1
|
Álvarez-Escalante I, Martínez-Páramo S, Irusta-Mata R. Bacterial toxicity of Acetaminophen and Edaravone, and their binary mixtures: experimental and predicted values using traditional and novel Van Laar-based models. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:722-736. [PMID: 38949723 PMCID: PMC11358354 DOI: 10.1007/s10646-024-02772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
In recent years, the presence of Pharmaceutical Active Compounds (PhACs) in ecosystems has become a serious environmental problem due to their capacity to induce harmful effects at extremely low concentrations in both humans and wildlife. Water treatment plants have not been designed to remove these types of compounds efficiently. Thus, the detection of these pollutants is essential to evaluate their negative impacts and is one of the emerging issues in environmental chemistry. The main objective of this study is to determine the bacterial toxicity of two PhACs (both individually and as a mixture) through the quantification of bioluminescence inhibition in the marine bacteria Aliivibrio fischeri, a commonly used method in short-term toxicity tests. In this work, Acetaminophen and Edaravone, two drugs approved by the Food and Drug Administration, have been studied. The acute toxicity of these PhACs has been tested at two exposure times (5 and 15 min) and different concentrations, by estimation of the median effective concentration (EC50) for each individual compound or in combination at different concentrations. Moreover, the EC50 of the binary mixtures Acetaminophen/Edaravone have been forecast using two traditional predictive models, Concentration Addition and Independent Action. The results show that toxicity decreases with exposure time and depends on the concentration tested. Furthermore, a novel semi-empirical Van Laar-based model has been proposed and validated with the experimental data from this study and literature data, obtaining satisfactory estimations of the EC50 for binary mixtures.
Collapse
Affiliation(s)
- Iván Álvarez-Escalante
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011, Valladolid, Spain
- Institute of Sustainable Processes, University of Valladolid, Calle Doctor Mergelina s/n, 47011, Valladolid, Spain
| | - Sonia Martínez-Páramo
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011, Valladolid, Spain
- Institute of Sustainable Processes, University of Valladolid, Calle Doctor Mergelina s/n, 47011, Valladolid, Spain
| | - Rubén Irusta-Mata
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011, Valladolid, Spain.
- Institute of Sustainable Processes, University of Valladolid, Calle Doctor Mergelina s/n, 47011, Valladolid, Spain.
| |
Collapse
|
2
|
Tao MT, Liu SS, Ding TT, Gu ZW, Cheng RJ. Time-dependent nonmonotonic concentration-response and synergism of alkyl glycosides with different alkyl side chain to Vibrio qinghaiensis sp. -Q67. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171375. [PMID: 38431162 DOI: 10.1016/j.scitotenv.2024.171375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Alkyl glycosides (AGs), commonly used nonionic surfactants, may have toxic effects on the environmental organisms. However, the complex concentration-response patterns of AGs with varying alkyl side chains and their mixtures have not been thoroughly studied. Therefore, the luminescence inhibition toxicities of six AGs with different alkyl side chains, namely, ethyl (AG02), butyl (AG04), hexyl (AG06), octyl (AG08), decyl (AG10), and dodecyl (AG12) glucosides, were determined in Vibrio qinghaiensis sp. -Q67 (Q67) at 0.25, 3, 6, 9, and 12 h. The six AGs exhibited time- and side-chain-dependent nonmonotonic concentration- responses toward Q67. AG02, with a short side chain, presented a concentration-response curve (CRC) with two peaks after 6 h and stimulated the luminescence of Q67 at both 6 and 9 h. AG04, AG06, and AG08 showed S-shaped CRCs at five exposure time points, and their toxicities increased with the side-chain length. AG10 and AG12, with long side chains, exhibited hormesis at 9 and 12 h. Molecular docking was performed to explore the mechanism governing the possible influence of AGs on the luminescence response. The effects of AGs on Q67 could be attributed to multiple luminescence-regulatory proteins, including LuxA, LuxC, LuxD, LuxG, LuxI, and LuxR. Notably, LuxR was identified as the primary binding protein among the six AGs. Given that they may co-exist, binary mixtures of AG10 and AG12 were designed to explore their concentration-response patterns and interactions. The results revealed that all AG10-AG12 binary mixture rays showed time-dependent hormesis on Q67, similar to that shown by their individual components. The interactions of these binary mixtures were mainly characterized by low-concentration additive action and high-concentration synergism at different times.
