1
|
Qin J, Wang Z, Xu H, Li Y, Zhou J, Yaxier N, Wang C, Fu P. IncX3 plasmid-mediated spread of blaNDM gene in Enterobacteriaceae among children in China. J Glob Antimicrob Resist 2024; 37:199-207. [PMID: 38641225 DOI: 10.1016/j.jgar.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/21/2024] Open
Abstract
OBJECTIVES The blaNDM gene was prevalent among children and became the predominant cause of severe infection in infants and children. This study aimed to investigate the epidemiology and molecular characteristics of blaNDM in Enterobacteriaceae among children in China. METHODS Carbapenem-resistant Enterobacteriaceae (CRE) were collected in the Children's Hospital of Fudan University from January 2016 to December 2022. Five carbapenemase genes (blaKPC, blaNDM, blaVIM, blaIMP, blaOXA-48) were screened by PCR method. Multilocus sequence typing (MLST) was conducted for phylogenetic analyses. blaNDM-carrying plasmids were typed by PCR-based Incompatibility (Inc) typing method. Moreover, plasmid comparison was performed with 213 publicly available IncX3 plasmids. RESULTS A total of 330 CRE strains were enrolled, 96.4% of which carried carbapenemase genes. blaNDM gene accounted for 64.8% (214 strains) and included four variants, including blaNDM-1 (59.8%), blaNDM-5 (39.3%), blaNDM-7 (0.5%), and blaNDM-9 (0.5%). There were no predominant MLST lineages of blaNDM carrying strains. IncX3 was the major plasmid carrying blaNDM-1 (68.0%) and blaNDM-5 (72.6%) and was dominant in blaNDM-Klebsiella penumoniae (79.8%), blaNDM-Escherichia coli (58.2%), and blaNDM-Enterobacter cloacae (61.0%), respectively. Most (79.0%) clinical IncX3 plasmids in the world carried blaNDM, and the prevalence of blaNDM in IncX3 plasmids was more common in China (95.8%) than other countries (58.1%, P <0.01). CONCLUSION blaNDM is highly prevalent in CRE among children in China. The spread of blaNDM was mainly mediated by IncX3 plasmids. Surveillance and infection control on the spread of blaNDM among children are important.
Collapse
Affiliation(s)
- Jie Qin
- Lab of Microbiology, Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Centre, Shanghai, China
| | - Zixuan Wang
- Department of Infectious Diseases, Children's Hospital of Fudan University, National Children's Medical Centre, Shanghai, China
| | - Huihui Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Centre, Shanghai, China
| | - Yijia Li
- Lab of Microbiology, Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Centre, Shanghai, China
| | - Jinlan Zhou
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Centre, Shanghai, China
| | - Nijiati Yaxier
- Orthopedics Department, Children's Hospital of Fudan University, National Children's Medical Centre, Shanghai, China
| | - Chuanqing Wang
- Lab of Microbiology, Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Centre, Shanghai, China; Nosocomial Infection Control Department, Children's Hospital of Fudan University, National Children's Medical Centre, Shanghai, China.
| | - Pan Fu
- Lab of Microbiology, Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Centre, Shanghai, China; Nosocomial Infection Control Department, Children's Hospital of Fudan University, National Children's Medical Centre, Shanghai, China.
