1
|
Widodo A, Khairullah AR, Effendi MH, Moses IB, Agustin ALD. Extended-spectrum β-lactamase-producing Escherichia coli from poultry: A review. Vet World 2024; 17:2017-2027. [PMID: 39507773 PMCID: PMC11536724 DOI: 10.14202/vetworld.2024.2017-2027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/05/2024] [Indexed: 11/08/2024] Open
Abstract
Extended-spectrum β-lactamases (ESBLs) are β-lactamase enzymes produced by Gram-negative bacterial pathogens that harbor the ESBL genes. In addition, most ESBL genes are plasmid-mediated and usually encode a broader spectrum of antimicrobial resistance, especially to penicillins, first-generation, second-generation, and third-generation cephalosporins, as well as monobactam, such as aztreonam. Escherichia coli has become an opportunistic pathogen, especially in poultry, and has been implicated in zoonotic diseases that can be transmitted to humans, resulting in public health problems. Poultry can act as carriers of ESBL-producing E. coli (ESBL-EC) bacteria to humans through poultry meat that is contaminated by waste products, feces, and excretions. The ESBL gene CTX-M type was identified as the main cause of infection in humans and was detected in poultry as a cause of infection accompanied by clinical symptoms. Several studies have also shown a link between E. coli and ESBL gene transfer from birds to humans. Controlling the spread of ESBL-EC involves maintaining the cleanliness of poultry products, especially meat, and eliminating contaminant sources from poultry. Likewise, maintaining the environmental cleanliness of poultry slaughterhouses and poultry farms must be taken as a precautionary measure to curtail the increasing spread of ESBL-EC into the environment. This review aimed to explain the spread of ESBL-producing E. coli in poultry.
Collapse
Affiliation(s)
- Agus Widodo
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Jl. Dharmawangsa Dalam Selatan No. 28-30, Kampus B Airlangga, Surabaya 60115, East Java, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km. 46 Cibinong, Bogor 16911, West Java, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki 480211, Nigeria
| | - Alfiana Laili Dwi Agustin
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| |
Collapse
|
2
|
Mekonnen YT, Savini F, Indio V, Seguino A, Giacometti F, Serraino A, Candela M, De Cesare A. Systematic review on microbiome-related nutritional interventions interfering with the colonization of foodborne pathogens in broiler gut to prevent contamination of poultry meat. Poult Sci 2024; 103:103607. [PMID: 38493536 PMCID: PMC10959702 DOI: 10.1016/j.psj.2024.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
This systematic review aimed to compile the available body of knowledge about microbiome-related nutritional interventions contributing to improve the chicken health and having an impact on the reduction of colonization by foodborne pathogens in the gut. Original research articles published between 2012 and 2022 were systematically searched in Scopus and PubMed. A total of 1,948 articles were retrieved and 140 fulfilled the inclusion criteria. Overall, 73 papers described 99 interventions against colonization by Escherichia coli and related organisms; 10 papers described 15 interventions against Campylobacter spp.; 36 papers described 54 interventions against Salmonella; 40 papers described 54 interventions against Clostridium perfringens. A total of 197 microbiome-related interventions were identified as effective against one or more of the listed pathogens and included probiotics (n = 80), prebiotics (n = 23), phytobiotics (n = 25), synbiotics (n = 12), organic acids (n = 12), enzymes (n = 4), essential oils (n = 14) and combination of these (n = 27). The identified interventions were mostly administered in the feed (173/197) or through oral gavage (11/197), in the drinking water (7/197), in ovo (2/197), intra amniotic (2/197), in fresh or reused litter (1/197) or both in the feed and water (1/197). The interventions enhanced the beneficial microbial communities in the broiler gut as Lactic acid bacteria, mostly Lactobacillus spp., or modulated multiple microbial populations. The mechanisms promoting the fighting against colonization by foodborne pathogens included competitive exclusion, production of short chain fatty acids, decrease of gut pH, restoration of the microbiome after dysbiosis events, promotion of a more stable microbial ecology, expression of genes improving the integrity of intestinal mucosa, enhancing of mucin production and improvement of host immune response. All the studies extracted from the literature described in vivo trials but performed on a limited number of animals under experimental settings. Moreover, they detailed the effect of the intervention on the chicken gut without details on further impact on poultry meat safety.