Collapse
Affiliation(s)
- Meng-Ting Tao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhong-Wei Gu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Ru-Jun Cheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
3
|
Li Y, Zhao Y, Du Y, Ren X, Ding H, Wang Z. Recent advances in the development and applications of luminescent bacteria-based biosensors. LUMINESCENCE 2024; 39:e4721. [PMID: 38501275 DOI: 10.1002/bio.4721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Luminescent bacteria-based biosensors are widely used for fast and sensitive monitoring of food safety, water quality, and other environmental pollutions. Recent advancements in biomedical engineering technology have led to improved portability, integration, and intelligence of these biotoxicity assays. Moreover, genetic engineering has played a significant role in the development of recombinant luminescent bacterial biosensors, enhancing both detection accuracy and sensitivity. This review provides an overview of recent advances in the development and applications of novel luminescent bacteria-based biosensors, and future perspectives and challenges in the cutting-edge research, market translation, and practical applications of luminescent bacterial biosensing are discussed.
Collapse
Affiliation(s)
- Yingying Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Yuankun Zhao
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Yiyang Du
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Xuechun Ren
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
| | - He Ding
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China
| | - Zhimin Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
4
|
Wang D, Bai L, Wang W, Li S, Yan W. Functional groups effect on the toxicity of modified ZIF-90 to Photobacterium phosphoreum. CHEMOSPHERE 2024; 351:141188. [PMID: 38215832 DOI: 10.1016/j.chemosphere.2024.141188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Zeolitic imidazolate framework (ZIF) is of wide interest in biomedical applications due to its extraordinary properties such as high storage capacity, functionality and favorable biocompatibility. However, more comprehensive safety assessments are still essential before ZIF is broadly used in biomedicine. Using the characteristic that aldehyde groups on the surface of ZIF-90 can be modified with other functional groups, a series of ZIF-90s modified with different functional groups (oxime group, carboxyl group, amino group and sulfhydryl group) were synthesized to investigate the effect of functionalization on the toxicity of ZIF-90. ZIF-90 series showed concentration-dependent toxic effects on Photobacterium phosphoreum T3 and the functionalized ZIF-90s are more toxic than pristine ZIF-90, with the ZIF-90 modified with amino group (ZIF-90-NH2) showing the strongest toxicity (IC50 = 23.06 mg/L). Based on the results of the cellular assay and stability exploration, we concluded that corresponding imidazole-ligand release and the property of positively charged are responsible for the elevated toxicity of ZIF-90-NH2. Cell membrane damage, oxidative damage and luminescence damage are the main contributors to the toxic effects of ZIF-90 series. This study explored the effect of surface functionalization on the toxicity of ZIF and proposed mechanistic clues for the safety application of ZIF.
Collapse
Affiliation(s)
- Dan Wang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Linming Bai
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenlong Wang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shanshan Li
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Wei Yan
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
5
|
Gakis GP, Aviziotis IG, Charitidis CA. A structure-activity approach towards the toxicity assessment of multicomponent metal oxide nanomaterials. NANOSCALE 2023; 15:16432-16446. [PMID: 37791566 DOI: 10.1039/d3nr03174h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The increase of human and environmental exposure to engineered nanomaterials (ENMs) due to the emergence of nanotechnology has raised concerns over their safety. The challenging nature of in vivo and in vitro toxicity assessment methods for ENMs, has led to emerging in silico techniques for ENM toxicity assessment, such as structure-activity relationship (SAR) models. Although such approaches have been extensively developed for the case of single-component nanomaterials, the case of multicomponent nanomaterials (MCNMs) has not been thoroughly addressed. In this paper, we present a SAR approach for the case metal and metal oxide MCNMs. The developed SAR framework is built using a dataset of 796 individual toxicity measurements for 340 different MCNMs, towards human cells, mammalian cells, and bacteria. The novelty of the approach lies in the multicomponent nature of the nanomaterials, as well as the size, diversity and heterogeneous nature of the dataset used. Furthermore, the approach used to calculate descriptors for surface loaded MCNMs, and the mechanistic insight provided by the model results can assist the understanding of MCNM toxicity. The developed models are able to correctly predict the toxic class of the MCNMs in the heterogeneous dataset, towards a wide range of human cells, mammalian cells and bacteria. Using the abovementioned approach, the principal toxicity pathways and mechanisms are identified, allowing a more holistic understanding of metal oxide MCNM toxicity.