| |
Collapse
|
2
|
de Oliveira ÉM, Beltrão EMB, Pimentel MIS, Lopes ACDS. Occurrence of high-risk clones of Klebsiella pneumoniae ST11, ST340, and ST855 carrying the blaKPC-2, blaNDM-1, blaNDM-5, and blaNDM-7 genes from colonized and infected patients in Brazil. J Appl Microbiol 2023; 134:lxad242. [PMID: 37880999 DOI: 10.1093/jambio/lxad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023]
Abstract
AIMS Determine which sequence type (ST) clones were carrying the blaKPC, blaNDM, blaVIM, blaIMP, and blaGES genes and their variants in clinical isolates of multidrug-resistant Klebsiella pneumoniae. METHODS AND RESULTS Ten K. pneumoniae isolates were obtained from the colonized and infected patients in a public hospital in the city of Recife-PE, in northeastern Brazil, and were further analyzed. The detection of carbapenem resistance genes and the seven housekeeping genes [for multilocus sequence typing (MLST) detection] were done with PCR and sequencing. The blaKPC and blaNDM genes were detected concomitantly in all isolates, with variants being detected blaNDM-1, blaNDM-5, blaNDM-7, and blaKPC-2. The blaKPC-2 and blaNDM-1 combination being the most frequent. Molecular typing by MLST detected three types of high-risk ST clones, associated with the clonal complex 258, ST11/CC258 in eight isolates, and ST855/CC258 and ST340/CC258 in the other two isolates. CONCLUSIONS These findings are worrying, as they have a negative impact on the scenario of antimicrobial resistance, and show the high genetic variability of K. pneumoniae and its ability to mutate resistance genes and risk of dissemination via different ST clones.
Collapse
Affiliation(s)
- Érica Maria de Oliveira
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco-UFPE, Recife, PE 50732-970, Brazil
| | | | | | | |
Collapse
|
3
|
Tickler IA, Kawa D, Obradovich AE, Fang FC, Tenover FC. Characterization of Carbapenemase- and ESBL-Producing Gram-Negative Bacilli Isolated from Patients with Urinary Tract and Bloodstream Infections. Antibiotics (Basel) 2023; 12:1386. [PMID: 37760683 PMCID: PMC10525328 DOI: 10.3390/antibiotics12091386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
A total of 199 Gram-negative bacterial isolates from urinary tract infections and 162 from bloodstream infections were collected from 12 healthcare systems throughout the United States between May 2021 and August 2022. The isolates, phenotypically non-susceptible to 2nd or 3rd generation cephalosporins or carbapenems, were characterized through antimicrobial susceptibility testing and whole genome sequence analysis to obtain a broad snapshot of beta-lactamase-mediated resistance among these two sample types. Overall, 23 different carbapenemase genes were detected among 13 species (20.5% of isolates). The blaKPC-3 and blaKPC-2 subtypes were the most common carbapenemase genes identified, followed by blaNDM and the co-carriage of two different blaOXA carbapenemases by Acinetobacter baumannii isolates. All carbapenemase-producing A. baumannii isolates were mCIM negative. Extended-spectrum beta-lactamase genes were identified in 66.2% of isolates; blaCTX-M-15 was the most common. AmpC genes, both plasmid and chromosomal, were detected in 33.2% of isolates. Importantly, 2.8%, 8.3%, and 22.2% of blaKPC-positive organisms were susceptible to ertapenem, imipenem, and meropenem, respectively. The correlation between broth microdilution and disk diffusion results was high for most drugs except cefepime, where the detection of resistance was statistically lower by disk diffusion. Thus, there were gaps in the accuracy of susceptibility testing for some mechanisms of resistance.