Collapse
Affiliation(s)
- Yitagele Terefe Mekonnen
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Federica Savini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Valentina Indio
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy.
| | - Alessandro Seguino
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alessandra De Cesare
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| |
Collapse
|
3
|
Hu Y, Wei J, Yuan Y, Wei H, Zhou Y, Xiao N, Xiong J, Ren Z, Peng J, Cui C, Zhou Z. Intervention effects of fructooligosaccharide and astragalus polysaccharide, as typical antibiotic alternatives, on antibiotic resistance genes in feces of layer breeding: advantages and defects. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133172. [PMID: 38071777 DOI: 10.1016/j.jhazmat.2023.133172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Although antibiotic alternatives are widely used in livestock and poultry breeding industry after in-feed antibiotics ban, their intervention effects on antibiotic resistance genes (ARGs) in these food animals' feces remain poorly understood. Here effects of fructooligosaccharide (FOS) and astragalus polysaccharide (APS), as typical antibiotic alternatives in China, on ARGs in layer feces were estimated by performing metagenomic sequencings and fluorescence quantitative PCR. Fructooligosaccharide significantly reduced sum abundance of ARGs and mobile genetic elements (MGEs) by increasing Lactobacillus clones and reducing Escherichia clones which had relatively higher abundances of ARG subtypes and MGE subtypes in layer feces. However, at least parts of core ARGs and MGEs categories were not reduced by FOS, such as aminoglycosides- and tetracyclines-resistant genes, Tn916, Integrase, and so on. MGEs and microbiome, especially Escherichia genus and Lactobacillus genus, were the key factors affecting ARGs' sum abundance. MGEs had a higher correlation coefficient with ARGs' sum abundance than Escherichia genus and Lactobacillus genus. These findings firstly reveal the defects of antibiotic alternatives in controlling bacterial resistance in livestock and poultry breeding after in-feed antibiotics ban, and more strategies are needed to control pollutions and risks of core ARGs and MGEs in food animals' feces under a special environment.
Collapse
Affiliation(s)
- Yanping Hu
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Wei
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongze Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Naidong Xiao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xiong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuqing Ren
- Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, Huazhong Agricultural University, WuHan 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhongxin Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Nemathaga M, Smith RM, Malatji DP. Interactions between the helminth and intestinal microbiome in smallholder chicken farming systems. Front Vet Sci 2023; 10:1309151. [PMID: 38179334 PMCID: PMC10766368 DOI: 10.3389/fvets.2023.1309151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Helminth parasite infections are widespread in smallholder farming systems affecting farmers and livestock animals. There are pathogenic parasites that populate the gut of their host and coexist closely with the gut microbiota. The physical and immunological environment of the gut can be modified by parasites and microbiota creating a wide range of interactions. These interactions modify the development of infection, affects overall host health, and can modify the way a host interacts with its bacterial microbiota. In addition, where there is a high worm burden parasites will affect the health of the host and intestinal tract colonization. This review highlights key studies on the interaction between helminth parasites and the intestinal microbiome to understand the relationship between parasitic worm infections and gut microbiome health in chickens. Finally, the review discusses modulations, molecular changes, and the importance of helminth-microbiome interactions for the host.