Collapse
Affiliation(s)
- G P Gakis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, Materials Science and Engineering Department, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou Street, Zografos, Athens 15780, Greece.
| | - I G Aviziotis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, Materials Science and Engineering Department, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou Street, Zografos, Athens 15780, Greece.
| | - C A Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, Materials Science and Engineering Department, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechneiou Street, Zografos, Athens 15780, Greece.
| |
Collapse
|
6
|
Wang N, Sun J, Ma X, Yang X, Wang X, Zhang Y, Zhou J, Wang J, Ge C. A study of long-term toxicity of multiple mixtures with hormetic effects by the characteristic parameter σ 2(k∙ECx) and stepwise method. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104133. [PMID: 37116630 DOI: 10.1016/j.etap.2023.104133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
A previous study found that the characteristic parameter σ2(k∙ECx) (the concentration ECx and slope k of the concentrationresponse curve (CRC) at the effect x %) can predict the acute combined toxicity of multiple mixtures with S-shaped CRCs. In this paper, the competence of σ2(k∙ECx) to predict the long-term toxicity of multiple mixtures with J-shaped CRCs was explored using the Aliivibrio fischeri as the test organism. The combined toxicity was evaluated by the independent action (IA) model and the effect ratio (ERx) model. The stepwise method was used to divide J-shaped CRC into ML and MR (SL and SR). The results showed that the σ2(k∙ECx) and ERx of each segment was in good agreement with the exponential function. A new type of mixture was added to the original type A and type B, whose rules of interaction were opposite to those of type B (named opposite B, OB). This paper improves the understanding and analysis of the J-shaped CRCs in environmental risk assessment.
Collapse
Affiliation(s)
- Na Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China.
| | - Jiajing Sun
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Xiaoyan Ma
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Xinyue Yang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Xiaochang Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yujiao Zhang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Jinhong Zhou
- College of Geography and Environment, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China
| | - Jiaxuan Wang
- College of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
| | - Chengmin Ge
- Shandong Dongyuan New Material Technology Co., Ltd, Dongying 257300, Shandong, China
| |
Collapse
|
7
|
Nistala S, Kumar A. Effect of toxicological interaction of chlorpyrifos, cypermethrin, and arsenic on soil dehydrogenase activity in the terrestrial environment. ECOTOXICOLOGY (LONDON, ENGLAND) 2023:10.1007/s10646-023-02666-3. [PMID: 37233842 DOI: 10.1007/s10646-023-02666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Soil is the most widespread area for the co-occurrence of two or more numbers of contaminants. Therefore, toxicity assessments based on contaminants mixture are urgently required to assess their combined impacts on soil enzymes. In the present study, the median effect plot and the combination index isobologram were studied to evaluate the dose-response curve for individual and interactive impacts of chlorpyrifos (Chl), cypermethrin (Cyp), and arsenic (As) on soil dehydrogenase, a potential marker of soil health. Along with these methods, a two-way ANOVA was also tested and the results showed significant changes with respect to different treatments. The results also showed that the Dm value increases in the order of As<Cyp<Chl. Another side, the m values for Cyp and As were negative, while positive for Chl. The day-dependent variation analysis revealed maximum inhibition in dehydrogenase activity on days 20 and 30 after treatment. The results also revealed that binary mixtures Chl + Cyp- and Chl + As- induced synergistic and antagonistic impacts over dehydrogenase enzyme at 0.1 fa level on different treatment days, whereas, applied binary and ternary combinations exhibited antagonistic effects at >0.25 fa level. However, Chl + Cyp unveiled a synergistic impact over soil dehydrogenase on day 30th. The overall impact of applied chemicals on dehydrogenase activity was contributed by bioavailability and the nature of toxicological interactions between them. This study would be one of the exclusive studies for the agricultural sector to predict the potential risk associated with the co-existence of these or similar contaminants in the terrestrial environment.