Collapse
Affiliation(s)
| | | | - Anne E. Obradovich
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Ferric C. Fang
- Departments of Laboratory Medicine and Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Fred C. Tenover
- College of Arts & Sciences, University of Dayton, Dayton, OH 45469, USA
| | | |
Collapse
|
4
|
Elshamy AA, Saleh SE, Aboshanab KM, Aboulwafa MM, Hassouna NA. Transferable IncX3 plasmid harboring bla NDM-1, ble MBL, and aph(3')-VI genes from Klebsiella pneumoniae conferring phenotypic carbapenem resistance in E. coli. Mol Biol Rep 2023; 50:4945-4953. [PMID: 37081308 PMCID: PMC10209314 DOI: 10.1007/s11033-023-08401-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND The dissemination of carbapenem resistance via carbapenemases, such as the metallo-β-lactamase NDM, among Enterobacterales poses a public health threat. The aim of this study was to characterize a plasmid carrying the blaNDM-1 gene, which was extracted from a clinical Klebsiella pneumoniae uropathogen from an Egyptian patient suffering from a urinary tract infection. METHODS AND RESULTS The recovered plasmid was transformed into competent E. coli DH5α which acquired phenotypic resistance to cefoxitin, ceftazidime, and ampicillin/sulbactam, and intermediate sensitivity to ceftriaxone and imipenem (a carbapenem). Whole plasmid sequencing was performed on the extracted plasmid using the DNBSEQ™ platform. The obtained forward and reverse reads were assembled into contigs using the PRINSEQ and PLACNETw web tools. The obtained contigs were uploaded to PlasmidFinder and ResFinder for in silico plasmid typing and detection of antimicrobial resistance genes, respectively. The final consensus sequence was obtained using the Staden Package software. The plasmid (pNDMKP37, NCBI accession OK623716.1) was typed as an IncX3 plasmid with a size of 46,160 bp and harbored the antibiotic resistance genes blaNDM-1, bleMBL, and aph(3')-VI. The plasmid also carried mobile genetic elements involved in the dissemination of antimicrobial resistance including insertion sequences IS30, IS630, and IS26. CONCLUSIONS This is Egypt's first report of a transmissible plasmid co-harboring blaNDM-1 and aph(3')-VI genes. Moreover, the respective plasmid is of great medical concern as it has caused the horizontal transmission of multidrug-resistant phenotypes to the transformant. Therefore, new guidelines should be implemented for the rational use of broad-spectrum antibiotics, particularly carbapenems.
Collapse
Affiliation(s)
- Ann A. Elshamy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, P.O. Box 11566, Cairo, 11566 Egypt
| | - Sarra E. Saleh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, P.O. Box 11566, Cairo, 11566 Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, P.O. Box 11566, Cairo, 11566 Egypt
| | - Mohammad M. Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, P.O. Box 11566, Cairo, 11566 Egypt
- Faculty of Pharmacy, King Salman International University, South Sinai, Ras-Sedr, Egypt
| | - Nadia A. Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St, P.O. Box 11566, Cairo, 11566 Egypt
| |
Collapse
|
5
|
Zhao J, Zheng B, Xu H, Li J, Sun T, Jiang X, Liu W. Emergence of a NDM-1-producing ST25 Klebsiella pneumoniae strain causing neonatal sepsis in China. Front Microbiol 2022; 13:980191. [PMID: 36338063 PMCID: PMC9630351 DOI: 10.3389/fmicb.2022.980191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) seriously threaten the efficacy of modern medicine with a high associated mortality rate and unprecedented transmission rate. In this study, we isolated a clinical K. pneumoniae strain DY1928 harboring blaNDM-1 from a neonate with blood infection. Antimicrobial susceptibility testing indicated that DY1928 was resistant to various antimicrobial agents, including meropenem, imipenem, ceftriaxone, cefotaxime, ceftazidime, cefepime, piperacillin-tazobactam, and amoxicillin-clavulanate. S1 nuclease-pulsed field gel electrophoresis (S1-PFGE), southern blot and conjugation experiment revealed that the blaNDM-1 gene was located on a conjugative plasmid of IncA/C2 type with a 147.9 kb length. Whole-genome sequencing showed that there was a conservative structure sequence (blaNDM-1-ble-trpF-dsbD) located downstream of the blaNDM-1 gene. Multilocus sequence typing (MLST) classified DY1928 as ST25, which was a hypervirulent K. pneumoniae type. Phylogenetic analysis of genomic data from all ST25 K. pneumoniae strains available in the NCBI database suggested that all blaNDM-1 positive strains were isolated in China and had clinical origins. A mouse bloodstream infection model was constructed to test the virulence of DY1928, and 11 K. pneumoniae strains homologous to DY1928 were isolated from the feces of infected mice. Moreover, we found that DY1928 had a tendency to flow from the blood into the intestine in mice and caused multiple organ damage. To our knowledge, this is the first study to report an infection caused by blaNDM-1-positive ST25 K. pneumoniae in the neonatal unit. Our findings indicated that stricter surveillance and more effective actions were needed to reduce the risk of disseminating such K. pneumoniae strains in clinical settings, especially in neonatal wards.
