1
|
Kunnath AP, Suodha Suoodh M, Chellappan DK, Chellian J, Palaniveloo K. Bacterial Persister Cells and Development of Antibiotic Resistance in Chronic Infections: An Update. Br J Biomed Sci 2024; 81:12958. [PMID: 39170669 PMCID: PMC11335562 DOI: 10.3389/bjbs.2024.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
The global issue of antimicrobial resistance poses significant challenges to public health. The World Health Organization (WHO) has highlighted it as a major global health threat, causing an estimated 700,000 deaths worldwide. Understanding the multifaceted nature of antibiotic resistance is crucial for developing effective strategies. Several physiological and biochemical mechanisms are involved in the development of antibiotic resistance. Bacterial cells may escape the bactericidal actions of the drugs by entering a physiologically dormant state known as bacterial persistence. Recent findings in this field suggest that bacterial persistence can be one of the main sources of chronic infections. The antibiotic tolerance developed by the persister cells could tolerate high levels of antibiotics and may give rise to persister offspring. These persister offspring could be attributed to antibiotic resistance mechanisms, especially in chronic infections. This review attempts to shed light on persister-induced antibiotic resistance and the current therapeutic strategies.
Collapse
Affiliation(s)
- Anil Philip Kunnath
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Mohamed Suodha Suoodh
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies Building, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Niu L, Wang H, Luo G, Zhou J, Hu Z, Yan B. Advances in understanding immune homeostasis in latent tuberculosis infection. WIREs Mech Dis 2024; 16:e1643. [PMID: 38351551 DOI: 10.1002/wsbm.1643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 07/13/2024]
Abstract
Nearly one-fourth of the global population is infected by Mycobacterium tuberculosis (Mtb), and approximately 90%-95% remain asymptomatic as latent tuberculosis infection (LTBI), an estimated 5%-10% of those with latent infections will eventually progress to active tuberculosis (ATB). Although it is widely accepted that LTBI transitioning to ATB results from a disruption of host immune balance and a weakening of protective immune responses, the exact underlying immunological mechanisms that promote this conversion are not well characterized. Thus, it is difficult to accurately predict tuberculosis (TB) progression in advance, leaving the LTBI population as a significant threat to TB prevention and control. This article systematically explores three aspects related to the immunoregulatory mechanisms and translational research about LTBI: (1) the distinct immunocytological characteristics of LTBI and ATB, (2) LTBI diagnostic markers discovery related to host anti-TB immunity and metabolic pathways, and (3) vaccine development focus on LTBI. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology Infectious Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Liangfei Niu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Hao Wang
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Geyang Luo
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Jing Zhou
- Department of Pathology, Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Zhidong Hu
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Bo Yan
- Center for Tuberculosis Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Deshpande A, Likhar R, Khan T, Omri A. Decoding drug resistance in Mycobacterium tuberculosis complex: genetic insights and future challenges. Expert Rev Anti Infect Ther 2024; 22:511-527. [PMID: 39219506 DOI: 10.1080/14787210.2024.2400536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/02/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Tuberculosis (TB), particularly its drug-resistant forms (MDR-TB and XDR-TB), continues to pose a significant global health challenge. Despite advances in treatment and diagnosis, the evolving nature of drug resistance in Mycobacterium tuberculosis (MTB) complicates TB eradication efforts. This review delves into the complexities of anti-TB drug resistance, its mechanisms, and implications on healthcare strategies globally. AREAS COVERED We explore the genetic underpinnings of resistance to both first-line and second-line anti-TB drugs, highlighting the role of mutations in key genes. The discussion extends to advanced diagnostic techniques, such as Whole-Genome Sequencing (WGS), CRISPR-based diagnostics and their impact on identifying and managing drug-resistant TB. Additionally, we discuss artificial intelligence applications, current treatment strategies, challenges in managing MDR-TB and XDR-TB, and the global disparities in TB treatment and control, translating to different therapeutic outcomes and have the potential to revolutionize our understanding and management of drug-resistant tuberculosis. EXPERT OPINION The current landscape of anti-TB drug resistance demands an integrated approach combining advanced diagnostics, novel therapeutic strategies, and global collaborative efforts. Future research should focus on understanding polygenic resistance and developing personalized medicine approaches. Policymakers must prioritize equitable access to diagnosis and treatment, enhancing TB control strategies, and support ongoing research and augmented government funding to address this critical public health issue effectively.
Collapse
Affiliation(s)
- Amey Deshpande
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai, India
| | - Rupali Likhar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Department of Pharmaceutical Chemistry, LSHGCT's Gahlot Institute of Pharmacy, Navi Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
4
|
Fu X, Wan X, Memon AA, Fan XY, Sun Q, Chen H, Yao Y, Deng Z, Ma J, Ma W. Regulatory role of Mycobacterium tuberculosis MtrA on dormancy/resuscitation revealed by a novel target gene-mining strategy. Front Microbiol 2024; 15:1415554. [PMID: 38952446 PMCID: PMC11215152 DOI: 10.3389/fmicb.2024.1415554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction The unique dormancy of Mycobacterium tuberculosis plays a significant role in the major clinical treatment challenge of tuberculosis, such as its long treatment cycle, antibiotic resistance, immune escape, and high latent infection rate. Methods To determine the function of MtrA, the only essential response regulator, one strategy was developed to establish its regulatory network according to high-quality genome-wide binding sites. Results and discussion The complex modulation mechanisms were implied by the strong bias distribution of MtrA binding sites in the noncoding regions, and 32.7% of the binding sites were located inside the target genes. The functions of 288 potential MtrA target genes predicted according to 294 confirmed binding sites were highly diverse, and DNA replication and damage repair, lipid metabolism, cell wall component biosynthesis, cell wall assembly, and cell division were the predominant pathways. Among the 53 pathways shared between dormancy/resuscitation and persistence, which accounted for 81.5% and 93.0% of the total number of pathways, respectively, MtrA regulatory genes were identified not only in 73.6% of their mutual pathways, but also in 75.4% of the pathways related to dormancy/resuscitation and persistence respectively. These results suggested the pivotal roles of MtrA in regulating dormancy/resuscitation and the apparent relationship between dormancy/resuscitation and persistence. Furthermore, the finding that 32.6% of the MtrA regulons were essential in vivo and/or in vitro for M. tuberculosis provided new insight into its indispensability. The findings mentioned above indicated that MtrA is a novel promising therapeutic target for tuberculosis treatment since the crucial function of MtrA may be a point of weakness for M. tuberculosis.
