be more important for a significant proportion of primary production in estuarine-coastal ecosystems. However, responses of SCP community to coastal eutrophication are still unclear. In this study, we investigated diversity, co-occurrence and assembly features of SCP communities, as well as relationship with environmental factors in subtropical Beibu Gulf. The results exhibited that the alpha diversity and beta diversity of SCP communities were significantly different among eutrophic states. Co-occurrence network revealed a complex interaction that most amplicon sequence variants (ASVs) in modules of the network were specific to trophic states. Further, phylogenetic based β-nearest taxon distance analyses revealed that stochastic processes mainly provided 69.26% contribution to SCP community assembly, whereas deterministic processes dominated community assembly in heavy eutrophic state. Overall, our findings elucidate the mechanism of diversity and assembly in SCP community and promote the understanding of SCP ecology related to subtropical coastal eutrophication.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), 175 Mingxiu East Road, Nanning 530001, China; College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Huaxian Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), 175 Mingxiu East Road, Nanning 530001, China
| | - Gonglingxia Jiang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), 175 Mingxiu East Road, Nanning 530001, China
| | - Jinli Tang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), 175 Mingxiu East Road, Nanning 530001, China
| | - Qiangsheng Xu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), 175 Mingxiu East Road, Nanning 530001, China
| | - Xiaoli Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yuqing Huang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), 175 Mingxiu East Road, Nanning 530001, China
| | - Shuqi Zou
- Department of Biological Sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, South Korea
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, South Korea
| | - Weiguo Hou
- State Key Laboratory of Biogeosciences and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing 100083, China
| | - Lianghao Pan
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, 92 Changqing Road, Beihai, Guangxi 536000, China
| | - Pengbin Wang
- Fourth Institute of Oceanography, Ministry of Natural Resources, 26 New Century Avenue, Beihai 536000, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou 310012, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Nan Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), 175 Mingxiu East Road, Nanning 530001, China.
| |
Collapse
|
9
|
Xu Q, Wang P, Huangleng J, Su H, Chen P, Chen X, Zhao H, Kang Z, Tang J, Jiang G, Li Z, Zou S, Dong K, Huang Y, Li N. Co-occurrence of chromophytic phytoplankton and the Vibrio community during Phaeocystis globosa blooms in the Beibu Gulf. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150303. [PMID: 34537702 DOI: 10.1016/j.scitotenv.2021.150303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Accumulating research evidence has revealed that harmful algal blooms (HABs) can substantially affect the community structures of phytoplankton and heterotrophic bacteria in marine ecosystems. However, little is known about their species-specific interactions between phytoplankton and heterotrophic bacteria during the HABs period and about their interaction shifts in response to blooms. From this perspective, we investigated the co-occurrence of chromophytic phytoplankton and Vibrio during Phaeocystis globosa blooms in the Beibu Gulf. The results showed that Vibrio communities were distinct during the blooms, and P. globosa blooms resulted in a decline in phytoplankton alpha diversity, revealing that the blooms could affect their community compositions. The regression lines between the Shannon indices and Bray-Curtis distances of phytoplankton and Vibrio showed positive correlations with each other (p < 0.001), suggesting that they may have intrageneric symbiotic interactions overall. In addition, network analysis further demonstrated that relationships between phytoplankton and Vibrio were dominated by positive correlations, and more interaction modules were observed during the blooms, revealing that the blooms intensified synergistic association and mutual symbiotic interactions between them. Environmental factors (SiO32-, NH4+, NO3- and TN,) and P. globosa density more deeply affected network interactions between phytoplankton and Vibrio during the periods of P. globosa blooms than those before the blooms and after the blooms. This study provided new insight to elucidate community structure and interaction relationships between phytoplankton and Vibrio in response to P. globosa blooms and their ecological effects in marine ecosystems.