Collapse
Affiliation(s)
- Junhui Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junfeng Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tengfei Sun
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiawei Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Xiawei Jiang,
| | - Wenhong Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Wenhong Liu,
| |
Collapse
|
6
|
Molecular Characterization of
bla
NDM
-Carrying IncX3 Plasmids:
bla
NDM-16b
Likely Emerged from a Mutation of
bla
NDM-5
on IncX3 Plasmid. Microbiol Spectr 2022; 10:e0144922. [PMID: 35867355 PMCID: PMC9430178 DOI: 10.1128/spectrum.01449-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dissemination of blaNDM, which is carried on the IncX3 plasmid, among Enterobacterales has been reported worldwide. In particular, blaNDM-5-carrying IncX3 plasmids can spread among several hosts, facilitating their dissemination. Other variants, such as blaNDM-17-, blaNDM-19-, blaNDM-20-, blaNDM-21-, and blaNDM-33-carrying IncX3 plasmids, have also been reported. Here, we characterized, using whole-genome sequencing (WGS), a blaNDM-16b-carrying IncX3 plasmid harbored by Escherichia coli strain TA8571, which was isolated from a urine specimen of a hospital inpatient in Tokyo, Japan. The blaNDM-16b differed in sequence from blaNDM-5 (C > T at site 698, resulting in an Ala233Val substitution). This blaNDM-16b-carrying IncX3 plasmid (pTMTA8571-1) is 46,161 bp in length and transferred via conjugation. Transconjugants showed high resistance to β-lactam antimicrobials (except for aztreonam). Because pTMTA8571-1, which carries the Tn125-related region containing blaNDM and conjugative transfer genes, was similar to the previously reported IncX3 plasmids, we performed phylogenetic analysis based on the sequence of 34 shared genes in 142 blaNDM-carrying IncX3 plasmids (22,846/46,923 bp). Comparative analysis of the shared genes revealed short branches on the phylogenetic tree (average of 1.08 nucleotide substitutions per shared genes), but each blaNDM variant was divided into separate groups, and the structure of the tree correlated with the flowchart of blaNDM nucleotide substitutions. The blaNDM-carrying IncX3 plasmids may thereby have evolved from the same ancestral plasmid with subsequent mutation of the blaNDM. Therefore, pTMTA8571-1 likely emerged from a blaNDM-5-carrying IncX3 plasmid. This study suggested that the spread of blaNDM-carrying IncX3 plasmids may be a hotbed for the emergence of novel variants of blaNDM. IMPORTANCEblaNDM-carrying IncX3 plasmids have been reported worldwide. Harbored blaNDM variants were mainly blaNDM-5, but there were also rare variants like blaNDM-17, blaNDM-19, blaNDM-20, blaNDM-21, and blaNDM-33, including blaNDM-16b detected in this study. For these plasmids, previous reports analyzed whole genomes or parts of sequences among a small number of samples, whereas, in this study, we performed an analysis of 142 blaNDM-carrying IncX3 plasmids detected around the world. The results showed that regardless of the blaNDM variants, blaNDM-carrying IncX3 plasmids harbored highly similar shared genes. Because these plasmids already spread worldwide may be a hotbed for the emergence of rare or novel variants of blaNDM, increased attention should be paid to blaNDM-carrying IncX3 plasmids in the future.