Collapse
Affiliation(s)
- Xiang Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Wan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Shanghai, China
| | - Aadil Ahmed Memon
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Qiuhong Sun
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Shanghai, China
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yufeng Yao
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Ma
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Shanghai, China
| | - Wei Ma
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Se J, Xie Y, Ma Q, Zhu L, Fu Y, Xu X, Shen C, Nannipieri P. Drying-wetting cycle enhances stress resistance of Escherichia coli O157:H7 in a model soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123988. [PMID: 38648967 DOI: 10.1016/j.envpol.2024.123988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Outbreaks of Escherichia coli (E. coli) O157:H7 in farms are often triggered by heavy rains and flooding. Most cells die with the decreasing of soil moisture, while few cells enter a dormant state and then resuscitate after rewetting. The resistance of dormant cells to stress has been extensively studied, whereas the molecular mechanisms of the cross-resistance development of the resuscitated cells are poorly known. We performed a comparative proteomic analysis on O157:H7 before and after undergoing soil dry-wet alternation. A differential expression of 820 proteins was identified in resuscitated cells compared to exponential-phase cells, as determined by proteomics analysis. The GO and KEGG pathway enrichment analyses revealed that up-regulated proteins were associated with oxidative phosphorylation, glycolysis/gluconeogenesis, the citrate cycle (TCA cycle), aminoacyl-tRNA biosynthesis, ribosome activity, and transmembrane transporters, indicating increased energy production and protein synthesis in resuscitated O157:H7. Moreover, proteins related to acid, osmotic, heat, oxidative, antibiotic stress and horizontal gene transfer efficiency were up-regulated, suggesting a potential improvement in stress resistance. Subsequent validation experiments demonstrated that the survival rates of the resuscitated cells were 476.54 and 7786.34 times higher than the exponential-phase cells, with pH levels of 1.5 and 2.5, respectively. Similarly, resuscitated cells showed higher survival rates under osmotic stress, with 7.5%, 15%, and 30% NaCl resulting in survival rates that were 460.58, 1974.55, and 3475.31 times higher. Resuscitated cells also exhibited increased resistance to heat stress, with survival rates 69.64 and 139.72 times higher at 55 °C and 90 °C, respectively. Furthermore, the horizontal gene transfer (HGT) efficiency of resuscitated cells was significantly higher (153.12-fold) compared to exponential phase cells. This study provides new insights into bacteria behavior under changing soil moisture and this may explain O157:H7 outbreaks following rainfall and flooding, as the dry-wet cycle promotes stress cross-resistance development.
Collapse
Affiliation(s)
- Jing Se
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Yinan Xie
- Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingxu Ma
- Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Xin Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China.
| | - Paolo Nannipieri
- Emeritus Professor, University of Firenze, Firenze, 50144, Italy
| |
Collapse
|
6
|
Cioetto-Mazzabò L, Sorze D, Babic F, Boldrin F, Segafreddo G, Provvedi R, Manganelli R. Structure of the SigE regulatory network in Mycobacterium tuberculosis. Front Microbiol 2024; 15:1407500. [PMID: 38873166 PMCID: PMC11173970 DOI: 10.3389/fmicb.2024.1407500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
SigE is one of the main regulators of mycobacterial stress response and is characterized by a complex regulatory network based on two pathways, which have been partially characterized in conditions of surface stress. The first pathway is based on the induction of sigE transcription by the two-component system MprAB, while the second is based on the degradation of SigE anti-sigma factor RseA by ClpC1P2, a protease whose structural genes are induced by ClgR. We characterized the dynamics of the SigE network activation in conditions of surface stress and low pH in Mycobacterium tuberculosis. Using a series of mutants in which the main regulatory nodes of the network have been inactivated, we could explore their hierarchy, and we determined that MprAB had a key role in the network activation in both stress conditions through the induction of sigE. However, while in conditions of surface stress the absence of MprAB totally abrogated sigE induction, under low pH conditions it only resulted in a small delay of the induction of sigE. In this case, sigE induction was due to SigH, which acted as a MprAB backup system. The ClgR pathway, leading to the degradation of the SigE anti-sigma factor RseA, was shown to be essential for the activation of the SigE network only following surface stress, where it showed an equal hierarchy with the MprAB pathway.
Collapse
Affiliation(s)
| | - Davide Sorze
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Fedora Babic
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Francesca Boldrin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Greta Segafreddo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | |
Collapse
|
7
|
Soni J, Pandey R. Single cell genomics based insights into the impact of cell-type specific microbial internalization on disease severity. Front Immunol 2024; 15:1401320. [PMID: 38835769 PMCID: PMC11148356 DOI: 10.3389/fimmu.2024.1401320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Host-microbe interactions are complex and ever-changing, especially during infections, which can significantly impact human physiology in both health and disease by influencing metabolic and immune functions. Infections caused by pathogens such as bacteria, viruses, fungi, and parasites are the leading cause of global mortality. Microbes have evolved various immune evasion strategies to survive within their hosts, which presents a multifaceted challenge for detection. Intracellular microbes, in particular, target specific cell types for survival and replication and are influenced by factors such as functional roles, nutrient availability, immune evasion, and replication opportunities. Identifying intracellular microbes can be difficult because of the limitations of traditional culture-based methods. However, advancements in integrated host microbiome single-cell genomics and transcriptomics provide a promising basis for personalized treatment strategies. Understanding host-microbiota interactions at the cellular level may elucidate disease mechanisms and microbial pathogenesis, leading to targeted therapies. This article focuses on how intracellular microbes reside in specific cell types, modulating functions through persistence strategies to evade host immunity and prolong colonization. An improved understanding of the persistent intracellular microbe-induced differential disease outcomes can enhance diagnostics, therapeutics, and preventive measures.
Collapse
Affiliation(s)
- Jyoti Soni
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst PathogEn (INGEN-HOPE) Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Youngblom MA, Smith TM, Murray HJ, Pepperell CS. Adaptation of the Mycobacterium tuberculosis transcriptome to biofilm growth. PLoS Pathog 2024; 20:e1012124. [PMID: 38635841 PMCID: PMC11060545 DOI: 10.1371/journal.ppat.1012124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/30/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Mycobacterium tuberculosis (M. tb), the causative agent of tuberculosis (TB), is a leading global cause of death from infectious disease. Biofilms are increasingly recognized as a relevant growth form during M. tb infection and may impede treatment by enabling bacterial drug and immune tolerance. M. tb has a complicated regulatory network that has been well-characterized for many relevant disease states, including dormancy and hypoxia. However, despite its importance, our knowledge of the genes and pathways involved in biofilm formation is limited. Here we characterize the biofilm transcriptomes of fully virulent clinical isolates and find that the regulatory systems underlying biofilm growth vary widely between strains and are also distinct from regulatory programs associated with other environmental cues. We used experimental evolution to investigate changes to the transcriptome during adaptation to biofilm growth and found that the application of a uniform selection pressure resulted in loss of strain-to-strain variation in gene expression, resulting in a more uniform biofilm transcriptome. The adaptive trajectories of transcriptomes were shaped by the genetic background of the M. tb population leading to convergence on a sub-lineage specific transcriptome. We identified widespread upregulation of non-coding RNA (ncRNA) as a common feature of the biofilm transcriptome and hypothesize that ncRNA function in genome-wide modulation of gene expression, thereby facilitating rapid regulatory responses to new environments. These results reveal a new facet of the M. tb regulatory system and provide valuable insight into how M. tb adapts to new environments.
