1
|
Sharma N, Heer K, Raychaudhuri S. Substitution of leucine by glutamate perturbs VopE localization to mitochondria: Lessons from yeast model system. Mitochondrion 2025; 81:101999. [PMID: 39675495 DOI: 10.1016/j.mito.2024.101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
VopE, a type III effector protein of Vibrio cholerae, modulates host mitochondrial function. Mitochondrial entry of VopE is directly linked with an N-terminal precursor sequence known as the mitochondrial targeting sequence or MTS. MTS of VopE is constituted with 23 amino acids. Earlier studies have shown the importance of leucine residue at position 4 in VopE translocation to mitochondria. In the present study, we have identified another leucine residue at position 15 contributing to the mitochondrial uptake of VopE in the yeast model system. Substitution of leucine15 with glutamate decreases mitochondrial localization and toxicity of the mutants.
Collapse
Affiliation(s)
- Nandita Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kiran Heer
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saumya Raychaudhuri
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Simpson CA, Celentano ZR, Haas NW, McKinlay JB, Nadell CD, van Kessel JC. Quorum sensing in Vibrio controls carbon metabolism to optimize growth in changing environmental conditions. PLoS Biol 2024; 22:e3002891. [PMID: 39527643 PMCID: PMC11581408 DOI: 10.1371/journal.pbio.3002891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/21/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Bacteria sense population density via the cell-cell communication system called quorum sensing (QS). The evolution of QS and its maintenance or loss in mixed bacterial communities is highly relevant to understanding how cell-cell signaling impacts bacterial fitness and competition, particularly under varying environmental conditions such as nutrient availability. We uncovered a phenomenon in which Vibrio cells grown in minimal medium optimize expression of the methionine and tetrahydrofolate (THF) synthesis genes via QS. Strains that are genetically "locked" at high cell density grow slowly in minimal glucose media and suppressor mutants accumulate via inactivating mutations in metF (methylenetetrahydrofolate reductase) and luxR (the master QS transcriptional regulator). In mixed cultures, QS mutant strains initially coexist with wild-type, but as glucose is depleted, wild-type outcompetes the QS mutants. Thus, QS regulation of methionine/THF synthesis is a fitness benefit that links nutrient availability and cell density, preventing accumulation of QS-defective mutants.
Collapse
Affiliation(s)
- Chelsea A. Simpson
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Zach R. Celentano
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Nicholas W. Haas
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - James B. McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Julia C. van Kessel
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
3
|
Surin S, Singh R, Kaur M, Choudhury GB, Sen H, Dureja C, Datta S, Raychaudhuri S. Identification of critical amino acids in the DNA binding domain of LuxO: Lessons from a constitutive active LuxO. PLoS One 2024; 19:e0310444. [PMID: 39288109 PMCID: PMC11407668 DOI: 10.1371/journal.pone.0310444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
Quorum sensing plays a vital role in the environmental and host life cycles of Vibrio cholerae. The quorum-sensing circuit involves the consorted action of autoinducers, small RNAs, and regulatory proteins to control a plethora of physiological events in this bacterium. Among the regulatory proteins, LuxO is considered a low-cell-density master regulator. It is a homolog of NtrC, a two-component response regulator. NtrC belongs to an evolving protein family that works with the alternative sigma factor σ54 to trigger gene transcription. Structurally, these proteins comprise 3 domains: a receiver domain, a central AAA+ATPase domain, and a C-terminal DNA-binding domain (DBD). LuxO communicates with its cognate promoters by employing its DNA binding domain. In the present study, we desired to identify the critical residues in the DBD of LuxO. Our combined mutagenesis and biochemical assays resulted in the identification of eleven residues that contribute significantly to LuxO regulatory function.
Collapse
Affiliation(s)
- Shradha Surin
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Richa Singh
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Manpreet Kaur
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gourab Basu Choudhury
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Himanshu Sen
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Chetna Dureja
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Saumen Datta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Saumya Raychaudhuri
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Yang X, Qian M, Wang Y, Qin Z, Luo M, Chen G, Yi C, Ma Y, Liu X, Liu Z. Thiol-Based Modification of MarR Protein VnrR Regulates Resistance Toward Nitrofuran in Vibrio cholerae By Promoting the Expression of a Novel Nitroreductase VnrA and of NO-Detoxifying Enzyme HmpA. Antioxid Redox Signal 2024; 40:926-942. [PMID: 37742113 DOI: 10.1089/ars.2022.0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Aims: Epidemiological investigations have indicated low resistance toward nitrofuran in clinical isolates, suggesting its potential application in the treatment of multidrug-resistant bacteria. Therefore, it is valuable to explore the mechanism of bacterial resistance to nitrofuran. Results: Through phenotypic screening of ten multiple antibiotic resistance regulator (MarR) proteins in Vibrio cholerae, we discovered that the regulator VnrR (VCA1058) plays a crucial role in defending against nitrofuran, specifically furazolidone (FZ). Our findings demonstrate that VnrR responds to FZ metabolites, such as hydroxylamine, methylglyoxal, hydrogen peroxide (H2O2), β-hydroxyethylhydrazine. Notably, VnrR exhibits reversible responses to the addition of H2O2 through three cysteine residues (Cys180, Cys223, Cys247), leading to the derepression of its upstream gene, vnrA (vca1057). Gene vnrA encodes a novel nitroreductase, which directly contributes to the degradation of FZ. Our study reveals that V. cholerae metabolizes FZ via the vnrR-vnrA system and achieves resistance to FZ with the assistance of the classical reactive oxygen/nitrogen species scavenging pathway. Innovation and Conclusion: This study represents a significant advancement in understanding the antibiotic resistance mechanisms of V. cholerae and other pathogens. Our findings demonstrate that the MarR family regulator, VnrR, responds to the FZ metabolite H2O2, facilitating the degradation and detoxification of this antibiotic in a thiol-dependent manner. These insights not only enrich our knowledge of antibiotic resistance but also provide new perspectives for the control and prevention of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Xiaoman Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mingjie Qian