Collapse
|
7
|
Gong Y, Lu Y, Xue D, Wei Y, Li Q, Li G, Lu S, Wang J, Wang Y, Peng Y, Zhao Y. Emergence of a Carbapenem-Resistant Klebsiella pneumoniae Isolate Co-harbouring Dual bla NDM- 6 -Carrying Plasmids in China. Front Microbiol 2022; 13:900831. [PMID: 35663874 PMCID: PMC9158518 DOI: 10.3389/fmicb.2022.900831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The widespread emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) with limited therapeutic options has become a global concern. In this study, a K. pneumoniae strain called KP2e was recovered from a human case of fatal septic shock in a Chinese hospital. Polymerase chain reaction and sequencing, antimicrobial susceptibility testing, conjugation experiments, S1 nuclease-pulsed field gel electrophoresis/southern blot, whole genome sequencing and comparative genomics were performed to investigate the phenotypic and molecular characteristics of this isolate. KP2e possessed the NDM-6-encoding gene and exhibited resistance to almost all β-lactams except for monobactam. This strain belonged to sequence type 4024, the complete genome of which was composed of one chromosome and three plasmids. Furthermore, blaNDM–6 coexisted on two self-transmissible plasmids, which were assigned to types IncFIB and IncN. A structure of IS26-composite transposon capturing an identical Tn125 remnant (ΔISAba125-blaNDM–6-bleMBL-trpF-dsbC-cutA-groES-ΔgroEL) was identified in the two plasmids, and this conserved blaNDM-surrounding genetic context was similar to that of few IncN plasmids found in other regions of China. Our research appears to be the first description of a clinical strain that emerged co-harbouring dual blaNDM-carrying plasmids, and the first report of NDM-6-positive CRKP in China. These findings demonstrated that IncN is a key medium in the evolution and expanding dissemination of blaNDM genes among various species, which indicates that close monitoring and rapid detection of blaNDM-harbouring plasmids is necessary.
Collapse
Affiliation(s)
- Yali Gong
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, China
| | - Yifei Lu
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, China
| | - Dongdong Xue
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, China
| | - Yu Wei
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qimeng Li
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, China
| | - Gang Li
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Jing Wang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yunying Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yizhi Peng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, Chongqing, China
| | - Yan Zhao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| |
Collapse
|
8
|
Carbapenemase Producing Klebsiella pneumoniae (KPC): What Is the Best MALDI-TOF MS Detection Method. Antibiotics (Basel) 2021; 10:antibiotics10121549. [PMID: 34943761 PMCID: PMC8698427 DOI: 10.3390/antibiotics10121549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria is a group of highly dangerous antibiotic resistant Gram-negative Enterobacteriaceae. They cause infections associated with significant morbidity and mortality. Therefore, the rapid detection of KPC-producing bacteria plays a key role in clinical microbiology. Matrix assisted laser desorption/ionization time-of- flight (MALDI-TOF) is a rapidly evolving technology that finds application in various clinical, scientific, and industrial disciplines. In the present study, we demonstrated three different procedures of carbapenemase-producing K. pneumoniae (KPC) detection. The most basic model of MALDI-TOF instrument MS Microflex LT was used, operating in the linear ion-positive mode, commonly used in modern clinical laboratories. The first procedure was based on indirect monitoring of carbapenemase production with direct detection of hydrolyzed carbapenem antibiotic degradation products in the mass spectrum. The second procedure was based on direct detection of blaKPC accompanying peak with an 11,109 Da in the mass spectrum of carbapenemase-producing K. pneumoniae (KPC), which represents the cleaved protein (pKpQIL_p019) expressed by pKpQIL plasmid. In addition, several unique peaks were detected in the carbapenemase-producing K. pneumoniae (KPC) mass spectrum. The third procedure was the identification of carbapenemase-producing K. pneumoniae (KPC) based on the protein fingerprint using local database created from the whole mass spectra. By comparing detection procedures, we determined that the third procedure was very fast and relatively easy. However, it requires previous verification of carbapenemase-producing K. pneumoniae (KPC) using other methods as genetic blaKPC identification, detection of carbapenem degradation products, and accompanying peak with 11,109 Da, which represents cleaved pKpQIL_p019 protein expressed by pKpQIL plasmid. Detection of carbapenemase-producing K. pneumoniae using MALDI-TOF provides fast and accurate results that may help to reduce morbidity and mortality in hospital setting when applied in diagnostic situations.