Collapse
Affiliation(s)
| | | | - Dikeledi P. Malatji
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Science, University of South Africa, Roodepoort, South Africa
| |
Collapse
|
5
|
Dankittipong N, Alderliesten JB, Van den Broek J, Dame-Korevaar MA, Brouwer MSM, Velkers FC, Bossers A, de Vos CJ, Wagenaar JA, Stegeman JA, Fischer EAJ. Comparing the transmission of carbapenemase-producing and extended-spectrum beta-lactamase-producing Escherichia coli between broiler chickens. Prev Vet Med 2023; 219:105998. [PMID: 37647719 DOI: 10.1016/j.prevetmed.2023.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/19/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
The emergence of carbapenemase-producing Enterobacteriaceae (CPE) is a threat to public health, because of their resistance to clinically important carbapenem antibiotics. The emergence of CPE in meat-producing animals is particularly worrying because consumption of meat contaminated with resistant bacteria comparable to CPE, such as extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, contributed to colonization in humans worldwide. Currently, no data on the transmission of CPE in livestock is available. We performed a transmission experiment to quantify the transmission of CPE between broilers to fill this knowledge gap and to compare the transmission rates of CPE and other antibiotic-resistant E. coli. A total of 180 Ross 308 broiler chickens were distributed over 12 pens on the day of hatch (day 0). On day 5, half of the 10 remaining chickens in each pen were orally inoculated with 5·102 colony-forming units of CPE, ESBL, or chloramphenicol-resistant E. coli (catA1). To evaluate the effect of antibiotic treatment, amoxicillin was given twice daily in drinking water in 6 of the 12 pens from days 2-6. Cloacal swabs of all animals were taken to determine the number of infectious broilers. We used a Bayesian hierarchical model to quantify the transmission of the E. coli strains. E. coli can survive in the environment and serve as a reservoir. Therefore, the susceptible-infectious transmission model was adapted to account for the transmission of resistant bacteria from the environment. In addition, the caecal microbiome was analyzed on day 5 and at the end of the experiment on day 14 to assess the relationship between the caecal microbiome and the transmission rates. The transmission rates of CPE were 52 - 68 per cent lower compared to ESBL and catA1, but it is not clear if these differences were caused by differences between the resistance genes or by other differences between the E. coli strains. Differences between the groups in transmission rates and microbiome diversity did not correspond to each other, indicating that differences in transmission rates were probably not caused by major differences in the community structure in the caecal microbiome. Amoxicillin treatment from day 2-6 increased the transmission rate more than three-fold in all inoculums. It also increased alpha-diversity compared to untreated animals on day 5, but not on day 14, suggesting only a temporary effect. Future research could incorporate more complex transmission models with different species of resistant bacteria into the Bayesian hierarchical model.
Collapse
Affiliation(s)
- Natcha Dankittipong
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands
| | - Jesse B Alderliesten
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands
| | - Jan Van den Broek
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands
| | - M Anita Dame-Korevaar
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad, the Netherlands
| | - Michael S M Brouwer
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad, the Netherlands
| | - Francisca C Velkers
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands
| | - Alex Bossers
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands; Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad, the Netherlands
| | - Clazien J de Vos
- Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad, the Netherlands
| | - Jaap A Wagenaar
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands; Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, Lelystad, the Netherlands
| | - J Arjan Stegeman
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands
| | - Egil A J Fischer
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Marcolla CS, Ju T, Lantz HL, Willing BP. Investigating the cecal microbiota of broilers raised in extensive and intensive production systems. Microbiol Spectr 2023; 11:e0235223. [PMID: 37754552 PMCID: PMC10581045 DOI: 10.1128/spectrum.02352-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023] Open
Abstract
Intensive broiler production practices are structured to prevent the introduction and spread of pathogens; however, they can potentially minimize the exposure of broilers to beneficial commensal bacteria. In this study, we used 16S rRNA amplicon sequencing to characterize the cecal microbiota of 35-day-old broilers from 22 independent commercial farms rearing broilers under intensive (IPS) or extensive production systems (EPS). We aimed to determine which bacteria are normal inhabitants of the broiler ceca and which bacteria might be missing from broilers in IPS. In addition, we generated a collection of 410 bacterial isolates, including 87 different species, to be used as a resource to further explore the effects of selected isolates on bird physiology and to elucidate the role of individual species within the cecal microbial community. Our results indicated significant differences in the microbiota of broilers between systems: the microbiota of broilers from EPS was dominated by Bacteroidetes {55.2% ± 8.9 [mean ± standard deviation (SD)]}, whereas Firmicutes dominated the microbiota of broilers from IPS (61.7% ± 14.4, mean ± SD). Bacterial taxa found to be core in the EPS microbiota, including Olsenella, Alistipes, Bacteroides, Barnesiella, Parabacteroides, Megamonas, and Parasutterella, were shown to be infrequent or absent from the IPS microbiota, and the EPS microbiota presented higher phylogenetic diversity and greater predicted functional potential than that of broilers in IPS. The bacteria shown to be depleted in broilers from IPS should be further investigated for their effects on bird physiology and potential application as next-generation probiotics. IMPORTANCE Production practices in intensive farming systems significantly reduce the introduction and spread of pathogens; however, they may potentially minimize the exposure of animals to beneficial commensal microorganisms. In this study, we identified core bacteria from the cecal microbiota of broilers raised in extensive production systems that are missing or reduced in birds from intensive systems, including Olsenella, Alistipes, Bacteroides, Barnesiella, Parabacteroides, Megamonas, and Parasutterella. Furthermore, the cecal microbiota of broilers from extensive systems showed higher diversity and greater functional potential than that of broilers from intensive systems. In addition, a collection of bacterial isolates containing 87 different species was generated from the current study, and this important resource can be used to further explore the role of selected commensal bacteria on the microbial community and bird physiology.
