1
|
Marzouk SH, Kwaslema DR, Omar MM, Mohamed SH. "Harnessing the power of soil microbes: Their dual impact in integrated nutrient management and mediating climate stress for sustainable rice crop production" A systematic review. Heliyon 2025; 11:e41158. [PMID: 39758363 PMCID: PMC11699367 DOI: 10.1016/j.heliyon.2024.e41158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
Sustainable agricultural practices are essential to meet food demands for the increased population while minimizing the environmental impact. Considering rice as staple food for most of the world's population, it requires innovative approaches to ensure sustainable production. In this paper, we create a hypothesis that integrated nutrient management (INM) acts as a source of energy for microbes and improves the physical, chemical and biological properties of soils, but the current understanding of how soil microbiomes interact in integrated nutrient management toward mediating climate stress to support sustainable rice crop production is limited. Hence, we develop literature search through Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) to explore the hidden knowledge related to that question. The outcomes of the study are postulated as a viable option to minimize excessive chemical fertilizers and promote organic-based nutrient management that directly impacts microbial consortia. This review uncovered that plant-microbe interactions and nutrient transformation depend heavily on soil microbes while the abundance, diversity, and activity of soil microbiome is enhanced more with integrated nutrient management than with sole synthetic fertilizers. Through their ability to enhance nutrient availability and uptake, improve soil structure, heavy metal detoxification, salinity and drought tolerance, and suppress pathogens, they can alleviate abiotic stress associated with climate change. Therefore, optimization of microbial communities serves as a potential mechanism for INM to enhance rice yield and mitigate climate stress. This would improve soil health and enhance the resilience of the rice plant to climate change. However, despite various benefits obtained through INM and microbes in paddy production systems, the literature indicated that adoption of this technology is limited to smallholder farmers due to lack of knowledge, unavailability of sufficient organic materials and poor understanding of the long-term impacts associated with over-application of chemical fertilizers. Therefore, scientists must translate several research discoveries related to sustainable agriculture into simple language that can be adopted by farmers and future research should be a farmers-participatory approach to generate awareness investments and knowledge of farmers in adopting sustainability measures. Additionally, research could focus on identifying mechanisms by which microbiomes improve nutrient uptake and rice growth and how these mechanisms can be optimized through integrated nutrient management strategies with regard to climate stresses.
Collapse
Affiliation(s)
- Said H. Marzouk
- Ministry of Education and vocational training, Zanzibar, Tanzania
| | - Damiano R. Kwaslema
- Department of Soil and Geological Science, Sokoine University of Agriculture, Tanzania
| | - Mohd M. Omar
- Tanzania Agricultural Research Institute (TARI), Mlingano Center, Tanzania
| | - Said H. Mohamed
- Department of Molecular Biology and Biotechnology, University of Dar-es-salaam, Tanzania
| |
Collapse
|
2
|
Mas Martinez I, Pushkareva E, Keilholz LA, Linne von Berg KH, Karsten U, Kammann S, Becker B. Role of Climate and Edaphic Factors on the Community Composition of Biocrusts Along an Elevation Gradient in the High Arctic. Microorganisms 2024; 12:2606. [PMID: 39770808 PMCID: PMC11676250 DOI: 10.3390/microorganisms12122606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Biological soil crusts are integral to Arctic ecosystems, playing a crucial role in primary production, nitrogen fixation and nutrient cycling, as well as maintaining soil stability. However, the composition and complex relationships between the diverse organisms within these biocrusts are not well studied. This study investigates how the microbial community composition within Arctic biocrusts is influenced by environmental factors along an altitudinal gradient (101 m to 314 m). Metagenomic analyses were used to provide insights into the community composition, revealing that temperature, pH, and nutrient availability significantly shaped the community. In contrast, altitude did not directly influence the microbial composition significantly. Eukaryotic communities were dominated by Chloroplastida and fungi, while Proteobacteria and Actinobacteria prevailed among prokaryotes. Cyanobacteria, particularly orders such as Pseudoanabaenales, Pleurocapsales, and Nostocales, emerged as the most abundant photoautotrophic organisms. Our findings highlight the impact of environmental gradients on microbial diversity and the functional dynamics of biocrusts, emphasizing their critical role in Arctic tundra ecosystems. Arctic biocrusts are intricate micro-ecosystems, whose structure is strongly shaped by local physicochemical parameters, likely affecting essential ecological functions.