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Wang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zixin Qin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Luo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guozhong Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chunrong Yi
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Ma
- Research Institute of Tsinghua University in Shenzhen, Human Microecology and Healthcare R&D Centre, High-tech Industrial Park, Shenzhen, Guangdong, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Simpson CA, Celentano Z, McKinlay JB, Nadell CD, van Kessel JC. Bacterial quorum sensing controls carbon metabolism to optimize growth in changing environmental conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.21.576522. [PMID: 38328067 PMCID: PMC10849521 DOI: 10.1101/2024.01.21.576522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Bacteria sense population density via the cell-cell communication system called quorum sensing (QS). Some QS-regulated phenotypes ( e.g. , secreted enzymes, chelators), are public goods exploitable by cells that stop producing them. We uncovered a phenomenon in which Vibrio cells optimize expression of the methionine and tetrahydrofolate (THF) synthesis genes via QS. Strains that are genetically 'locked' at high cell density grow slowly in minimal glucose media and suppressor mutants accumulate via inactivating-mutations in metF (methylenetetrahydrofolate reductase) and luxR (the master QS transcriptional regulator). Methionine/THF synthesis genes are repressed at low cell density when glucose is plentiful and are de-repressed by LuxR at high cell density as glucose becomes limiting. In mixed cultures, QS mutant strains initially co-exist with wild-type, but as glucose is depleted, wild-type outcompetes the QS mutants. Thus, QS regulation of methionine/THF synthesis is a fitness benefit that links private and public goods within the QS regulon, preventing accumulation of QS-defective mutants.
Collapse
|
6
|
Sen H, Choudhury GB, Pawar G, Sharma Y, Bhalerao SE, Chaudhari VD, Datta S, Raychaudhuri S. Diversity in the ligand binding pocket of HapR attributes to its uniqueness towards several inhibitors with respect to other homologues - A structural and molecular perspective. Int J Biol Macromol 2023; 233:123495. [PMID: 36739058 DOI: 10.1016/j.ijbiomac.2023.123495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/06/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Vibrio cholerae is a prolific bacterium. Cumulative studies clearly demonstrate the key role of quorum sensing on the lifecycle of this bacterium. Of the sensory network components, HapR is known as high cell density master regulator. Until now, no information is available on native HapR ligand despite the protein having a ligand binding pocket. Interestingly, function of SmcR, a HapR homologue of Vibrio vulnificus is inhibited by a small molecule Qstatin. Structural analysis of SmcR with Qstatin identifies key interacting residues in SmcR ligand binding domain. Despite bearing significant homology with SmcR, HapR function remained unabated by Qstatin. Sequence alignment indicates divergence in the key residues of ligand binding pocket between these two regulators. A series of ligand binding domain mutants of HapR was constructed where only HapR quadruple mutant responded to Qstatin and newly synthesized IMT-VC-212. Crystal structure analysis revealed four key residues are responsible for changes in the volume of ligand binding pocket of HapR quadruple mutant compared to the wild type counterpart, thereby increasing the accessibility of Qstatin and its derivative in case of the former. The mechanistic insights exuberating from this study will remain instrumental in designing inhibitors against wild type HapR.
Collapse
Affiliation(s)
- Himanshu Sen
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gourab Basu Choudhury
- CSIR-Indian Institute of Chemical Biology, Raja S C Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ganesh Pawar
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Yogesh Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Vinod D Chaudhari
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India..
| | - Saumen Datta
- CSIR-Indian Institute of Chemical Biology, Raja S C Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India..
| | - Saumya Raychaudhuri
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India.
| |
Collapse
|
7
|
Cortés-Avalos D, Martínez-Pérez N, Ortiz-Moncada MA, Juárez-González A, Baños-Vargas AA, Estrada-de Los Santos P, Pérez-Rueda E, Ibarra JA. An update of the unceasingly growing and diverse AraC/XylS family of transcriptional activators. FEMS Microbiol Rev 2021; 45:6219864. [PMID: 33837749 DOI: 10.1093/femsre/fuab020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/31/2021] [Indexed: 01/09/2023] Open
Abstract
Transcriptional factors play an important role in gene regulation in all organisms, especially in Bacteria. Here special emphasis is placed in the AraC/XylS family of transcriptional regulators. This is one of the most abundant as many predicted members have been identified and more members are added because more bacterial genomes are sequenced. Given the way more experimental evidence has mounded in the past decades, we decided to update the information about this captivating family of proteins. Using bioinformatics tools on all the data available for experimentally characterized members of this family, we found that many members that display a similar functional classification can be clustered together and in some cases they have a similar regulatory scheme. A proposal for grouping these proteins is also discussed. Additionally, an analysis of surveyed proteins in bacterial genomes is presented. Altogether, the current review presents a panoramic view into this family and we hope it helps to stimulate future research in the field.
Collapse
Affiliation(s)
- Daniel Cortés-Avalos
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Noemy Martínez-Pérez
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Mario A Ortiz-Moncada
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Aylin Juárez-González
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Arturo A Baños-Vargas
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Paulina Estrada-de Los Santos
- Laboratorio de Biotecnología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México.,Facultad de Ciencias, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | - J Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|