1
|
Kelly MS, Dahl EM, Jeries L, Sysoeva TA, Karstens L. Characterization of pediatric urinary microbiome at species-level resolution indicates variation due to sex, age, and urologic history. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.16.24307309. [PMID: 38798594 PMCID: PMC11118648 DOI: 10.1101/2024.05.16.24307309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Recently, associations between recurrent urinary tract infections (UTI) and the urinary microbiome (urobiome) composition have been identified in adults. However, little is known about the urobiome in children. We aimed to characterize the urobiome of children with species-level resolution and to identify associations based on UTI history. Study design Fifty-four children (31 females and 21 males) from 3 months to 5 years of age participated in the study. Catheterized urine specimens were obtained from children undergoing a clinically indicated voiding cystourethrogram. To improve the analysis of the pediatric urobiome, we used a novel protocol using filters to collect biomass from the urine coupled with synthetic long-read 16S rRNA gene sequencing to obtain culture-independent species-level resolution data. We tested for differences in microbial composition between sex and history of UTIs using non-parametric tests on individual bacteria and alpha diversity measures. Results We detected bacteria in 61% of samples from 54 children (mean age 40.7 months, 57% females). Similar to adults, urobiomes were distinct across individuals and varied by sex. The urobiome of females showed higher diversity as measured by the inverse Simpson and Shannon indices but not the Pielou evenness index or number of observed species (p = 0.05, p=0.04, p = 0.35, and p = 0.11, respectively). Additionally, several species were significantly overrepresented in females compared to males, including those from the genera Anaerococcus, Prevotella, and Schaalia (p = 0.03, 0.04, and 0.02, respectively). Urobiome diversity increased with age, driven mainly by males. Comparison of children with a history of 1, 2, or 3+ UTIs revealed that urobiome diversity significantly decreases in the group that experienced 3+ UTIs as measured by the Simpson, Shannon, and Pielou indices (p = 0.03, p = 0.05, p = 0.01). Several bacteria were also found to be reduced in abundance. Discussion In this study, we confirm that urobiome can be identified from catheter-collected urine specimens in infants as young as 3 months, providing further evidence that the pediatric bladder is not sterile. In addition to confirming variations in the urobiome related to sex, we identify age-related changes in children under 5 years of age, which conflicts with some prior research. We additionally identify associations with a history of UTIs. Conclusions Our study provides additional evidence that the pediatric urobiome exists. The bacteria in the bladder of children appear to be affected by early urologic events and warrants future research.
Collapse
Affiliation(s)
- Maryellen S Kelly
- Division of Healthcare of Women and Children, School of Nursing, Duke University, 307 Trent Drive, Durham, NC 27710, USA
- Department of Urology, Duke University Hospital, 40 Duke Medicine Cir Clinic 1G, Durham, NC 27710, USA
| | - Erin M Dahl
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Layla Jeries
- Department of Biological Sciences, University Of Alabama Huntsville, 301 Sparkman Dr, Huntsville, AL 35899, USA
| | - Tatyana A Sysoeva
- Department of Biological Sciences, University Of Alabama Huntsville, 301 Sparkman Dr, Huntsville, AL 35899, USA
| | - Lisa Karstens
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| |
Collapse
|
2
|
Chochlakis D, Sandalakis V, Ntoukakis A, Daskalaki MO, Loppinet T, Thalassinaki N, Makridaki R, Panoulis C, Psaroulaki A. Multi-criterion analysis of the effect of physico-chemical microbiological agents on Legionella detection in hotel water distribution systems in Crete. Front Cell Infect Microbiol 2023; 13:1214717. [PMID: 38188625 PMCID: PMC10770838 DOI: 10.3389/fcimb.2023.1214717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/17/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Water distribution systems in hotels have been related to outbreaks caused by Legionella spp. Certain measures, including disinfection by chlorination, maintaining increased temperatures are usually undertaken to prevent Legionella outbreaks. However, these preventive strategies are not always effective, since there are several factors (e.g., synergistic interactions with other microbes, physico-chemical factors, biofilm formation, availability of nutrients) that promote survival and proliferation of the pathogen in water pipes., Accordingly, there is a need of a holistic approach in development of preventive models for Legionella outbreaks associated with water distribution systems. Methods Water samples were collected from hotel water systems and were tested for the presence of Legionella, E. coli, total coliforms, total mesophilic count and Pseudomonas. In each sample, temperature and chlorine were also tested. Other epidemiological factors were additionally recorded including number of rooms, stars, proximity of sampling point to the boiler, etc. Data were processed by generalized linear analysis, and modeling based on logistic regression analysis to identify independent predictive factors associated with the presence of Legionella in hotel water systems. Results According to the generalized linear model, temperature affected (p<0.05) the presence of Legionella regardless of the species or the water supply (hot or cold). Additionally, opportunistic (P. aeruginosa) or non-opportunistic (E. coli, coliforms) pathogens were significantly associated (p<0.05) with the presence of all Legionella species. Temperature also exhibited a positive effect to all pathogens tested except for Pseudomonas according to the linear model. Multivariate analysis showed that Pseudomonas, total coliforms, HPC and temperature had a statistically significant effect on the presence of Legionella. Based on a binomial model, cold water had a positive effect on Legionella. Type of sampling and proximity of the sample to the boiler seemed to pose different effect on Legionella depending on the cfu/L. The number of hotel stars and rooms did not appear to have any effect in all tested models. Discussion Collectively, these results indicate the need for development of individualized water safety plans tailored by the presence of other microbiological agents, and unique physico-chemical factors, which could facilitate the survival of Legionella.in hotel water systems.