Collapse
Affiliation(s)
- Madison A. Youngblom
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Madison-Wisconsin, Madison, Wisconsin, United States of America
| | - Tracy M. Smith
- Department of Medicine (Infectious Diseases), School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Holly J. Murray
- Department of Medicine (Infectious Diseases), School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Caitlin S. Pepperell
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Madison-Wisconsin, Madison, Wisconsin, United States of America
- Department of Medicine (Infectious Diseases), School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
9
|
Lu Y, Chen H, Shao Z, Sun L, Li C, Lu Y, You X, Yang X. Deletion of the Mycobacterium tuberculosis cyp138 gene leads to changes in membrane-related lipid composition and antibiotic susceptibility. Front Microbiol 2024; 15:1301204. [PMID: 38591032 PMCID: PMC10999552 DOI: 10.3389/fmicb.2024.1301204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/01/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Mycobacterium tuberculosis (Mtb), the main cause of tuberculosis (TB), has brought a great burden to the world's public health. With the widespread use of Mtb drug-resistant strains, the pressure on anti-TB treatment is increasing. Anti-TB drugs with novel structures and targets are urgently needed. Previous studies have revealed a series of CYPs with important roles in the survival and metabolism of Mtb. However, there is little research on the structure and function of CYP138. Methods In our study, to discover the function and targetability of CYP138, a cyp138-knockout strain was built, and the function of CYP138 was speculated by the comparison between cyp138-knockout and wild-type strains through growth curves, growth status under different carbon sources, infection curves, SEM, MIC tests, quantitative proteomics, and lipidomics. Results and discussion The knockout of cyp138 was proven to affect the Mtb's macrophage infection, antibiotics susceptibility, and the levels of fatty acid metabolism, membrane-related proteins, and lipids such as triacylglycerol. We proposed that CYP138 plays an important role in the synthesis and decomposition of lipids related to the cell membrane structure as a new potential anti-tuberculosis drug target.
Collapse
Affiliation(s)
- Yun Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
| | - Hongtong Chen
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiyuan Shao
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
| |
Collapse
|
10
|
Wang S, Fang R, Wang H, Li X, Xing J, Li Z, Song N. The role of transcriptional regulators in metal ion homeostasis of Mycobacterium tuberculosis. Front Cell Infect Microbiol 2024; 14:1360880. [PMID: 38529472 PMCID: PMC10961391 DOI: 10.3389/fcimb.2024.1360880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
Metal ions are essential trace elements for all living organisms and play critical catalytic, structural, and allosteric roles in many enzymes and transcription factors. Mycobacterium tuberculosis (MTB), as an intracellular pathogen, is usually found in host macrophages, where the bacterium can survive and replicate. One of the reasons why Tuberculosis (TB) is so difficult to eradicate is the continuous adaptation of its pathogen. It is capable of adapting to a wide range of harsh environmental stresses, including metal ion toxicity in the host macrophages. Altering the concentration of metal ions is the common host strategy to limit MTB replication and persistence. This review mainly focuses on transcriptional regulatory proteins in MTB that are involved in the regulation of metal ions such as iron, copper and zinc. The aim is to offer novel insights and strategies for screening targets for TB treatment, as well as for the development and design of new therapeutic interventions.
Collapse
Affiliation(s)
- Shuxian Wang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Ren Fang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Hui Wang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Xiaotian Li
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Jiayin Xing
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Zhaoli Li
- Drug Innovation Research Center, SAFE Pharmaceutical Technology Co. Ltd., Beijing, China
| | - Ningning Song
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
11
|
Wynn EA, Dide-Agossou C, Reichlen M, Rossmassler K, Al Mubarak R, Reid JJ, Tabor ST, Born SEM, Ransom MR, Davidson RM, Walton KN, Benoit JB, Hoppers A, Loy DE, Bauman AA, Massoudi LM, Dolganov G, Strong M, Nahid P, Voskuil MI, Robertson GT, Moore CM, Walter ND. Transcriptional adaptation of Mycobacterium tuberculosis that survives prolonged multi-drug treatment in mice. mBio 2023; 14:e0236323. [PMID: 37905920 PMCID: PMC10746229 DOI: 10.1128/mbio.02363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE A major reason that curing tuberculosis requires prolonged treatment is that drug exposure changes bacterial phenotypes. The physiologic adaptations of Mycobacterium tuberculosis that survive drug exposure in vivo have been obscure due to low sensitivity of existing methods in drug-treated animals. Using the novel SEARCH-TB RNA-seq platform, we elucidated Mycobacterium tuberculosis phenotypes in mice treated for with the global standard 4-drug regimen and compared them with the effect of the same regimen in vitro. This first view of the transcriptome of the minority Mycobacterium tuberculosis population that withstands treatment in vivo reveals adaptation of a broad range of cellular processes, including a shift in metabolism and cell wall modification. Surprisingly, the change in gene expression induced by treatment in vivo and in vitro was largely similar. This apparent "portability" from in vitro to the mouse provides important new context for in vitro transcriptional analyses that may support early preclinical drug evaluation.