Collapse
Affiliation(s)
- Isabel Mas Martinez
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; (I.M.M.); (E.P.); (L.A.K.); (K.-H.L.v.B.)
| | - Ekaterina Pushkareva
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; (I.M.M.); (E.P.); (L.A.K.); (K.-H.L.v.B.)
| | - Leonie Agnes Keilholz
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; (I.M.M.); (E.P.); (L.A.K.); (K.-H.L.v.B.)
| | - Karl-Heinz Linne von Berg
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany; (I.M.M.); (E.P.); (L.A.K.); (K.-H.L.v.B.)
| | - Ulf Karsten
- Institute for Biological Sciences, University of Rostock, 18059 Rostock, Germany; (U.K.)
| | - Sandra Kammann
- Institute for Biological Sciences, University of Rostock, 18059 Rostock, Germany; (U.K.)
| | - Burkhard Becker
- Institute for Biological Sciences, University of Rostock, 18059 Rostock, Germany; (U.K.)
| |
Collapse
|
3
|
Ren M, Xu J, Geng M, Zhang L, Kimirei IA, Xu Y, Wang J. Soil bacteria and fungi on tropical mountainsides: Joint effects of weathering, climate, and chemical factors. ENVIRONMENTAL RESEARCH 2024; 263:120027. [PMID: 39307226 DOI: 10.1016/j.envres.2024.120027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Contemporary environmental factors such as temperature and pH are generally identified as primary influences on microbial diversity, while the role of geological processes remain understudied. Here, we investigated the diversity and community composition of bacteria and fungi along an elevational gradient from703 to 4514 m on Mt. Kilimanjaro, East Africa. We further examined the effects of contemporary environment and geological processes such as weathering on microbial communities and diversities. For community composition, bacteria and fungi showed clear differentiation along elevations and their community dissimilarities increased with elevational distance indicating elevational distance-decay relationships. Multiple variables such as weathering, climate and chemical factors were significantly associated with microbial communities and showed greater effects on bacterial than fungal communities. Specifically, soil pH mainly shaped bacterial communities, while mean annual temperature for fungi, followed by other variables such as weathering processes. For Shannon diversity, bacteria and fungi showed significant hump-shaped elevational patterns with the peak values at 1857 and 1436 m, respectively. Shannon diversity was mainly affected by soil weathering accounting for 8.9% of the total variance for bacteria, while jointly by weathering and climate accounted for 14.3% of fungi. For the community uniqueness, represented by local contribution to beta diversity (LCBD), there were U-shaped patterns for both taxonomic groups. LCBD was mainly explained by the joint effects of chemical and climate variables which accounted for 51.1% and 33.4% for bacteria and fungi, respectively. Our results highlight the effects of soil weathering processes on diversity and community composition for bacteria and fungi. Thus, the integration of weathering with contemporary environments could provide new insights into microbial elevational diversity patterns.
Collapse
Affiliation(s)
- Minglei Ren
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianing Xu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Mengdie Geng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lu Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ismael Aaron Kimirei
- Tanzania Fisheries Research Institute, Headquarter, Dar Es Salaam, P.O. Box 9750, Tanzania
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Jianjun Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
4
|
Zuo Q, Dang K, Yin J, Yuan D, Lu J, Xiang X. Characteristics of Pinus hwangshanensis Rhizospheric Fungal Community along Huangshan Mountain's Elevation Gradients, China. J Fungi (Basel) 2024; 10:673. [PMID: 39452625 PMCID: PMC11508824 DOI: 10.3390/jof10100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Elevation gradients strongly influence the diversity pattern of soil microorganisms. To date, many studies have elucidated the response of soil microbes to changes in elevation gradients. However, the effects of these gradients on the assembly mechanisms and network complexity of rhizospheric microbial communities remain underexplored. To bridge this knowledge gap, this study assessed the response of rhizospheric fungal communities of Pinus hwangshanensis along different elevation gradients in the Huangshan Mountain scenic area with regard to diversity, community composition, and assembly mechanisms using high-throughput amplicon sequencing. The results revealed significant differences in rhizospheric fungal community composition across three elevation gradients. The soil organic matter and pH were the most relevant factors influencing the changes in rhizospheric fungal community composition. The rhizospheric fungal diversity was significantly lower at both low and high elevations compared to the medium elevation. The rhizospheric fungal community assembly showed a more deterministic process at low and high elevations than at the medium elevation, indicating that stronger environmental filtering contributed to reduced fungal diversity at the extremes of the elevation gradient. In addition, rhizospheric pathogens, particularly Dermateaceae, acted as keystone taxa, diminishing the stability of co-occurrence networks at the medium elevation. This study contributes to a more comprehensive understanding of rhizospheric fungal community patterns and their ecological functions along elevation gradients in mountainous regions.