Collapse
Affiliation(s)
- Dimosthenis Chochlakis
- Regional Laboratory of Public Health of Crete, School of Medicine, University of Crete, Heraklion, Greece
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Vassilios Sandalakis
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Apostolos Ntoukakis
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria-Olga Daskalaki
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Thomas Loppinet
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Niki Thalassinaki
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Rena Makridaki
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Christos Panoulis
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Anna Psaroulaki
- Regional Laboratory of Public Health of Crete, School of Medicine, University of Crete, Heraklion, Greece
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
3
|
Spencer-Williams I, Meyer M, DePas W, Elliott E, Haig SJ. Assessing the Impacts of Lead Corrosion Control on the Microbial Ecology and Abundance of Drinking-Water-Associated Pathogens in a Full-Scale Drinking Water Distribution System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20360-20369. [PMID: 37970641 DOI: 10.1021/acs.est.3c05272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Increases in phosphate availability in drinking water distribution systems (DWDSs) from the use of phosphate-based corrosion control strategies may result in nutrient and microbial community composition shifts in the DWDS. This study assessed the year-long impacts of full-scale DWDS orthophosphate addition on both the microbial ecology and density of drinking-water-associated pathogens that infect the immunocompromised (DWPIs). Using 16S rRNA gene amplicon sequencing and droplet digital PCR, drinking water microbial community composition and DWPI density were examined. Microbial community composition analysis suggested significant compositional changes after the orthophosphate addition. Significant increases in total bacterial density were observed after orthophosphate addition, likely driven by a 2 log 10 increase in nontuberculous mycobacteria (NTM). Linear effect models confirmed the importance of phosphate addition with phosphorus concentration explaining 17% and 12% of the variance in NTM and L. pneumophila density, respectively. To elucidate the impact of phosphate on NTM aggregation, a comparison of planktonic and aggregate fractions of NTM cultures grown at varying phosphate concentrations was conducted. Aggregation assay results suggested that higher phosphate concentrations cause more disaggregation, and the interaction between phosphate and NTM is species specific. This work reveals new insight into the consequences of orthophosphate application on the DWDS microbiome and highlights the importance of proactively monitoring the DWDS for DWPIs.
Collapse
Affiliation(s)
- Isaiah Spencer-Williams
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mitchell Meyer
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - William DePas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Emily Elliott
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sarah-Jane Haig
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
4
|
Gomez-Alvarez V, Ryu H, Tang M, McNeely M, Muhlen C, Urbanic M, Williams D, Lytle D, Boczek L. Assessing residential activity in a home plumbing system simulator: monitoring the occurrence and relationship of major opportunistic pathogens and phagocytic amoebas. Front Microbiol 2023; 14:1260460. [PMID: 37915853 PMCID: PMC10616306 DOI: 10.3389/fmicb.2023.1260460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
Opportunistic premise plumbing pathogens (OPPPs) have been detected in buildings' plumbing systems causing waterborne disease outbreaks in the United States. In this study, we monitored the occurrence of OPPPs along with free-living amoeba (FLA) and investigated the effects of residential activities in a simulated home plumbing system (HPS). Water samples were collected from various locations in the HPS and analyzed for three major OPPPs: Legionella pneumophila, nontuberculous mycobacterial species (e.g., Mycobacterium avium, M. intracellulare, and M. abscessus), and Pseudomonas aeruginosa along with two groups of amoebas (Acanthamoeba and Vermamoeba vermiformis). A metagenomic approach was also used to further characterize the microbial communities. Results show that the microbial community is highly diverse with evidence of spatial and temporal structuring influenced by environmental conditions. L. pneumophila was the most prevalent pathogen (86% of samples), followed by M. intracellulare (66%) and P. aeruginosa (21%). Interestingly, M. avium and M. abscessus were not detected in any samples. The data revealed a relatively low prevalence of Acanthamoeba spp. (4%), while V. vermiformis was widely detected (81%) across all the sampling locations within the HPS. Locations with a high concentration of L. pneumophila and M. intracellulare coincided with the highest detection of V. vermiformis, suggesting the potential growth of both populations within FLA and additional protection in drinking water. After a period of stagnation lasting at least 2-weeks, the concentrations of OPPPs and amoeba immediately increased and then decreased gradually back to the baseline. Furthermore, monitoring the microbial population after drainage of the hot water tank and partial drainage of the entire HPS demonstrated no significant mitigation of the selected OPPPs. This study demonstrates that these organisms can adjust to their environment during such events and may survive in biofilms and/or grow within FLA, protecting them from stressors in the supplied water.