Collapse
Affiliation(s)
- Elizabeth A. Wynn
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
| | - Christian Dide-Agossou
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Matthew Reichlen
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Karen Rossmassler
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reem Al Mubarak
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Justin J. Reid
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Samuel T. Tabor
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sarah E. M. Born
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Monica R. Ransom
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rebecca M. Davidson
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Kendra N. Walton
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Jeanne B. Benoit
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Amanda Hoppers
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Dorothy E. Loy
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Allison A. Bauman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Lisa M. Massoudi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory Dolganov
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Palo Alto, California, USA
| | - Michael Strong
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Payam Nahid
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, USA
- UCSF Center for Tuberculosis, University of California San Francisco, San Francisco, California, USA
| | - Martin I. Voskuil
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gregory T. Robertson
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Camille M. Moore
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Nicholas D. Walter
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
12
|
Youngblom MA, Smith TM, Pepperell CS. Adaptation of the Mycobacterium tuberculosis transcriptome to biofilm growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549484. [PMID: 37503306 PMCID: PMC10370045 DOI: 10.1101/2023.07.18.549484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Mycobacterium tuberculosis ( M. tb ), the causative agent of tuberculosis (TB), is a leading global cause of death from infectious disease. Biofilms are increasingly recognized as a relevant growth form during M. tb infection and may impede treatment by enabling bacterial drug and immune tolerance. M. tb has a complicated regulatory network that has been well-characterized for many relevant disease states, including dormancy and hypoxia. However, despite its importance, our knowledge of the genes and pathways involved in biofilm formation is limited. Here we characterize the biofilm transcriptomes of fully virulent clinical isolates and find that the regulatory systems underlying biofilm growth vary widely between strains and are also distinct from regulatory programs associated with other environmental cues. We used experimental evolution to investigate changes to the transcriptome during adaptation to biofilm growth and found that the application of a uniform selection pressure resulted in loss of strain-to-strain variation in gene expression, resulting in a more uniform biofilm transcriptome. The adaptive trajectories of transcriptomes were shaped by the genetic background of the M. tb population leading to convergence on a sub-lineage specific transcriptome. We identified widespread upregulation of non-coding RNA (ncRNA) as a common feature of the biofilm transcriptome and hypothesize that ncRNA function in genome-wide modulation of gene expression, thereby facilitating rapid regulatory responses to new environments. These results reveal a new facet of the M. tb regulatory system and provide valuable insight into how M. tb adapts to new environments. Importance Understanding mechanisms of resistance and tolerance in Mycobacterium tuberculosis ( M. tb ) can help us develop new treatments that capitalize on M. tb 's vulnerabilities. Here we used transcriptomics to study both the regulation of biofilm formation in clinical isolates as well as how those regulatory systems adapt to new environments. We find that closely related clinical populations have diverse strategies for growth under biofilm conditions, and that genetic background plays a large role in determining the trajectory of evolution. These results have implications for future treatment strategies that may be informed by our knowledge of the evolutionary constraints on strain(s) from an individual infection. This work provides new information about the mechanisms of biofilm formation in M. tb and outlines a framework for population level approaches for studying bacterial adaptation.
Collapse
|
13
|
Kim H, Choi HG, Shin SJ. Bridging the gaps to overcome major hurdles in the development of next-generation tuberculosis vaccines. Front Immunol 2023; 14:1193058. [PMID: 37638056 PMCID: PMC10451085 DOI: 10.3389/fimmu.2023.1193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Although tuberculosis (TB) remains one of the leading causes of death from an infectious disease worldwide, the development of vaccines more effective than bacille Calmette-Guérin (BCG), the only licensed TB vaccine, has progressed slowly even in the context of the tremendous global impact of TB. Most vaccine candidates have been developed to strongly induce interferon-γ (IFN-γ)-producing T-helper type 1 (Th1) cell responses; however, accumulating evidence has suggested that other immune factors are required for optimal protection against Mycobacterium tuberculosis (Mtb) infection. In this review, we briefly describe the five hurdles that must be overcome to develop more effective TB vaccines, including those with various purposes and tested in recent promising clinical trials. In addition, we discuss the current knowledge gaps between preclinical experiments and clinical studies regarding peripheral versus tissue-specific immune responses, different underlying conditions of individuals, and newly emerging immune correlates of protection. Moreover, we propose how recently discovered TB risk or susceptibility factors can be better utilized as novel biomarkers for the evaluation of vaccine-induced protection to suggest more practical ways to develop advanced TB vaccines. Vaccines are the most effective tools for reducing mortality and morbidity from infectious diseases, and more advanced technologies and a greater understanding of host-pathogen interactions will provide feasibility and rationale for novel vaccine design and development.
Collapse
Affiliation(s)
- Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Han-Gyu Choi
- Department of Microbiology and Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Mao LR, Du JP, Wang XC, Xu LF, Zhang YP, Sun QS, Shi ZL, Xing YR, Su YX, Wang SJ, Wang J, Ma JL, Zhang JY. Long-Term Immunogenicity and In Vitro Prophylactic Protective Efficacy of M. tuberculosis Fusion Protein DR2 Combined with Liposomal Adjuvant DIMQ as a Boosting Vaccine for BCG. ACS Infect Dis 2023; 9:593-608. [PMID: 36808986 DOI: 10.1021/acsinfecdis.2c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The resuscitation of dormant Mycobacterium tuberculosis is an important cause of adult tuberculosis (TB) transmission. According to the interaction mechanism between M. tuberculosis and the host, the latency antigen Rv0572c and region of difference 9 (RD9) antigen Rv3621c were selected in this study to prepare the fusion protein DR2. Stimulating clinically diagnosed active tuberculosis infections (i.e., TB patients), latent tuberculosis infections, and healthy controls confirmed that T lymphocytes could recognize DR2 protein in the peripheral blood of TB-infected individuals more than subcomponent protein. The DR2 protein was then emulsified in the liposome adjuvant dimethyl dioctadecyl ammonium bromide, and imiquimod (DIMQ) was administered to C57BL/6 mice immunized with Bacillus Calmette-Guérin (BCG) vaccine to evaluate their immunogenicity. Studies have shown that DR2/DIMQ, a booster vaccine for BCG primary immunization, can elicit robust CD4+ Th1 cell immune response and predominant IFN-γ+ CD4+ effector memory T cells (TEM) subsets. Furthermore, the serum antibody level and the expression of related cytokines increased significantly with the extension of immunization time, with IL2+, CD4+, or CD8+ central memory T cells (TCM) subsets predominant in the long term. This immunization strategy showed matched prophylactic protective efficacy by performing in vitro challenge experiment. This result provides robust evidence that the novel subunit vaccine prepared by fusion protein DR2 combined with liposomal adjuvant DIMQ is a promising TB vaccine candidate for further preclinical trials as a booster vaccine for BCG.