Collapse
Affiliation(s)
- Qinglin Zuo
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (Q.Z.); (J.Y.); (J.L.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei 230601, China
| | - Keke Dang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (Q.Z.); (J.Y.); (J.L.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei 230601, China
| | - Jing Yin
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (Q.Z.); (J.Y.); (J.L.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei 230601, China
| | - Dandan Yuan
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (Q.Z.); (J.Y.); (J.L.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei 230601, China
| | - Jing Lu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (Q.Z.); (J.Y.); (J.L.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei 230601, China
| | - Xingjia Xiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (Q.Z.); (J.Y.); (J.L.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei 230601, China
- International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology, Hefei 230601, China
| |
Collapse
|
5
|
Wang Y, Kong J, Gu S, Huang B, Sun P. Dynamics of benthic microeukaryotic communities in a mangrove wetland invaded by Spartina alterniflora: Effects of vegetation, seasonality, and sediment depth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170231. [PMID: 38246384 DOI: 10.1016/j.scitotenv.2024.170231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Benthic microeukaryotes are crucial mediators of biogeochemical cycles in coastal wetland ecosystems, yet their spatial and temporal variability remains poorly understood. This study delineates the diversity patterns of benthic microeukaryotes in a Spartina alterniflora-invaded mangrove ecosystem in Fujian, China. Using high-throughput sequencing of 18S rRNA gene transcripts, we identified the influences of vegetation, seasonality, and sediment depth on microeukaryotic communities. We discovered that vegetation cover significantly affects community composition, primarily driven by nutrient concentrations and pH. The community structure of microeukaryotes varied seasonally and vertically, correlating with changes in sediment temperature, pH, salinity, and fucoxanthin concentration. Notably, invasive Spartina alterniflora habitats showed enhanced heterotrophic interactions, suggesting that invasive species can reshape benthic microeukaryotic co-occurrence patterns. Seasonal co-occurrence patterns revealed dominant Bacillariophyta assemblages exhibited distinct network modules enriched in the cold (spring) and warm (summer and fall) seasons, respectively, which indicated potential ecological niche differentiation. Our findings reveal the complex relationships between environmental factors and benthic microeukaryotic diversity, offering insights into microbial responses to natural and invasive vegetation influences.