Collapse
|
9
|
Rodrigues YC, Lobato ARF, Quaresma AJPG, Guerra LMGD, Brasiliense DM. The Spread of NDM-1 and NDM-7-Producing Klebsiella pneumoniae Is Driven by Multiclonal Expansion of High-Risk Clones in Healthcare Institutions in the State of Pará, Brazilian Amazon Region. Antibiotics (Basel) 2021; 10:1527. [PMID: 34943739 PMCID: PMC8698286 DOI: 10.3390/antibiotics10121527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Carbapenem resistance among Klebsiella pneumoniae isolates is often related to carbapenemase genes, located in genetic transmissible elements, particularly the blaKPC gene, which variants are spread in several countries. Recently, reports of K. pneumoniae isolates harboring the blaNDM gene have increased dramatically along with the dissemination of epidemic high-risk clones (HRCs). In the present study, we report the multiclonal spread of New Delhi metallo-beta-lactamase (NDM)-producing K. pneumoniae in different healthcare institutions in the state of Pará, Northern Brazil. A total of 23 NDM-producing isolates were tested regarding antimicrobial susceptibility testing features, screening of carbapenemase genes, and genotyping by multilocus sequencing typing (MLST). All K. pneumoniae isolates were determined as multidrug-resistant (MDR), being mainly resistant to carbapenems, cephalosporins, and fluoroquinolones. The blaNDM-7 (60.9%-14/23) and blaNDM-1 (34.8%-8/23) variants were detected. MLST genotyping revealed the predomination of HRCs, including ST11/CC258, ST340/CC258, ST15/CC15, ST392/CC147, among others. To conclude, the present study reveals the contribution of HRCs and non-HRCs in the spread of NDM-1 and NDM-7-producing K. pneumoniae isolates in Northern (Amazon region) Brazil, along with the first detection of NDM-7 variant in Latin America and Brazil, highlighting the need for surveillance and control of strains that may negatively impact healthcare and antimicrobial resistance.
Collapse
Affiliation(s)
| | | | | | | | - Danielle Murici Brasiliense
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ananindeua 67030-000, PA, Brazil; (Y.C.R.); (A.R.F.L.); (A.J.P.G.Q.); (L.M.G.D.G.)
| |
Collapse
|
10
|
Tartor YH, Gharieb RMA, Abd El-Aziz NK, El Damaty HM, Enany S, Khalifa E, Attia ASA, Abdellatif SS, Ramadan H. Virulence Determinants and Plasmid-Mediated Colistin Resistance mcr Genes in Gram-Negative Bacteria Isolated From Bovine Milk. Front Cell Infect Microbiol 2021; 11:761417. [PMID: 34888259 PMCID: PMC8650641 DOI: 10.3389/fcimb.2021.761417] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
A major increase of bacterial resistance to colistin, a last-resort treatment for severe infections, was observed globally. Using colistin in livestock rearing is believed to be the ground of mobilized colistin resistance (mcr) gene circulation and is of crucial concern to public health. This study aimed to determine the frequency and virulence characteristics of colistin-resistant Gram-negative bacteria from the milk of mastitic cows and raw unpasteurized milk in Egypt. One hundred and seventeen strains belonging to Enterobacteriaceae (n = 90), Pseudomonas aeruginosa (n = 10), and Aeromonas hydrophila (n = 17) were screened for colistin resistance by antimicrobial susceptibility testing. The genetic characteristics of colistin-resistant strains were investigated for mcr-1-9 genes, phylogenetic groups, and virulence genes. Moreover, we evaluated four commonly used biocides in dairy farms for teat disinfection toward colistin-resistant strains. Multidrug-resistant (MDR) and extensive drug-resistant (XDR) phenotypes were detected in 82.91% (97/117) and 3.42% (4/117) of the isolates, respectively. Of the 117 tested isolates, 61 (52.14%) were colistin resistant (MIC >2 mg/L), distributed as 24/70 (34.29%) from clinical mastitis, 10/11 (90.91%) from subclinical mastitis, and 27/36 (75%) from raw milk. Of these 61 colistin-resistant isolates, 47 (19 from clinical mastitis, 8 from subclinical mastitis, and 20 from raw milk) harbored plasmid-borne