Collapse
Affiliation(s)
- Camila S. Marcolla
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Tingting Ju
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Hannah L. Lantz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Benjamin P. Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Cárdenas-Rey I, Bello Gonzalez TDJ, van der Goot J, Ceccarelli D, Bouwhuis G, Schillemans D, Jurburg SD, Veldman KT, de Visser JAGM, Brouwer MSM. Succession in the caecal microbiota of developing broilers colonised by extended-spectrum β-lactamase-producing Escherichia coli. Anim Microbiome 2022; 4:51. [PMID: 35986389 PMCID: PMC9389726 DOI: 10.1186/s42523-022-00199-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 07/26/2022] [Indexed: 11/11/2022] Open
Abstract
Background Broilers are among the most common and dense poultry production systems, where antimicrobials have been used extensively to promote animal health and performance. The continuous usage of antimicrobials has contributed to the appearance of resistant bacteria, such as extended-spectrum β-lactamase-producing Escherichia coli (ESBL-Ec). Here, we studied the ESBL-Ec prevalence and successional dynamics of the caecal microbiota of developing broilers in a commercial flock during their production life cycle (0–35 days). Broilers were categorised as ESBL-Ec colonised (ESBL-Ec+) or ESBL-Ec non-colonised (ESBL-Ec−) by selective culturing. Using 16S rRNA gene sequencing, we i. compared the richness, evenness and composition of the caecal microbiota of both broilers’ groups and ii. assessed the combined role of age and ESBL-Ec status on the broilers’ caecal microbiota. Results From day two, we observed an increasing linear trend in the proportions of ESBL-Ec throughout the broilers' production life cycle, X2 (1, N = 12) = 28.4, p < 0.001. Over time, the caecal microbiota richness was consistently higher in ESBL-Ec− broilers, but significant differences between both broilers’ groups were found exclusively on day three (Wilcoxon rank-sum test, p = 0.016). Bray–Curtis distance-based RDA (BC-dbRDA) showed no explanatory power of ESBL-Ec status, while age explained 14% of the compositional variation of the caecal microbiota, F (2, 66) = 6.47, p = 0.001. Conclusions This study assessed the role of ESBL-Ec in the successional dynamics of the caecal microbiota in developing broilers and showed that the presence of ESBL-Ec is associated with mild but consistent reductions in alpha diversity and with transient bacterial compositional differences. We also reported the clonal spread of ESBL-Ec and pointed to the farm environment as a likely source for ESBLs. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00199-4.