Collapse
Affiliation(s)
- Ying Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jie Kong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Songsong Gu
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China
| | - Bangqin Huang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Ping Sun
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
He L, Sun X, Li S, Zhou W, Yu J, Zhao G, Chen Z, Bai X, Zhang J. Depth effects on bacterial community altitudinal patterns and assembly processes in the warm-temperate montane forests of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169905. [PMID: 38190904 DOI: 10.1016/j.scitotenv.2024.169905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/25/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Soil bacterial communities are essential for ecosystem function, yet their response along altitudinal gradients in different soil strata remains unclear. Understanding bacterial community co-occurrence networks and assembly patterns in mountain ecosystems is crucial for comprehending microbial ecosystem functions. We utilized Illumina MiSeq sequencing to study bacterial diversity and assembly patterns of surface and subsurface soils across a range of elevations (700 to 2100 m) on Dongling Mountain. Our results showed significant altitudinal distribution patterns concerning bacterial diversity and structure in the surface soil. The bacterial diversity exhibited a consistent decrease, while specific taxa demonstrated unique patterns along the altitudinal gradient. However, no altitudinal dependence was observed for bacterial diversity and community structure in the subsurface soil. Additionally, a shift in bacterial ecological groups is evident with changing soil depth. Copiotrophic taxa thrive in surface soils characterized by higher carbon and nutrient content, while oligotrophic taxa dominate in subsurface soils with more limited resources. Bacterial community characteristics exhibited strong correlations with soil organic carbon in both soil layers, followed by pH in the surface soil and soil moisture in the subsurface soil. With increasing depth, there is an observable increase in taxa-taxa interaction complexity and network structure within bacterial communities. The surface soil exhibits greater sensitivity to environmental perturbations, leading to increased modularity and an abundance of positive relationships in its community networks compared to the subsurface soil. Furthermore, the bacterial community at different depths was influenced by combining deterministic and stochastic processes, with stochasticity (homogenizing dispersal and undominated) decreasing and determinism (heterogeneous selection) increasing with soil depth.
Collapse
Affiliation(s)
- Libing He
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiangyang Sun
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Suyan Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Wenzhi Zhou
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Jiantao Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Guanyu Zhao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Zhe Chen
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xueting Bai
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Jinshuo Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Wang Y, Chen Y, Gao X, Wang Q, Cui M, Zhang D, Guo P. Unveiling the driving role of pH on community stability and function during lignocellulose degradation in paddy soil. Front Microbiol 2024; 15:1338842. [PMID: 38468860 PMCID: PMC10925614 DOI: 10.3389/fmicb.2024.1338842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Crop straw, a major by-product of agricultural production, is pivotal in maintaining soil health and preserving the ecological environment. While straw incorporation is widely recognized as a sustainable practice, the incomplete decomposition of crop residues poses challenges to plant growth, increasing the risk of pests and diseases. This necessitates a comprehensive investigation. Methods The current study employs a 28-day pot experiment to simulate the degradation of rice straw in paddy soils. The impacts of bioaugmentation and biostimulation on lignocellulose degradation are systematically evaluated. Results Results indicate a high lignocellulose degradation ability in paddy soil, with over 80% straw weight loss within 28 days. Bioaugmentation with a lignocellulolytic microbial consortium enhances straw degradation during the initial stage (0-14 days). In contrast, biostimulation with readily available nutrients leads to soil acidification, hindering straw degradation and reducing microbial diversity. Furthermore, pH emerges as a critical factor influencing microbial community stability and function during lignocellulose degradation. Microbial co-occurrence network analysis reveals that microorganisms occupy ecological niches associated with different cellulose components. Notably, Module M2, comprising Proteobacteria, Firmicutes, Gemmatimonadota, Actinobacteriota, Bacteroidota, Myxococcota, Halobacterota, and Acidobacteriota, positively correlates with pH and weight loss. Discussion This study significantly advances our understanding of microbial mechanisms in soil decomposition, emphasizing the pivotal role of pH in community stability and function in paddy soil. These findings can inform future strategies for managing rice straw while safeguarding soil ecosystem health.