Collapse
Affiliation(s)
- Li-Rong Mao
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Jian-Peng Du
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Xiao-Chun Wang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Li-Fa Xu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Yan-Peng Zhang
- Department of Cosmetology, School of Medicine, Huainan Union University, Huainan 232038, China
| | - Qi-Shan Sun
- Department of Clinical Laboratory, Huainan Chaoyang Hospital, Huainan 232007, China
| | - Zi-Lun Shi
- Department of Clinical Laboratory, Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan 232035, China
| | - Ying-Ru Xing
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei 230000, China
| | - Yi-Xin Su
- Department of Clinical Laboratory, Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan 232035, China
| | - Sheng-Jian Wang
- Department of Clinical Laboratory, Huainan Chaoyang Hospital, Huainan 232007, China
| | - Jian Wang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Ji-Lei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, China
| | - Jing-Yan Zhang
- Department of Clinical Laboratory, Affiliated Heping Hospital, Changzhi Medical College, Changzhi 046000, China
| |
Collapse
|
15
|
Simcox BS, Tomlinson BR, Shaw LN, Rohde KH. Mycobacterium abscessus DosRS two-component system controls a species-specific regulon required for adaptation to hypoxia. Front Cell Infect Microbiol 2023; 13:1144210. [PMID: 36968107 PMCID: PMC10034137 DOI: 10.3389/fcimb.2023.1144210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Mycobacterium abscessus (Mab), an emerging opportunistic pathogen, predominantly infects individuals with underlying pulmonary diseases such as cystic fibrosis (CF). Current treatment outcomes for Mab infections are poor due to Mab's inherent antibiotic resistance and unique host interactions that promote phenotypic tolerance and hinder drug access. The hypoxic, mucus-laden airways in the CF lung and antimicrobial phagosome within macrophages represent hostile niches Mab must overcome via alterations in gene expression for survival. Regulatory mechanisms important for the adaptation and long-term persistence of Mab within the host are poorly understood, warranting further genetic and transcriptomics study of this emerging pathogen. DosRS Mab , a two-component signaling system (TCS), is one proposed mechanism utilized to subvert host defenses and counteract environmental stress such as hypoxia. The homologous TCS of Mycobacterium tuberculosis (Mtb), DosRS Mtb , is known to induce a ~50 gene regulon in response to hypoxia, carbon monoxide (CO) and nitric oxide (NO) in vitro and in vivo. Previously, a small DosR Mab regulon was predicted using bioinformatics based on DosR Mtb motifs however, the role and regulon of DosRS Mab in Mab pathogenesis have yet to be characterized in depth. To address this knowledge gap, our lab generated a Mab dosRS knockout strain (MabΔdosRS) to investigate differential gene expression, and phenotype in an in vitro hypoxia model of dormancy. qRT-PCR and lux reporter assays demonstrate Mab_dosR and 6 predicted downstream genes are induced in hypoxia. In addition, RNAseq revealed induction of a much larger hypoxia response comprised of >1000 genes, including 127 differentially expressed genes in a dosRS mutant strain. Deletion of DosRS Mab led to attenuated growth under low oxygen conditions, a shift in morphotype from smooth to rough, and down-regulation of 216 genes. This study provides the first look at the global transcriptomic response of Mab to low oxygen conditions encountered in the airways of CF patients and within macrophage phagosomes. Our data also demonstrate the importance of DosRS Mab for adaptation of Mab to hypoxia, highlighting a distinct regulon (compared to Mtb) that is significantly larger than previously described, including both genes conserved across mycobacteria as well as Mab-specific genes.
Collapse
Affiliation(s)
- Breven S. Simcox
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Brooke R. Tomlinson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Kyle H. Rohde
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
16
|
Wynn EA, Dide-Agossou C, Reichlen M, Rossmassler K, Al Mubarak R, Reid JJ, Tabor ST, Born SEM, Ransom MR, Davidson RM, Walton KN, Benoit JB, Hoppers A, Bauman AA, Massoudi LM, Dolganov G, Nahid P, Voskuil MI, Robertson GT, Moore CM, Walter ND. Transcriptional adaptation of drug-tolerant Mycobacterium tuberculosis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531356. [PMID: 36945388 PMCID: PMC10028792 DOI: 10.1101/2023.03.06.531356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Transcriptome evaluation of Mycobacterium tuberculosis in the lungs of laboratory animals during long-term treatment has been limited by extremely low abundance of bacterial mRNA relative to eukaryotic RNA. Here we report a targeted amplification RNA sequencing method called SEARCH-TB. After confirming that SEARCH-TB recapitulates conventional RNA-seq in vitro, we applied SEARCH-TB to Mycobacterium tuberculosis-infected BALB/c mice treated for up to 28 days with the global standard isoniazid, rifampin, pyrazinamide, and ethambutol regimen. We compared results in mice with 8-day exposure to the same regimen in vitro. After treatment of mice for 28 days, SEARCH-TB suggested broad suppression of genes associated with bacterial growth, transcription, translation, synthesis of rRNA proteins and immunogenic secretory peptides. Adaptation of drug-stressed Mycobacterium tuberculosis appeared to include a metabolic transition from ATP-maximizing respiration towards lower-efficiency pathways, modification and recycling of cell wall components, large-scale regulatory reprogramming, and reconfiguration of efflux pumps expression. Despite markedly different expression at pre-treatment baseline, murine and in vitro samples had broadly similar transcriptional change during treatment. The differences observed likely indicate the importance of immunity and pharmacokinetics in the mouse. By elucidating the long-term effect of tuberculosis treatment on bacterial cellular processes in vivo, SEARCH-TB represents a highly granular pharmacodynamic monitoring tool with potential to enhance evaluation of new regimens and thereby accelerate progress towards a new generation of more effective tuberculosis treatment.
Collapse
Affiliation(s)
- Elizabeth A Wynn
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
| | - Christian Dide-Agossou
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew Reichlen
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karen Rossmassler
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Reem Al Mubarak
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Justin J Reid
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samuel T Tabor
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah E M Born
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Monica R Ransom
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rebecca M Davidson
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Kendra N Walton
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Jeanne B Benoit
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Amanda Hoppers
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Allison A Bauman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Lisa M Massoudi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Gregory Dolganov
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Palo Alto, CA, USA
| | - Payam Nahid
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, CA, USA
- UCSF Center for Tuberculosis, University of California, San Francisco, CA, USA
| | - Martin I Voskuil
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory T Robertson
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Camille M Moore
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Nicholas D Walter
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
17
|
Manganelli R, Cioetto-Mazzabò L, Segafreddo G, Boldrin F, Sorze D, Conflitti M, Serafini A, Provvedi R. SigE: A master regulator of Mycobacterium tuberculosis. Front Microbiol 2023; 14:1075143. [PMID: 36960291 PMCID: PMC10027907 DOI: 10.3389/fmicb.2023.1075143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
The Extracellular function (ECF) sigma factor SigE is one of the best characterized out of the 13 sigma factors encoded in the Mycobacterium tuberculosis chromosome. SigE is required for blocking phagosome maturation and full virulence in both mice and guinea pigs. Moreover, it is involved in the response to several environmental stresses as surface stress, oxidative stress, acidic pH, and phosphate starvation. Underscoring its importance in M. tuberculosis physiology, SigE is subjected to a very complex regulatory system: depending on the environmental conditions, its expression is regulated by three different sigma factors (SigA, SigE, and SigH) and a two-component system (MprAB). SigE is also regulated at the post-translational level by an anti-sigma factor (RseA) which is regulated by the intracellular redox potential and by proteolysis following phosphorylation from PknB upon surface stress. The set of genes under its direct control includes other regulators, as SigB, ClgR, and MprAB, and genes involved in surface remodeling and stabilization. Recently SigE has been shown to interact with PhoP to activate a subset of genes in conditions of acidic pH. The complex structure of its regulatory network has been suggested to result in a bistable switch leading to the development of heterogeneous bacterial populations. This hypothesis has been recently reinforced by the finding of its involvement in the development of persister cells able to survive to the killing activity of several drugs.