Collapse
|
8
|
Menck-Costa MF, Baptista AAS, Gazal LEDS, Justino L, Sanches MS, de Souza M, Nishio EK, Queiroz Dos Santos B, Cruz VD, Berbert JVM, Gonçalves BC, Andrade G, Vespero EC, Nakazato G, Kobayashi RKT. High-Frequency Detection of fosA3 and bla CTX-M-55 Genes in Escherichia coli From Longitudinal Monitoring in Broiler Chicken Farms. Front Microbiol 2022; 13:846116. [PMID: 35663865 PMCID: PMC9158547 DOI: 10.3389/fmicb.2022.846116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Considering the worrying emergence of multidrug resistance, including in animal husbandry and especially in food-producing animals, the need to detect antimicrobial resistance strains in poultry environments is relevant, mainly considering a One Health approach. Thus, this study aimed to conduct longitudinal monitoring of antimicrobial resistance in broiler chicken farms, with an emphasis on evaluating the frequency of resistance to fosfomycin and β-lactams. Escherichia coli was isolated from broiler chicken farms (cloacal swabs, meconium, poultry feed, water, poultry litter, and Alphitobius diaperinus) in northern Paraná from 2019 to 2020 during three periods: the first period (1st days of life), the second period (20th to 25th days of life), and third period (40th to 42nd days of life). Antibiogram tests and the detection of phenotypic extended-spectrum β-lactamase (ESBL) were performed, and they were confirmed by seaching for genes from the blaCTX–M group. The other resistance genes searched were mcr-1 and fosA3. Some ESBL blaCTX–M–1 group strains were selected for ESBL identification by sequencing and enterobacterial repetitive intergenic consensus-polymerase chain reaction analysis. To determine the transferability of the blaCTX–M–1– and fosA3-carrying plasmids, strains were subjected to conjugation experiments. A total of 507 E. coli were analyzed: 360 from cloacal swabs, 24 from meconium samples, 3 from poultry feed samples, 18 from water samples, 69 from poultry litter samples, and 33 from A. diaperinus samples. Among the strain isolate, 80% (406/507) were multidrug-resistant (MDR), and 51% (260/507) were ESBL-positive, with the blaCTX–M–1 group being the most frequent. For the fosA3 gene, 68% (344/507) of the strains isolated were positive, deserves to be highlighted E. coli isolated from day-old chickens (OR 6.34, CI 2.34–17.17), when compared with strains isolated from other origins (poultry litter, A. diaperinus, water, and poultry feed). This work alerts us to the high frequency of the fosA3 gene correlated with the CTX-M-1 group (OR 3.57, CI 95% 2.7–4.72, p < 0.05), especially the blaCTX–M–55 gene, in broiler chickens. This profile was observed mainly in day-old chicken, with a high percentage of E. coli that were MDR. The findings emphasize the importance of conducting longitudinal monitoring to detect the primary risk points during poultry production.
Collapse
Affiliation(s)
- Maísa Fabiana Menck-Costa
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Ana Angelita Sampaio Baptista
- Department of Preventive Veterinary Medicine, Avian Medicine Laboratory, State University of Londrina, Londrina, Brazil
| | | | - Larissa Justino
- Department of Preventive Veterinary Medicine, Avian Medicine Laboratory, State University of Londrina, Londrina, Brazil
| | - Matheus Silva Sanches
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Marielen de Souza
- Department of Preventive Veterinary Medicine, Avian Medicine Laboratory, State University of Londrina, Londrina, Brazil
| | - Erick Kenji Nishio
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Beatriz Queiroz Dos Santos
- Department of Preventive Veterinary Medicine, Avian Medicine Laboratory, State University of Londrina, Londrina, Brazil
| | - Victor Dellevedove Cruz
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - João Vitor Monteiro Berbert
- Department of Preventive Veterinary Medicine, Avian Medicine Laboratory, State University of Londrina, Londrina, Brazil
| | - Bruna Carolina Gonçalves
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Galdino Andrade
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | - Eliana Carolina Vespero
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Gerson Nakazato
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Brazil
| | | |
Collapse
|
9
|
Muurinen J, Cairns J, Ekakoro JE, Wickware CL, Ruple A, Johnson TA. Biological units of antimicrobial resistance and strategies for their containment in animal production. FEMS Microbiol Ecol 2022; 98:6589402. [PMID: 35587376 DOI: 10.1093/femsec/fiac060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/27/2022] [Indexed: 11/14/2022] Open
Abstract
The increasing prevalence of antimicrobial resistant bacterial infections has ushered in a major global public health crisis. Judicious or restricted antimicrobial use in animal agriculture, aiming to confine the use for the treatment of infections, is the most commonly proposed solution to reduce selection pressure for resistant bacterial strains and resistance genes. However, a multifaceted solution will likely be required to make acceptable progress in reducing antimicrobial resistance, due to other common environmental conditions maintaining antimicrobial resistance and limited executionary potential as human healthcare and agriculture will continue to rely heavily on antimicrobials in the foreseeable future. Drawing parallels from systematic approaches to the management of infectious disease agents and biodiversity loss, we provide examples that a more comprehensive approach is required, targeting antimicrobial resistance in agroecosystems on multiple fronts simultaneously. We present one such framework, based on nested biological units of antimicrobial resistance, and describe established or innovative strategies targeting units. Some of the proposed strategies are already in use or ready to be implemented, while some require further research and discussion among scientists and policymakers. We envision that antimicrobial resistance mitigation strategies for animal agriculture combining multiple tools would constitute powerful ecosystem-level interventions necessary to mitigate antimicrobial resistance.