Collapse
Affiliation(s)
- Vicente Gomez-Alvarez
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Hodon Ryu
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Min Tang
- Oak Ridge for Science and Education Research Fellow at U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Morgan McNeely
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Christy Muhlen
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Megan Urbanic
- Oak Ridge for Science and Education Research Fellow at U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Daniel Williams
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Darren Lytle
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| | - Laura Boczek
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, United States
| |
Collapse
|
5
|
Duan X, Zhang C, Struewing I, Li X, Allen J, Lu J. Cyanotoxin-encoding genes as powerful predictors of cyanotoxin production during harmful cyanobacterial blooms in an inland freshwater lake: Evaluating a novel early-warning system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154568. [PMID: 35302035 PMCID: PMC9698223 DOI: 10.1016/j.scitotenv.2022.154568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/26/2022] [Accepted: 03/10/2022] [Indexed: 05/06/2023]
Abstract
Freshwater harmful cyanobacterial blooms (HCBs) potentially produce excessive cyanotoxins, mainly microcystins (MCs), significantly threatening aquatic ecosystems and public health. Accurately predicting HCBs is thus essential to developing effective HCB mitigation and prevention strategies. We previously developed a novel early-warning system that uses cyanotoxin-encoding genes to predict cyanotoxin production in Harsha Lake, Ohio, USA, in 2015. In this study, we evaluated the efficacy of the early-warning system in forecasting the 2016 HCB in the same lake. We also examined potential HCB drivers and cyanobacterial community composition. Our results revealed that the cyanobacterial community was stable at the phylum level but changed dynamically at the genus level over time. Microcystis and Planktothrix were the major MC-producing genera that thrived in June and July and produced high concentrations of MCs (peak level 10.22 μg·L-1). The abundances of the MC-encoding gene cluster mcy and its transcript levels significantly correlated with total MC concentrations (before the MC concentrations peaked) and accurately predicted MC production as revealed by logistic equations. When the Microcystis-specific gene mcyG reached approximately 1.5 × 103 copies·mL-1 or when its transcript level reached approximately 2.4 copies·mL-1, total MC level exceeded 0.3 μg L-1 (a health advisory limit) approximately one week later (weekly sampling scheme). This study suggested that cyanotoxin-encoding genes are promising predictors of MC production in inland freshwater lakes, such as Harsha Lake. The evaluated early-warning system can be a useful tool to assist lake managers in predicting, mitigating, and/or preventing HCBs.
Collapse
Affiliation(s)
- Xiaodi Duan
- Pegasus Technical Services, Inc., Cincinnati, OH 45219, USA
| | - Chiqian Zhang
- Pegasus Technical Services, Inc., Cincinnati, OH 45219, USA
| | - Ian Struewing
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Xiang Li
- Oak Ridge Institute for Science and Education at the United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Joel Allen
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA.