Collapse
Affiliation(s)
| | | | - Greta Segafreddo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Francesca Boldrin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Davide Sorze
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Marta Conflitti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Agnese Serafini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
18
|
Ncube P, Bagheri B, Goosen WJ, Miller MA, Sampson SL. Evidence, Challenges, and Knowledge Gaps Regarding Latent Tuberculosis in Animals. Microorganisms 2022; 10:1845. [PMID: 36144447 PMCID: PMC9503773 DOI: 10.3390/microorganisms10091845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/30/2023] Open
Abstract
Mycobacterium bovis and other Mycobacterium tuberculosis complex (MTBC) pathogens that cause domestic animal and wildlife tuberculosis have received considerably less attention than M. tuberculosis, the primary cause of human tuberculosis (TB). Human TB studies have shown that different stages of infection can exist, driven by host-pathogen interactions. This results in the emergence of heterogeneous subpopulations of mycobacteria in different phenotypic states, which range from actively replicating (AR) cells to viable but slowly or non-replicating (VBNR), viable but non-culturable (VBNC), and dormant mycobacteria. The VBNR, VBNC, and dormant subpopulations are believed to underlie latent tuberculosis (LTB) in humans; however, it is unclear if a similar phenomenon could be happening in animals. This review discusses the evidence, challenges, and knowledge gaps regarding LTB in animals, and possible host-pathogen differences in the MTBC strains M. tuberculosis and M. bovis during infection. We further consider models that might be adapted from human TB research to investigate how the different phenotypic states of bacteria could influence TB stages in animals. In addition, we explore potential host biomarkers and mycobacterial changes in the DosR regulon, transcriptional sigma factors, and resuscitation-promoting factors that may influence the development of LTB.
Collapse
Affiliation(s)
| | | | | | | | - Samantha Leigh Sampson
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie Van Zijl Dr, Parow, Cape Town 7505, South Africa
| |
Collapse
|
19
|
Samuels AN, Wang ER, Harrison GA, Valenta JC, Stallings CL. Understanding the contribution of metabolism to Mycobacterium tuberculosis drug tolerance. Front Cell Infect Microbiol 2022; 12:958555. [PMID: 36072222 PMCID: PMC9441742 DOI: 10.3389/fcimb.2022.958555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Treatment of Mycobacterium tuberculosis (Mtb) infections is particularly arduous. One challenge to effectively treating tuberculosis is that drug efficacy in vivo often fails to match drug efficacy in vitro. This is due to multiple reasons, including inadequate drug concentrations reaching Mtb at the site of infection and physiological changes of Mtb in response to host derived stresses that render the bacteria more tolerant to antibiotics. To more effectively and efficiently treat tuberculosis, it is necessary to better understand the physiologic state of Mtb that promotes drug tolerance in the host. Towards this end, multiple studies have converged on bacterial central carbon metabolism as a critical contributor to Mtb drug tolerance. In this review, we present the evidence that changes in central carbon metabolism can promote drug tolerance, depending on the environment surrounding Mtb. We posit that these metabolic pathways could be potential drug targets to stymie the development of drug tolerance and enhance the efficacy of current antimicrobial therapy.
Collapse
Affiliation(s)
| | | | | | | | - Christina L. Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
20
|
Nikitushkin V, Shleeva M, Loginov D, Dyčka F. F, Sterba J, Kaprelyants A. Shotgun proteomic profiling of dormant, ‘non-culturable’ Mycobacterium tuberculosis. PLoS One 2022; 17:e0269847. [PMID: 35944020 PMCID: PMC9362914 DOI: 10.1371/journal.pone.0269847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Dormant cells of Mycobacterium tuberculosis, in addition to low metabolic activity and a high level of drug resistance, are characterized by ‘non-culturability’–a specific reversible state of the inability of the cells to grow on solid media. The biochemical characterization of this physiological state of the pathogen is only superficial, pending clarification of the metabolic processes that may exist in such cells. In this study, applying LC-MS proteomic profiling, we report the analysis of proteins accumulated in dormant, ‘non-culturable’ M. tuberculosis cells in an in vitro model of self-acidification of mycobacteria in the post-stationary phase, simulating the in vivo persistence conditions—the raw data are available via ProteomeXchange with identifier PXD028849. This approach revealed the preservation of 1379 proteins in cells after 5 months of storage in dormancy; among them, 468 proteins were statistically different from those in the actively growing cells and bore a positive fold change (FC). Differential analysis revealed the proteins of the pH-dependent regulatory system PhoP and allowed the reconstruction of the reactions of central carbon/glycerol metabolism, as well as revealing the salvaged pathways of mycothiol and UMP biosynthesis, establishing the cohort of survival enzymes of dormancy. The annotated pathways mirror the adaptation of the mycobacterial metabolic machinery to life within lipid-rich macrophages: especially the involvement of the methyl citrate and glyoxylate pathways. Thus, the current in vitro model of M. tuberculosis self-acidification reflects the biochemical adaptation of these bacteria to persistence in vivo. Comparative analysis with published proteins displaying antigenic properties makes it possible to distinguish immunoreactive proteins among the proteins bearing a positive FC in dormancy, which may include specific antigens of latent tuberculosis. Additionally, the biotransformatory enzymes (oxidoreductases and hydrolases) capable of prodrug activation and stored up in the dormant state were annotated. These findings may potentially lead to the discovery of immunodiagnostic tests for early latent tuberculosis and trigger the discovery of efficient drugs/prodrugs with potency against non-replicating, dormant populations of mycobacteria.
Collapse
Affiliation(s)
- Vadim Nikitushkin
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow, Russia
- * E-mail: (VN); (FDF)
| | - Margarita Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Loginov
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
- BioCeV—Institute of Microbiology of the CAS, Vestec, Czech Republic
- Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
| | - Filip Dyčka F.