Collapse
Affiliation(s)
- Johanna Muurinen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.,Department of Microbiology, Viikinkaari 9, 00014 University of Helsinki, Helsinki, Finland
| | - Johannes Cairns
- Organismal and Evolutionary Biology Research Programme (OEB), Department of Computer Science, 00014 University of Helsinki, Helsinki, Finland
| | - John Eddie Ekakoro
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Carmen L Wickware
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Audrey Ruple
- Department of Population Health Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Timothy A Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
10
|
Becker E, Correia-Carreira G, Projahn M, Käsbohrer A. Modeling the Impact of Management Changes on the Infection Dynamics of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in the Broiler Production. Microorganisms 2022; 10:981. [PMID: 35630424 PMCID: PMC9144090 DOI: 10.3390/microorganisms10050981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Livestock animals, especially poultry, are a known reservoir for extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli). They may enter the pen either via positive day-old chicks or via the environment. We developed a mathematical model to illustrate the entry and dissemination of resistant bacteria in a broiler pen during one fattening period in order to investigate the effectiveness of intervention measures on this infection process. Different management measures, such as varying amounts of litter, a slow-growing breed or lower stocking densities, were tested for their effects on broiler colonization. We also calculated the impact of products that may influence the microbiota in the chicks' digestive tract, such as pre- or probiotics, feed supplements or competitive exclusion products. Our model outcomes show that a contaminated pen or positive chicks at the beginning of the fattening period can infect the entire flock. Increasing the amount of litter and decreasing the stocking density were shown to be effective in our model. Differences in the route of entry were found: if the chicks are already positive, the litter quantity must be increased to at least six times the standard of 1000 g/m2, whereas, if the pen is contaminated on the first day, three times the litter quantity is sufficient. A reduced stocking density of 20 kg/m2 had a significant effect on the incidence of infection only in a previously contaminated pen. Combinations of two or three measures were effective in both scenarios; similarly, feed additives may be beneficial in reducing the growth rate of ESBL-producing E. coli. This model is a valuable tool for evaluating interventions to reduce the transmission and spread of resistant bacteria in broiler houses. However, data are still needed to optimize the model, such as growth rates or survival data of ESBL-producing E. coli in different environments.
Collapse
Affiliation(s)
- Evelyne Becker
- MINT VR-Labs, Berliner Hochschule für Technik, 13353 Berlin, Germany
- Institute of Pharmacy/LPG, Pharmaceutical Biology, Universität Greifswald, 17489 Greifswald, Germany
| | - Guido Correia-Carreira
- German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (G.C.-C.); (M.P.); (A.K.)
| | - Michaela Projahn
- German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (G.C.-C.); (M.P.); (A.K.)
| | - Annemarie Käsbohrer
- German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (G.C.-C.); (M.P.); (A.K.)
- Unit of Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
11
|
Mourand G, Paboeuf F, Grippon P, Lucas P, Bougeard S, Denamur E, Kempf I. Impact of Escherichia coli probiotic strains ED1a and Nissle 1917 on the excretion and gut carriage of extended-spectrum beta-lactamase-producing E. coli in pigs. Vet Anim Sci 2021; 14:100217. [PMID: 34825108 PMCID: PMC8604716 DOI: 10.1016/j.vas.2021.100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/05/2022] Open
Abstract
The inoculated cefotaxime-resistant E. coli was a good pig gut colonizer. Probiotics could not reduce faecal excretion of resistant E. coli in inoculated pigs. Resistant E. coli titers were lower in digestive tracts of the probiotic-treated pigs. No transfer of the blaCTX−M-1 gene was detected.