Collapse
Affiliation(s)
- Shweta Nistala
- Department of Biotechnology, National Institute of Technology, Raipur, 492 010, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, 492 010, India
| |
Collapse
|
8
|
Global honeybee health decline factors and potential conservation techniques. Food Secur 2023. [DOI: 10.1007/s12571-023-01346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Application of the Luminescent luxCDABE Gene for the Rapid Screening of Antibacterial Substances Targeting Pseudomonas aeruginosa. Foods 2023; 12:foods12020392. [PMID: 36673482 PMCID: PMC9857705 DOI: 10.3390/foods12020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a typical Gram-negative bacterium that can cause the spoilage of catered food products. Using a luminescent reporter gene (luxCDABE), this study sought to construct a cell-based biosensor (PAO1-CE) to rapidly screen antibacterial substances against P. aeruginosa. A total of six antibiotics belonging to five categories were used as the model test substances. The results of the bioluminescence detection method were verified using traditional antibacterial research assessments. The correlation coefficient of the regression equation fitting the data generated using this method was greater than 0.98, supporting the credibility of this approach. Additionally, the EC50 of each of the antibiotics assessed in this study was lower than the 1/2 MIC determined by conventional means. All six of the antibiotics caused varying degrees of damage to the cell membrane and cell wall of P. aeruginosa. Importantly, this novel method helped shorten the time necessary for active-compound detection and could be used for high-throughput detection, which would also help improve the detection efficiency. The application of this method towards the discovery of novel antibacterial compounds targeting P. aeruginosa holds substantial promise for greatly improving the efficiency of compound discovery.
Collapse
|
10
|
Yang J, Hu S, Wu M, Liao A, Liang S, Lin Y. Construction of luminescent Escherichia coli via expressing lux operons and their application on toxicity test. Appl Microbiol Biotechnol 2022; 106:6317-6333. [PMID: 36028635 DOI: 10.1007/s00253-022-12136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
Recombinant luminescent Escherichia coli strains could be used to detect the toxicity of pure or mixed contaminants as a light-off sensor. In this work, the lux operon of Photobacterium phosphoreum T3 was identified for the first time. Recombinant luminescent E. coli strains were constructed via expressing the lux operons of P. phosphoreum T3 and Vibrio qinghaiensis Q67 in E. coli MG1655, and the optimal protectant containing 10% (w/v) trehalose and 4% sucrose was used to prepare the freeze-dried recombinant luminescent E. coli cells. Then, these freeze-dried E. coli cells were subjected to acute toxicity detection. The results showed that luminescent E. coli strains displayed sensitive toxic responses to BPA, nFe2O3, Cd, Pb, As, and Hg, for example, the EC50 values of BPA and nFe2O3 to luminescent E. coli strains ranged from 1.54 to 50.19 mg/l and 17.50 to 21.52 mg/l, respectively. Indeed, luminescent E. coli strains exhibited more sensitive responses to Cd, Pb, and Hg than the natural strain Q67. The results suggested that recombinant luminescent E. coli strains could be used for the detection of acute toxicity. Furthermore, the combined toxicities of BPA and nFe2O3, Hg, and Pb were measured, and the joint effects of these mixtures were evaluated with luminescent E. coli. The results indicated that the joint effects of BPA and nFe2O3 suggested to be synergistic or additive to luminescent E. coli, while the joint effects of heavy metals and nFe2O3 exhibited additivities. The cellular endocytosis for Fe2O3 nanoparticles was not observed, which could explain the additive instead of synergistic effects between heavy metals and nFe2O3. KEY POINTS: • Sequence of the lux operon from P. phosphoreum T3 was reported for the first time. • Recombinant luminescent E. coli was more sensitive to Cd, Pb, and Hg than Q67. • Joint effects of BPA and nFe2O3 were synergistic or additive to luminescent E. coli.