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
- * E-mail: (VN); (FDF)
| | - Jan Sterba
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| | - Arseny Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
21
|
Immunometabolism of Immune Cells in Mucosal Environment Drives Effector Responses against Mycobacterium tuberculosis. Int J Mol Sci 2022; 23:ijms23158531. [PMID: 35955665 PMCID: PMC9369211 DOI: 10.3390/ijms23158531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Tuberculosis remains a major threat to global public health, with more than 1.5 million deaths recorded in 2020. Improved interventions against tuberculosis are urgently needed, but there are still gaps in our knowledge of the host-pathogen interaction that need to be filled, especially at the site of infection. With a long history of infection in humans, Mycobacterium tuberculosis (Mtb) has evolved to be able to exploit the microenvironment of the infection site to survive and grow. The immune cells are not only reliant on immune signalling to mount an effective response to Mtb invasion but can also be orchestrated by their metabolic state. Cellular metabolism was often overlooked in the past but growing evidence of its importance in the functions of immune cells suggests that it can no longer be ignored. This review aims to gain a better understanding of mucosal immunometabolism of resident effector cells, such as alveolar macrophages and mucosal-associated invariant T cells (MAIT cells), in response to Mtb infection and how Mtb manipulates them for its survival and growth, which could address our knowledge gaps while opening up new questions, and potentially be applied for future vaccination and therapeutic strategies.
Collapse
|
22
|
Płocińska R, Wasik K, Płociński P, Lechowicz E, Antczak M, Błaszczyk E, Dziadek B, Słomka M, Rumijowska-Galewicz A, Dziadek J. The Orphan Response Regulator Rv3143 Modulates the Activity of the NADH Dehydrogenase Complex (Nuo) in Mycobacterium tuberculosis via Protein–Protein Interactions. Front Cell Infect Microbiol 2022; 12:909507. [PMID: 35837472 PMCID: PMC9274095 DOI: 10.3389/fcimb.2022.909507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Two-component signal transduction systems enable mycobacterial cells to quickly adapt and adequately respond to adverse environmental conditions encountered at various stages of host infection. We attempted to determine the role of the Rv3143 “orphan” response regulator in the physiology of Mycobacterium tuberculosis and its orthologue Msmeg_2064 in Mycobacterium smegmatis. We identified the Rv3143 protein as an interaction partner for NuoD, a member of the type I NADH dehydrogenase complex involved in oxidative phosphorylation. The mutants Δrv3143 and Δmsmeg_2064 were engineered in M. tuberculosis and M. smegmatis cells, respectively. The Δmsmeg_2064 strain exhibited a significant reduction in growth and viability in the presence of reactive nitrogen species. The Rv3143-deficient strain was sensitive to valinomycin, which is known to reduce the electrochemical potential of the cell and overexpressed genes required for nitrate respiration. An increased level of reduction of the 2,3,5-triphenyltetrazolium chloride (TTC) electron acceptor in Δrv3143 and Δmsmeg_2064 cells was also evident. The silencing of ndh expression using CRISPRi/dCas9 affected cell survival under limited oxygen conditions. Oxygen consumption during entry to hypoxia was most severely affected in the double-mutant Δmsmeg_2064 ndhCRISPRi/dCas9. We propose that the regulatory protein Rv3143 is a component of the Nuo complex and modulates its activity.
Collapse
Affiliation(s)
- Renata Płocińska
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Karolina Wasik
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Przemysław Płociński
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódz, Łódź, Poland
| | - Ewelina Lechowicz
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Magdalena Antczak
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Ewelina Błaszczyk
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Bożena Dziadek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Łódz, Łódź, Poland
| | - Marcin Słomka
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Anna Rumijowska-Galewicz
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Jarosław Dziadek
- Department of Genetics and Physiology of Mycobacteria, Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
- *Correspondence: Jarosław Dziadek,
| |
Collapse
|
23
|
Malhotra V, Okon BP, Satsangi AT, Das S, Waturuocha UW, Vashist A, Clark-Curtiss JE, Saini DK. Mycobacterium tuberculosis PknK Substrate Profiling Reveals Essential Transcription Terminator Protein Rho and Two-Component Response Regulators PrrA and MtrA as Novel Targets for Phosphorylation. Microbiol Spectr 2022; 10:e0135421. [PMID: 35404097 PMCID: PMC9045387 DOI: 10.1128/spectrum.01354-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
The Mycobacterium tuberculosis protein kinase K regulates growth adaptation by facilitating mycobacterial survival in response to a variety of in vitro and in vivo stress conditions. Here, we further add that pknK transcription is responsive to carbon and nitrogen starvation signals. The increased survival of an M. tuberculosis ΔpknK mutant strain under carbon- and nitrogen-limiting growth conditions compared to the wild-type (WT) H37Rv suggests an integral role of PknK in regulating growth during metabolic stress. To identify the downstream targets of PknK-mediated signaling, we compared phosphoproteomic and transcription profiles of mycobacterial strains overexpressing WT and phosphorylation-defective PknK. Results implicate PknK as a signaling protein that can regulate several enzymes involved in central metabolism, transcription regulation, and signal transduction. A key finding of this study was the identification of two essential two-component response regulator (RR) proteins, PrrA and MtrA, and Rho transcription terminator, as unique targets for PknK. We confirm that PknK interacts with and phosphorylates PrrA, MtrA, and Rho in vivo. PknK-mediated phosphorylation of MtrA appears to increase binding of the RR to the cognate probe DNA. However, dual phosphorylation of MtrA and PrrA response regulators by PknK and their respective cognate sensor kinases in vitro showed nominal additive effect on the mobility of the protein-DNA complex, suggesting the presence of a potential fine-tuning of the signal transduction pathway which might respond to multiple cues. IMPORTANCE Networks of gene regulation and signaling cascades are fundamental to the pathogenesis of Mycobacterium tuberculosis in adapting to the continuously changing intracellular environment in the host. M. tuberculosis protein kinase K is a transcription regulator that responds to diverse environmental signals and facilitates stress-induced growth adaptation in culture and during infection. This study identifies multiple signaling interactions of PknK and provides evidence that PknK can change the transcriptional landscape during growth transitions by connecting distinctly different signal transduction and regulatory pathways essential for mycobacterial survival.