We evaluated the impact of the administration of two Escherichia coli probiotic strains (ED1a and Nissle 1917) to pigs on the gut carriage or shedding of extended-spectrum beta-lactamase-producing E. coli. The probiotics were given to four sows from 12 days before farrowing to the weaning day, and to the 23 piglets (infected treated group (IPro)) from birth to the age of 49 days. Four other sows and their 24 piglets (infected non-treated group (INT)) did not receive the probiotics. IPro and INT piglets (n = 47) were orally inoculated with the strain E. coli 17–348F-RifR carrying the blaCTX−M-1 gene and resistant to rifampicin. Cefotaxime-resistant (CTXR) E. coli and rifampicin-resistant (RifR) E. coli were cultured and excretion of probiotics was studied using PCR on individual faecal and post-mortem samples, and from manure collected after the challenge with resistant E. coli. CTXR and RifRE.coli isolates were characterized to detect transfer of the blaCTX−M-1 to other strains.. Overall, there was no significant reduction in faecal excretion of CTXR and RifRE. coli in IPro pigs compared with INT pigs, although the CTXR and RifRE. coli titres were slightly, but significantly lower in the colon, caecum and rectum at post mortem. Excretion of the probiotics decreased with age, but Nissle 1917 was detected in most pigs at post-mortem. No transfer of the blaCTX−M-1 gene to probiotic and other E. coli strains was detected. In conclusion, in our experimental conditions, the used probiotics did not reduce shedding of the challenge strain.
Collapse
Affiliation(s)
| | - Frédéric Paboeuf
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Pauline Grippon
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Pierrick Lucas
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | | | - Erick Denamur
- Université de Paris, IAME, INSERM UMR 1137, Paris, France.,APHP, Hôpital Bichat Claude-Bernard, Laboratoire de Génétique Moléculaire, Paris, France
| | - Isabelle Kempf
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| |
Collapse
|
12
|
Becker E, Projahn M, Burow E, Käsbohrer A. Are There Effective Intervention Measures in Broiler Production against the ESBL/AmpC Producer Escherichia coli? Pathogens 2021; 10:pathogens10050608. [PMID: 34063430 PMCID: PMC8156222 DOI: 10.3390/pathogens10050608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
Extended-spectrum beta-lactamase (ESBL) and AmpC beta-lactamase (AmpC) producing Enterobacteriaceae occur frequently in livestock animals and the subsequent stages of the meat production chain and are therefore considered a risk for human health. Strict biosecurity measures and optimal farm management should reduce or even prevent poultry flock colonization at farm level. This review summarizes and evaluates published information on the effectiveness of specific intervention measures and farm management factors aiming to reduce the occurrence and spread of ESBL/AmpC producing or commensal or pathogenic E. coli in broiler chicken farms. In this systematic literature review, a total of 643 publications were analyzed, and 14 studies with significant outcome about the effectiveness of specific measures against E. coli and ESBL/AmpC producing E. coli in broiler chicken farms were found. Different feed additives seem to have an impact on the occurrence of those microorganisms. The measures ‘cleaning and disinfection’ and ‘competitive exclusion’ showed strong effects in prevention in some studies. In summary, some intervention measures showed potential to protect against or eliminate ESBL/AmpC-producing, commensal or pathogenic E. coli at farm level. Due to the high variability in the outcome of the studies, more specific, detailed investigations are needed to assess the potential of the individual intervention measures.
Collapse
Affiliation(s)
- Evelyne Becker
- Department for Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (M.P.); (E.B.); (A.K.)
- Institute of Pharmacy/LPG, Pharmaceutical Biology, Universität Greifswald, 17489 Greifswald, Germany
- Correspondence:
| | - Michaela Projahn
- Department for Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (M.P.); (E.B.); (A.K.)
| | - Elke Burow
- Department for Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (M.P.); (E.B.); (A.K.)
| | - Annemarie Käsbohrer
- Department for Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (M.P.); (E.B.); (A.K.)
- Unit of Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, 1210 Wien, Austria
| |
Collapse
|