mcr genes. The mcr-1 gene was identified in 31.91%, mcr-2 in 29.79%, mcr-3 in 34.04%, and each of mcr-4 and mcr-7 in 2.13% of the colistin-resistant isolates. Among these isolates, 42.55% (20/47) were E. coli, 21.28% (10/47) A. hydrophila, 19.12% (9/47) K. pneumoniae, and 17.02% (8/47) P. aeruginosa. This is the first report of mcr-3 and mcr-7 in P. aeruginosa. Conjugation experiments using the broth-mating technique showed successful transfer of colistin resistance to E. coli J53-recipient strain. Different combinations of virulence genes were observed among colistin-resistant isolates with almost all isolates harboring genes. Hydrogen peroxide has the best efficiency against all bacterial isolates even at a low concentration (10%). In conclusion, the dissemination of mobile colistin resistance mcr gene and its variants between MDR- and XDR-virulent Gram-negative isolates from dairy cattle confirms the spread of mcr genes at all levels; animals, humans, and environmental, and heralds the penetration of the last-resort antimicrobial against MDR bacteria. Consequently, a decision to ban colistin in food animals is urgently required to fight XDR and MDR bacteria.
Collapse
Affiliation(s)
- Yasmine H Tartor
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha M A Gharieb
- Zoonoses Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Norhan K Abd El-Aziz
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hend M El Damaty
- Animal Medicine Department (Infectious Diseases), Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shymaa Enany
- Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.,Biomedical Research Department, Armed Force College of Medicine, Cairo, Egypt
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, Egypt
| | - Amira S A Attia
- Veterinary Public Health Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Samah S Abdellatif
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Li J, Huang Z, Tang M, Min C, Xia F, Hu Y, Wang H, Zhou H, Zou M. Clonal Dissemination of Multiple Carbapenemase Genes in Carbapenem-Resistant Enterobacterales Mediated by Multiple Plasmids in China. Infect Drug Resist 2021; 14:3287-3295. [PMID: 34434053 PMCID: PMC8382312 DOI: 10.2147/idr.s327273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Carbapenem-resistant Enterobacterales (CRE) are rapidly increasing worldwide in last two decades and lead few antibiotics for treatment. The molecular epidemiology of CRE in China was investigated to provide basis for clinical rational use of antibiotics and prevent its spread. Methods All CRE isolates in this study were collected from 11 hospitals from October 2015 to July 2018. The isolates were subjected to antimicrobial susceptibility tests, PCR molecular identification, pulsed-field gel electrophoresis, and multilocus sequence typing. Results Among the 399 CRE isolates, 51.6% (206/399) harbored carbapenemase genes. Three carbapenemase genes were detected, namely bla KPC-2, bla NDM-1, and bla IMP at rates of 29.8% (119/399), 17.5% (70/399), and 4.0% (16/399), respectively. In Klebsiella pneumoniae (350) and Escherichia coli (26), bla KPC-2 (33.4%, 117/350) and bla NDM-1 (61.5%, 16/26) were the predominant genes. The most common genes in the CRE isolates were bla KPC (85.5%) and bla NDM-1 (76.5%) from adults and children, respectively. Particularly, ST11 K. pneumoniae with bla KPC-2 harbored by IncFII plasmids were distributed in both general and primary hospitals, suggesting a clonal transmission pattern at these sites. In addition, the clonal distribution of ST2407 K. pneumoniae with bla NDM-1 located on IncX3 plasmids and bla IMP-38-positive ST307 K. pneumoniae were detected in a children's hospital. Conclusion The distribution of carbapenemase genes differed among strains and age groups. Multiple carbapenemase genes in the CRE strains were clonally disseminated in the tested regions mediated by multiple plasmids. Therefore, CRE monitoring should be increased and measures should be adopted to prevent its transmission.