Collapse
Affiliation(s)
- Yi Wang
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yonglun Chen
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
- Sichuan Jiahuai Biotechnology Co., Ltd., Leshan, China
| | - Xiuqing Gao
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Biological and Pharmaceutical Sciences, Three Gorges University, Yichang, China
| | - Qiong Wang
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Mingyu Cui
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Biological and Pharmaceutical Sciences, Three Gorges University, Yichang, China
| | - Dongdong Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan, Zhejiang, China
| | - Peng Guo
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
8
|
Wu P, Hu D, Guo J, Li J, Zhong Q, Cheng D. Unraveling the spatial-temporal distribution patterns of soil abundant and rare bacterial communities in China's subtropical mountain forest. Front Microbiol 2024; 15:1323887. [PMID: 38410396 PMCID: PMC10895375 DOI: 10.3389/fmicb.2024.1323887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction The pivotal roles of both abundant and rare bacteria in ecosystem function are widely acknowledged. Despite this, the diversity elevational patterns of these two bacterial taxa in different seasons and influencing factors remains underexplored, especially in the case of rare bacteria. Methods Here, a metabarcoding approach was employed to investigate elevational patterns of these two bacterial communities in different seasons and tested the roles of soil physico-chemical properties in structuring these abundant and rare bacterial community. Results and discussion Our findings revealed that variation in elevation and season exerted notably effects on the rare bacterial diversity. Despite the reactions of abundant and rare communities to the elevational gradient exhibited similarities during both summer and winter, distinct elevational patterns were observed in their respective diversity. Specifically, abundant bacterial diversity exhibited a roughly U-shaped pattern along the elevation gradient, while rare bacterial diversity increased with the elevational gradient. Soil moisture and N:P were the dominant factor leading to the pronounced divergence in elevational distributions in summer. Soil temperature and pH were the key factors in winter. The network analysis revealed the bacteria are better able to adapt to environmental fluctuations during the summer season. Additionally, compared to abundant bacteria, the taxonomy of rare bacteria displayed a higher degree of complexity. Our discovery contributes to advancing our comprehension of intricate dynamic diversity patterns in abundant and rare bacteria in the context of environmental gradients and seasonal fluctuations.
Collapse
Affiliation(s)
- Panpan Wu
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| | - Dandan Hu
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| | - Jiaheng Guo
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| | - Jinlong Li
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| | - Quanlin Zhong
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| | - Dongliang Cheng
- Institute of Geography, Fujian Normal University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fuzhou, China
| |
Collapse
|
9
|
Dai W, Liu Y, Yao D, Wang N, Shao J, Ye X, Cui Z, Zong H, Tian L, Chen X, Wang H. Biogeographic distribution, assembly processes and potential nutrient cycling functions of myxobacteria communities in typical agricultural soils in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167255. [PMID: 37741390 DOI: 10.1016/j.scitotenv.2023.167255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/26/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Predatory myxobacteria are important soil micropredators with the potential to regulate soil microbial community structure and ecosystem function. However, the biogeographic distribution patterns, assembly processes, and potential nutrient cycling functions of myxobacteria communities in typical agricultural soils in China are still poorly understood. High-throughput sequencing, phylogenetic zero modeling, and the multi-nutrient cycling index were used to assess the biogeographic distribution, assembly processes, and soil ecosystem functions of predation myxobacteria communities in typical agricultural soils of six long-term fertilization ecological experimental stations. The results demonstrated a hump-shaped distribution of myxobacteria α-diversity along the latitudinal gradient and significant differences in myxobacteria β-diversity in typical agricultural soils (P < 0.05). Bacterial richness, soil organic carbon, and pH were the most important predictors of myxobacteria α-diversity, whereas geographic factors and soil pH were the most significant ecological predictors of myxobacteria β-diversity. Myxobacteria community assembly is dominated by deterministic processes, especially homogeneous selection, primarily driven by soil pH and bacterial richness. In addition, we revealed the ecological significance of myxobacteria communities in typical agricultural soil microbial networks and the potential link between myxobacteria communities and soil nutrient cycling. These findings enhance our understanding of the biogeographic distribution, community assembly, ecological predictors, and relationships with soil nutrient cycling of myxobacteria communities in typical agricultural soils, paving the way for a more predictive understanding of the effect of predatory myxobacteria communities on soil ecosystem function, which is essential for the development of sustainable agriculture.
Collapse
Affiliation(s)
- Wei Dai
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yang Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Dandan Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Ning Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Jinpeng Shao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Zong
- Shandong Linyi Tobacco Co., Ltd., Linyi 276000, Shandong, China
| | - Lei Tian
- Shandong Linyi Tobacco Co., Ltd., Linyi 276000, Shandong, China
| | - XiuZhai Chen
- Shandong Linyi Tobacco Co., Ltd., Linyi 276000, Shandong, China.
| | - Hui Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; University of Chinese Academy of Sciences, Nanjing 211135, China.