Collapse
Affiliation(s)
- Jun Yang
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Shulin Hu
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Minhui Wu
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Anqi Liao
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Shuli Liang
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China. .,Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Yang J, Liao A, Hu S, Zheng Y, Liang S, Han S, Lin Y. Acute and Chronic Toxicity of Binary Mixtures of Bisphenol A and Heavy Metals. TOXICS 2022; 10:255. [PMID: 35622668 PMCID: PMC9145676 DOI: 10.3390/toxics10050255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 01/03/2023]
Abstract
Bisphenol A (BPA) and heavy metals are widespread contaminants in the environment. However, the combined toxicities of these contaminants are still unknown. In this study, the bioluminescent bacteria Vibrio qinghaiensis Q67 was used to detect the single and combined toxicities of BPA and heavy metals, then the joint effects of these contaminants were evaluated. The results show that chronic toxicities of chromium (Cr), cadmium (Cd), lead (Pb), arsenic (As), mercury (Hg), nickel (Ni), and BPA were time−dependent; in fact, the acute toxicities of these contaminants were stronger than the chronic toxicities. Furthermore, the combined toxicities of BPA and heavy metals displayed BPA + Hg > BPA + Cr > BPA + As > BPA + Ni > BPA + Pb > BPA + Cd in the acute test and BPA + Hg > BPA + Cd > BPA + As > BPA + Cd in the chronic test, which suggested that the combined toxicity of BPA and Hg was stronger than that of other mixtures in acute as well as chronic tests. Additionally, both CA and IA models underestimated the toxicities of mixtures at low concentrations but overestimated them at high concentrations, which indicates that CA and IA models were not suitable to predict the toxicities of mixtures of BPA and heavy metals. Moreover, the joint effects of BPA and heavy metals mainly showed antagonism and additive in the context of acute exposure but synergism and additive in the context of chronic exposure. Indeed, the difference in the joint effects on acute and chronic exposure can be explained by the possibility that mixtures inhibited cell growth and luminescence in chronic cultivation. The chronic toxicity of the mixture should be considered if the mixture results in the inhibition of the growth of cells.
Collapse
Affiliation(s)
- Jun Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Anqi Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
| | - Shulin Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yiwen Zheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuli Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuangyan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; (J.Y.); (A.L.); (S.H.); (Y.Z.); (S.L.); (S.H.)
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Similarities and Differences in Quorum Sensing-Controlled Bioluminescence between Photobacterium phosphoreum T3 and Vibrio qinghaiensis sp.-Q67. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Quorum sensing is a density-dependent mechanism using chemical signal molecules termed autoinducers to regulate diverse biological processes in bacteria, including bioluminescence. However, the correlation between growth and light emission of two typical luminescent bacteria, Photobacterium phosphoreum T3 and Vibrio qinghaiensis sp.-Q67, is still unclear. This study investigates the variations of bioluminescence and the light-emission-involved gene expression of the above two strains, respectively, showing that bioluminescence is population density-dependent. Furthermore, the effect of crude extracts (175, 350, 700 and 1750 mg/L) from the bacterial culture that contains the potential autoinducers on the bioluminescence is explored. At the exponential and the early stationary growth phase, T3 did not exhibit an obvious light intensity and cell density change after adding crude extracts at 175 and 350 mg/L, while the light intensity decreased at 700 and 1750 mg/L, showing a luminescence inhibition. For Q67, the light intensity increased dramatically with crude extract concentration. These results suggest that the bioluminescence process of both T3 and Q67 is controlled by quorum sensing. Furthermore, the different response modes of these two strains to autoinducers imply that the two strains could be applied to different compounds for toxicity assesses.
Collapse
|
13
|
Kar S, Leszczynski J. Computational Approaches in Assessments of Mixture Toxicity. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|