Collapse
Affiliation(s)
- Jun Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Ziyan Huang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Mengli Tang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Changhang Min
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Fengjun Xia
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yongmei Hu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Haichen Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Haijian Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, People's Republic of China
| | - Mingxiang Zou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| |
Collapse
|
12
|
Detection of a New Resistance-Mediating Plasmid Chimera in a blaOXA-48-Positive Klebsiella pneumoniae Strain at a German University Hospital. Microorganisms 2021; 9:microorganisms9040720. [PMID: 33807212 PMCID: PMC8066831 DOI: 10.3390/microorganisms9040720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
Mobile genetic elements, such as plasmids, facilitate the spread of antibiotic resistance genes in Enterobacterales. In line with this, we investigated the plasmid-resistome of seven blaOXA-48 gene-carrying Klebsiella pneumoniae isolates, which were isolated between 2013 and 2014 at the University Medical Center in Göttingen, Germany. All isolates were subjected to complete genome sequencing including the reconstruction of entire plasmid sequences. In addition, phenotypic resistance testing was conducted. The seven isolates comprised both disease-associated isolates and colonizers isolated from five patients. They fell into two clusters of three sequence type (ST)101 and two ST11 isolates, respectively; and ST15 and ST23 singletons. The seven isolates harbored various plasmids of the incompatibility (Inc) groups IncF, IncL/M, IncN, IncR, and a novel plasmid chimera. All blaOXA-48 genes were encoded on the IncL/M plasmids. Of note, distinct phenotypical resistance patterns associated with different sets of resistance genes encoded by IncL/M and IncR plasmids were observed among isolates of the ST101 cluster in spite of high phylogenetic relatedness of the bacterial chromosomes, suggesting nosocomial transmission. This highlights the importance of plasmid uptake and plasmid recombination events for the fast generation of resistance variability after clonal transmission. In conclusion, this study contributes a piece in the puzzle of molecular epidemiology of resistance gene-carrying plasmids in K. pneumoniae in Germany.
Collapse
|
13
|
Ramakrishnan V, Marialouis XA, Sankarasubramanian J, Santhanam A, Balakrishnan AS. Whole Genomic analysis of a clinical isolate of Uropathogenic Escherichia coli strain of Sequence Type - 101 carrying the drug resistance NDM-7 in IncX3 plasmid. Bioinformation 2021; 17:126-131. [PMID: 34393427 PMCID: PMC8340689 DOI: 10.6026/97320630017126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 11/30/2022] Open
Abstract
The emerging NDM-producing Enterobactereciae is a major threat to public health. The association of NDM-7 with sequence type 101 E.coli is identified in very few numbers. Therefore, it is of interest to analyse the whole genome sequence of NDM-producing uropathogenic E. coli XA31 that was found to carry numerous drug resistance genes of different antibiotic classes. The isolate E. coli belongs to ST-101 carrying blaNDM-7 coexisting with several resistance genes blaOXA-1, blaTEM1-A, blaCTX-M15, aac(6')-Ib-cr, catB3, tetB. Resfinder predicts this and four other plasmid replicons were identified using the Plasfinder in the CGE platform. The high transferable IncX3 plasmid was found to carry the NDM-7 gene. Thus, we the report the combination of NDM-7-ST101-IncX3 in India. The combination of this epidemic clone with NDM-7 is highly required to develop an effective infection control strategy.
Collapse
Affiliation(s)
- Venkatesan Ramakrishnan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Xavier Alexander Marialouis
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
- National Institute of Pharmaceutical Education and Research, 168, Manicktala Main Road, Kolkata 700054, West Bengal, India
| | - Jagadesan Sankarasubramanian
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Amutha Santhanam
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Anand Setty Balakrishnan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|