| |
Collapse
|
10
|
Cao Y, Lu N, Yang D, Mo M, Zhang KQ, Li C, Shang S. Root-knot nematode infections and soil characteristics significantly affected microbial community composition and assembly of tobacco soil microbiota: a large-scale comparison in tobacco-growing areas. Front Microbiol 2023; 14:1282609. [PMID: 38107871 PMCID: PMC10722292 DOI: 10.3389/fmicb.2023.1282609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/23/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Tobacco root-knot nematode (RKN) is a highly destructive soil-borne disease worldwide. However, there is a lack of research on the relationship between RKN and tobacco root microbial community composition under large-scale geographical conditions in China. Methods In this study, we collected 65 samples from 28 main tobacco-growing areas across 10 provinces in China and conducted 16S rDNA sequencing to investigate the dynamic microbial changes in tobacco soil infected by RKN compared to healthy tobacco soil. Based on the analysis of rhizosphere soil bacterial communities, changes after RKN infection, and soil environmental factors. Results We found the 28 tobacco-growing areas could be divided into two distinct groups with different microbial compositions and varying responses to RKN infection. In group1 of the provinces of Anhui, Henan, Shanxi, and Heilongjiang, Vicinamibacteria dominated the bacterial community, while Acidobacteriae was present in low abundance. In contrast, group2 of the other six provinces (Yunnan, Guizhou, Chongqing, Guangxi, Hubei, and Shandong) exhibited an opposite pattern. After infected by RKN, the genera Chitinophaga increased significant in group 1, while the genera Rhodococcus in group 2 exhibited a substantial increase. Alpha-diversity analysis revealed that RKN-infected tobacco exhibited a richer and more diverse rhizosphere soil bacterial community compared to healthy tobacco in most growing areas. A total of 12 kinds of soil environmental factors were measured in healthy and RKN-infected tobacco soil, and based on the co-occurrence and correlation analysis between environmental factors and microbial species, the pH level, calcium (Ca), magnesium (Mg), phosphorus (P), iron (Fe), and sodium (Na) were identified as key environmental factors influencing the population composition of rhizosphere microorganisms during RKN infection. We observed that RKN infection further increased the pH in weakly alkaline group 1 soil, while weakly acidic group 2 soil experienced a further decrease in pH. Furthermore, we identified three genera as potential biocontrol or plant growth-promoting bacteria for tobacco. Discussion These findings provide valuable reference data for managing RKN disease in different tobacco-growing areas and contribute to the exploration of new and effective biological control methods.
Collapse
Affiliation(s)
- Yi Cao
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Ning Lu
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Dongmei Yang
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| | - Minghe Mo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, China
| | - Caibin Li
- Bijie Tobacco Company of Guizhou Province, Bijie, Guizhou, China
| | - Shenghua Shang
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou, China
| |
Collapse
|
11
|
Gxasheka M, Gajana CS, Dlamini P. The role of topographic and soil factors on woody plant encroachment in mountainous rangelands: A mini literature review. Heliyon 2023; 9:e20615. [PMID: 37876417 PMCID: PMC10590860 DOI: 10.1016/j.heliyon.2023.e20615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/26/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
Mountainous rangelands provide key ecosystem goods and services, particularly for human benefit. In spite of these benefits, mountain grasslands are undergoing extensive land-cover change as a result of woody plant encroachment. However, the influence of topographic and soil factors on woody plant encroachment is complex and has not yet been studied comprehensively. The aim of this review was to establish current knowledge on the influence of topographic and soil factors on woody plant encroachment in mountainous rangelands. To find relevant literature for our study on the impact of topographic and soil factors on woody plant encroachment in mountain rangelands, we conducted a thorough search on ScienceDirect and Google Scholar using various search terms. Initially, we found 27,745 papers. We narrowed down the search to include only 66 papers published in English that directly addressed the research area. The effect of slope aspect and slope position on woody plant encroachment is complex and dynamic, with no universal consensus on their impact. Some studies found higher woody plant encroachment on the cooler slopes, while others found increased woody plant encroachment on the warmer slopes. Slope gradient has a significant impact on woody plant encroachment, with steeper slopes tending to have more woody plant encroachment than gentle slopes. Soil texture and depth are important soil factors affecting woody plant encroachment. Coarse-textured soils promote the growth of woody plants, while fine-textured soils limit it. The effect of soil depth on woody plant encroachment remain unclear and requires further research. Soil moisture availability, soil nutrient content and soil microbial community are influenced by topography, which in turn affect the woody plant growth and distribution. In conclusion, the spread of woody plants in mountainous rangelands is a complex and dynamic process influenced by a range of factors. Further research is needed to fully understand the mechanisms behind these interactions and to develop effective strategies for managing woody plant encroachment in mountainous rangelands.