| |
Collapse
|
6
|
Zhang C, Lu J. Legionella: A Promising Supplementary Indicator of Microbial Drinking Water Quality in Municipal Engineered Water Systems. FRONTIERS IN ENVIRONMENTAL SCIENCE 2021; 9:1-22. [PMID: 35004706 PMCID: PMC8740890 DOI: 10.3389/fenvs.2021.684319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Opportunistic pathogens (OPs) are natural inhabitants and the predominant disease causative biotic agents in municipal engineered water systems (EWSs). In EWSs, OPs occur at high frequencies and concentrations, cause drinking-water-related disease outbreaks, and are a major factor threatening public health. Therefore, the prevalence of OPs in EWSs represents microbial drinking water quality. Closely or routinely monitoring the dynamics of OPs in municipal EWSs is thus critical to ensuring drinking water quality and protecting public health. Monitoring the dynamics of conventional (fecal) indicators (e.g., total coliforms, fecal coliforms, and Escherichia coli) is the customary or even exclusive means of assessing microbial drinking water quality. However, those indicators infer only fecal contamination due to treatment (e.g., disinfection within water utilities) failure and EWS infrastructure issues (e.g., water main breaks and infiltration), whereas OPs are not contaminants in drinking water. In addition, those indicators appear in EWSs at low concentrations (often absent in well-maintained EWSs) and are uncorrelated with OPs. For instance, conventional indicators decay, while OPs regrow with increasing hydraulic residence time. As a result, conventional indicators are poor indicators of OPs (the major aspect of microbial drinking water quality) in EWSs. An additional or supplementary indicator that can well infer the prevalence of OPs in EWSs is highly needed. This systematic review argues that Legionella as a dominant OP-containing genus and natural inhabitant in EWSs is a promising candidate for such a supplementary indicator. Through comprehensively comparing the behavior (i.e., occurrence, growth and regrowth, spatiotemporal variations in concentrations, resistance to disinfectant residuals, and responses to physicochemical water quality parameters) of major OPs (e.g., Legionella especially L. pneumophila, Mycobacterium, and Pseudomonas especially P. aeruginosa), this review proves that Legionella is a promising supplementary indicator for the prevalence of OPs in EWSs while other OPs lack this indication feature. Legionella as a dominant natural inhabitant in EWSs occurs frequently, has a high concentration, and correlates with more microbial and physicochemical water quality parameters than other common OPs. Legionella and OPs in EWSs share multiple key features such as high disinfectant resistance, biofilm formation, proliferation within amoebae, and significant spatiotemporal variations in concentrations. Therefore, the presence and concentration of Legionella well indicate the presence and concentrations of OPs (especially L. pneumophila) and microbial drinking water quality in EWSs. In addition, Legionella concentration indicates the efficacies of disinfectant residuals in EWSs. Furthermore, with the development of modern Legionella quantification methods (especially quantitative polymerase chain reactions), monitoring Legionella in ESWs is becoming easier, more affordable, and less labor-intensive. Those features make Legionella a proper supplementary indicator for microbial drinking water quality (especially the prevalence of OPs) in EWSs. Water authorities may use Legionella and conventional indicators in combination to more comprehensively assess microbial drinking water quality in municipal EWSs. Future work should further explore the indication role of Legionella in EWSs and propose drinking water Legionella concentration limits that indicate serious public health effects and require enhanced treatment (e.g., booster disinfection).
Collapse
Affiliation(s)
- Chiqian Zhang
- Pegasus Technical Services, Inc., Cincinnati, OH, United States
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| |
Collapse
|
7
|
Zhang C, Struewing I, Mistry JH, Wahman DG, Pressman J, Lu J. Legionella and other opportunistic pathogens in full-scale chloraminated municipal drinking water distribution systems. WATER RESEARCH 2021; 205:117571. [PMID: 34628111 PMCID: PMC8629321 DOI: 10.1016/j.watres.2021.117571] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 05/06/2023]
Abstract
Water-based opportunistic pathogens (OPs) are a leading cause of drinking-water-related disease outbreaks, especially in developed countries such as the United States (US). Physicochemical water quality parameters, especially disinfectant residuals, control the (re)growth, presence, colonization, and concentrations of OPs in drinking water distribution systems (DWDSs), while the relationship between OPs and those parameters remain unclear. This study aimed to quantify how physicochemical parameters, mainly monochloramine residual concentration, hydraulic residence time (HRT), and seasonality, affected the occurrence and concentrations of four common OPs (Legionella, Mycobacterium, Pseudomonas, and Vermamoeba vermiformis) in four full-scale DWDSs in the US. Legionella as a dominant OP occurred in 93.8% of the 64 sampling events and had a mean density of 4.27 × 105 genome copies per liter. Legionella positively correlated with Mycobacterium, Pseudomonas, and total bacteria. Multiple regression with data from the four DWDSs showed that Legionella had significant correlations with total chlorine residual level, free ammonia concentration, and trihalomethane concentration. Therefore, Legionella is a promising indicator of water-based OPs, reflecting microbial water quality in chloraminated DWDSs. The OP concentrations had strong seasonal variations and peaked in winter and/or spring possibly because of reduced water usage (i.e., increased water stagnation or HRT) during cold seasons. The OP concentrations generally increased with HRT presumably because of disinfectant residual decay, indicating the importance of well-maintaining disinfectant residuals in DWDSs for OP control. The concentrations of Mycobacterium, Pseudomonas, and V. vermiformis were significantly associated with total chlorine residual concentration, free ammonia concentration, and pH and trihalomethane concentration, respectively. Overall, this study demonstrates how the significant spatiotemporal variations of OP concentrations in chloraminated DWDSs correlated with critical physicochemical water quality parameters such as disinfectant residual levels. This work also indicates that Legionella is a promising indicator of OPs and microbial water quality in chloraminated DWDSs.
Collapse
Affiliation(s)
- Chiqian Zhang
- Pegasus Technical Services, Inc., Cincinnati, Ohio, USA
| | - Ian Struewing
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jatin H Mistry
- United States Environmental Protection Agency, Region 6, Dallas, Texas, USA
| | - David G Wahman
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jonathan Pressman
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA.
| |
Collapse
|