Collapse
Affiliation(s)
- Vandana Malhotra
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Blessing P. Okon
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Akash T. Satsangi
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Sumana Das
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Uchenna Watson Waturuocha
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Josephine E. Clark-Curtiss
- Center for Infectious Diseases and Vaccinology, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
24
|
Mao L, Xu L, Wang X, Xing Y, Wang J, Zhang Y, Yuan W, Du J, Shi Z, Ma J, Zhang J, Zhang X, Wang X. Enhanced immunogenicity of the tuberculosis subunit Rv0572c vaccine delivered in DMT liposome adjuvant as a BCG-booster. Tuberculosis (Edinb) 2022; 134:102186. [PMID: 35245739 PMCID: PMC8881818 DOI: 10.1016/j.tube.2022.102186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
Abstract
COVID-19 has affected the progress made in the prevention and treatment of tuberculosis (TB); hence, the mortality of tuberculosis has risen. Different strategies-based novel TB vaccine candidates have been developed. This study identifies strategies to overcome the limitations of Bacille Calmette-Guérin (BCG) in preventing latent infection and reactivation of TB. The latency antigen Rv0572c was selected based on the mechanism of interaction between Mycobacterium tuberculosis and its host. The rRv0572c protein was used to stimulate whole blood samples derived from patients with clinically diagnosed active TB (ATBs) or latent TB infections (LTBIs) and healthy control (HCs) donors, confirming that this protein can be recognized by T cells in patients with TB, especially LTBIs. C57BL/6 mice were used to investigate the immunogenicity of the rRv0572c protein emulsified in the liposome adjuvant dimethyldioctadecylammonium [DDA], monophosphoryl lipid A [MPLA], trehalose-6, 6′-dibehenate [TDB] (DMT). The results demonstrated that rRv0572c/DMT could boost BCG-primed mice to induce antigen-specific CD4+ T cell production and generate functional T cells dominated by antigen-specific CD8+ T cells. The rRv0572c/DMT vaccine could also trigger limited Th2 humoral immune responses. These findings suggest that rRv0572c/DMT is a potential subunit vaccine candidate that can be used as a booster vaccine for BCG.
Collapse
Affiliation(s)
- Lirong Mao
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Lifa Xu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Xiaochun Wang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Yingru Xing
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, 230000, China
| | - Jian Wang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yanpeng Zhang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Wei Yuan
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jianpeng Du
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Zilun Shi
- Department of Clinical Laboratory, Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jilei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Jingyan Zhang
- Department of Clinical Laboratory, Affiliated Heping Hospital, Changzhi Medical College, Changzhi, 046000, China
| | - Xiaohan Zhang
- Department of Pathogen Biology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Xinping Wang
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| |
Collapse
|
25
|
Pshennikova ES, Voronina AS. Dormancy: There and Back Again. Mol Biol 2022; 56:735-755. [PMID: 36217335 PMCID: PMC9534470 DOI: 10.1134/s0026893322050119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 11/04/2022]
Abstract
Many cells are capable of maintaining viability in a non-dividing state with minimal metabolism under unfavorable conditions. These are germ cells, adult stem cells, and microorganisms. Unfortunately, a resting state, or dormancy, is possible for tuberculosis bacilli in a latent form of the disease and cancer cells, which may later form secondary tumors (metastases) in different parts of the body. These cells are resistant to therapy that can destroy intensely dividing cells and to the host immune system. A cascade of reactions that allows cells to enter and exit dormancy is triggered by regulatory factors from the microenvironment in niches that harbor the cells. A ratio of forbidding and permitting signals dictates whether the cells become dormant or start proliferation. The only difference between the cell dormancy regulation in normal and pathological conditions is that pathogens, mycobacteria, and cancer cells can influence their own fate by changing their microenvironment. Certain mechanisms of these processes are considered in the review.
Collapse
Affiliation(s)
- E. S. Pshennikova
- Bakh Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - A. S. Voronina
- Bakh Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
26
|
Gong W, Wu X. Differential Diagnosis of Latent Tuberculosis Infection and Active Tuberculosis: A Key to a Successful Tuberculosis Control Strategy. Front Microbiol 2021; 12:745592. [PMID: 34745048 PMCID: PMC8570039 DOI: 10.3389/fmicb.2021.745592] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
As an ancient infectious disease, tuberculosis (TB) is still the leading cause of death from a single infectious agent worldwide. Latent TB infection (LTBI) has been recognized as the largest source of new TB cases and is one of the biggest obstacles to achieving the aim of the End TB Strategy. The latest data indicate that a considerable percentage of the population with LTBI and the lack of differential diagnosis between LTBI and active TB (aTB) may be potential reasons for the high TB morbidity and mortality in countries with high TB burdens. The tuberculin skin test (TST) has been used to diagnose TB for > 100 years, but it fails to distinguish patients with LTBI from those with aTB and people who have received Bacillus Calmette–Guérin vaccination. To overcome the limitations of TST, several new skin tests and interferon-gamma release assays have been developed, such as the Diaskintest, C-Tb skin test, EC-Test, and T-cell spot of the TB assay, QuantiFERON-TB Gold In-Tube, QuantiFERON-TB Gold-Plus, LIAISON QuantiFERON-TB Gold Plus test, and LIOFeron TB/LTBI. However, these methods cannot distinguish LTBI from aTB. To investigate the reasons why all these methods cannot distinguish LTBI from aTB, we have explained the concept and definition of LTBI and expounded on the immunological mechanism of LTBI in this review. In addition, we have outlined the research status, future directions, and challenges of LTBI differential diagnosis, including novel biomarkers derived from Mycobacterium tuberculosis and hosts, new models and algorithms, omics technologies, and microbiota.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
27
|
Alvarez AH. Revisiting tuberculosis screening: An insight to complementary diagnosis and prospective molecular approaches for the recognition of the dormant TB infection in human and cattle hosts. Microbiol Res 2021; 252:126853. [PMID: 34536677 DOI: 10.1016/j.micres.2021.126853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB) is defined as a chronic infection in both human and cattle hosts and many subclinical cases remain undetected. After the pathogen is inhaled by a host, phagocyted bacilli can persist inside macrophages surviving intracellularly. Hosts develop granulomatous lesions in the lungs or lymph nodes, limiting infection. However, bacilli become persister cells. Immunological diagnosis of TB is performed basically by routine tuberculin skin test (TST), and in some cases, by ancillary interferon-gamma release assay (IGRA). The concept of human latent TB infection (LTBI) by M. tuberculosis is recognized in cohorts without symptoms by routine clinical diagnostic tests, and nowadays IGRA tests are used to confirm LTBI with either active or latent specific antigens of M. tuberculosis. On the other hand, dormant infection in cattle by M. bovis has not been described by TST or IGRA testing as complications occur by cross-reactive immune responses to homolog antigens of environmental mycobacteria or a false-negative test by anergic states of a wained bovine immunity, evidencing the need for deciphering more specific biomarkers by new-generation platforms of analysis for detection of M. bovis dormant infection. The study and description of bovine latent TB infection (boLTBI) would permit the recognition of hidden animal infection with an increase in the sensitivity of routine tests for an accurate estimation of infected dairy cattle. Evidence of immunological and experimental analysis of LTBI should be taken into account to improve the study and the description of the still neglected boLTBI.
Collapse
Affiliation(s)
- Angel H Alvarez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C. (CIATEJ), Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. Normalistas 800 C.P. 44270, Guadalajara, Jalisco, Mexico.
| |
Collapse
|