Collapse
Affiliation(s)
- Qiangsheng Xu
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou 310012, Zhejiang, People's Republic of China; Fourth Institute of Oceanography, Ministry of Natural Resources, 26 New Century Avenue, Beihai, 536000, Guangxi, People's Republic of China
| | - Jinghua Huangleng
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Huiqi Su
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Panyan Chen
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Xing Chen
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China; College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, People's Republic of China
| | - Huaxian Zhao
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Zhenjun Kang
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, 12 Binhai Avenue, Qinzhou 535011, Guangxi, People's Republic of China
| | - Jinli Tang
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Gonglingxia Jiang
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Zhuoting Li
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Shuqi Zou
- Department of biological sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, South Korea
| | - Ke Dong
- Department of biological sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, South Korea
| | - Yuqing Huang
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Nan Li
- Key Laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China.
| |
Collapse
|
10
|
Galbraith E, Convertino M. The Eco-Evo Mandala: Simplifying Bacterioplankton Complexity into Ecohealth Signatures. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1471. [PMID: 34828169 PMCID: PMC8625105 DOI: 10.3390/e23111471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022]
Abstract
The microbiome emits informative signals of biological organization and environmental pressure that aid ecosystem monitoring and prediction. Are the many signals reducible to a habitat-specific portfolio that characterizes ecosystem health? Does an optimally structured microbiome imply a resilient microbiome? To answer these questions, we applied our novel Eco-Evo Mandala to bacterioplankton data from four habitats within the Great Barrier Reef, to explore how patterns in community structure, function and genetics signal habitat-specific organization and departures from theoretical optimality. The Mandala revealed communities departing from optimality in habitat-specific ways, mostly along structural and functional traits related to bacterioplankton abundance and interaction distributions (reflected by ϵ and λ as power law and exponential distribution parameters), which are not linearly associated with each other. River and reef communities were similar in their relatively low abundance and interaction disorganization (low ϵ and λ) due to their protective structured habitats. On the contrary, lagoon and estuarine inshore reefs appeared the most disorganized due to the ocean temperature and biogeochemical stress. Phylogenetic distances (D) were minimally informative in characterizing bacterioplankton organization. However, dominant populations, such as Proteobacteria, Bacteroidetes, and Cyanobacteria, were largely responsible for community patterns, being generalists with a large functional gene repertoire (high D) that increases resilience. The relative balance of these populations was found to be habitat-specific and likely related to systemic environmental stress. The position on the Mandala along the three fundamental traits, as well as fluctuations in this ecological state, conveys information about the microbiome's health (and likely ecosystem health considering bacteria-based multitrophic dependencies) as divergence from the expected relative optimality. The Eco-Evo Mandala emphasizes how habitat and the microbiome's interaction network topology are first- and second-order factors for ecosystem health evaluation over taxonomic species richness. Unhealthy microbiome communities and unbalanced microbes are identified not by macroecological indicators but by mapping their impact on the collective proportion and distribution of interactions, which regulates the microbiome's ecosystem function.
Collapse
Affiliation(s)
- Elroy Galbraith
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Matteo Convertino
- bluEco Lab, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| |
Collapse
|
11
|
Xu S, He C, Song S, Li C. Spatiotemporal dynamics of marine microbial communities following a Phaeocystis bloom: biogeography and co-occurrence patterns. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:294-308. [PMID: 33527743 DOI: 10.1111/1758-2229.12929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Marine microbes play important roles in the development of phytoplankton blooms. The diversity and composition of free living (FL) and particle attached (PA) microbial communities have been well studied, while little is known about their geographic and co-occurrence patterns, especially during the subsiding process of Phaeocystis globosa blooms. Herein, the beta-diversity of FL and PA microbial communities in both the surface and bottom layers of different habitats were comprehensively examined during succession of a P. globosa bloom event. The results showed that microbial communities from bloom and non-bloom sites exhibited distinct community compositions. Among the different sampling sites, the community similarities decreased with spatial distance, in which the FL communities' similarity in bottom waters was more influenced by spatial variation. The variation of microbial communities was mostly attributed to environmental selection, spatial distance, and the abundance of P. globosa successively. The co-occurrence networks of microbial communities in bloom and non-bloom waters differed in terms of structure and composition, and the bloom network had more links and closer relationships between genera than the non-bloom network. The correlation among genera and modules suggested that the bloom microbes were likely driven by high environmental selection and low competitive effect between each other.
Collapse
Affiliation(s)
- Sha Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng He
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuqun Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Caiwen Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|