Collapse
Affiliation(s)
- Masibonge Gxasheka
- School of Agricultural & Environmental Sciences, Department of Plant Production, Soil Science & Agricultural Engineering, University of Limpopo, Private Bag X1106, Sovenga, 0727, Limpopo, South Africa
- Department of Livestock and Pasture, Faculty of Science and Agriculture, University of Fort Hare, Alice, South Africa
| | - Christian Sabelo Gajana
- Department of Livestock and Pasture, Faculty of Science and Agriculture, University of Fort Hare, Alice, South Africa
| | - Phesheya Dlamini
- School of Agricultural & Environmental Sciences, Department of Plant Production, Soil Science & Agricultural Engineering, University of Limpopo, Private Bag X1106, Sovenga, 0727, Limpopo, South Africa
| |
Collapse
|
12
|
Gu Y, Li Z, Lei P, Wang R, Xu H, Friman VP. Phylogenetic distance-decay patterns are not explained by local community assembly processes in freshwater lake microbial communities. Environ Microbiol 2023; 25:1940-1954. [PMID: 37254577 DOI: 10.1111/1462-2920.16437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/23/2023] [Indexed: 06/01/2023]
Abstract
While water and sediment microbial communities exhibit pronounced spatio-temporal patterns in freshwater lakes, the underlying drivers are yet poorly understood. Here, we evaluated the importance of spatial and temporal variation in abiotic environmental factors for bacterial and microeukaryotic community assembly and distance-decay relationships in water and sediment niches in Hongze Lake. By sampling across the whole lake during both Autumn and Spring sampling time points, we show that only bacterial sediment communities were governed by deterministic community assembly processes due to abiotic environmental drivers. Nevertheless, consistent distance-decay relationships were found with both bacterial and microeukaryotic communities, which were relatively stable with both sampling time points. Our results suggest that spatio-temporal variation in environmental factors was important in explaining mainly bacterial community assembly in the sediment, possibly due lesser disturbance. However, clear distance-decay patterns emerged also when the community assembly was stochastic. Together, these results suggest that abiotic environmental factors do not clearly drive the spatial structuring of lake microbial communities, highlighting the need to understand the role of other potential drivers, such as spatial heterogeneity and biotic species interactions.
Collapse
Affiliation(s)
- Yian Gu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, China
| | - Zhidan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Ville-Petri Friman
- Department of Microbiology, University of Helsinki, Helsinki, Finland
- Department of Biology, University of York, York, UK
| |
Collapse
|
13
|
Xie P, Huang K, Deng A, Mo P, Xiao F, Wu F, Xiao D, Wang Y. The diversity and abundance of bacterial and fungal communities in the rhizosphere of Cathaya argyrophylla are affected by soil physicochemical properties. Front Microbiol 2023; 14:1111087. [PMID: 37378294 PMCID: PMC10292655 DOI: 10.3389/fmicb.2023.1111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Cathaya argyrophylla is an ancient Pinaceae species endemic to China that is listed on the IUCN Red List. Although C. argyrophylla is an ectomycorrhizal plant, the relationship between its rhizospheric soil microbial community and soil properties related to the natural habitat remains unknown. High-throughput sequencing of bacterial 16S rRNA genes and fungal ITS region sequences was used to survey the C. argyrophylla soil community at four natural spatially distributed points in Hunan Province, China, and functional profiles were predicted using PICRUSt2 and FUNGuild. The dominant bacterial phyla included Proteobacteria, Acidobacteria, Actinobacteria, and Chloroflexi, and the dominant genus was Acidothermus. The dominant fungal phyla were Basidiomycota and Ascomycota, while Russula was the dominant genus. Soil properties were the main factors leading to changes in rhizosphere soil bacterial and fungal communities, with nitrogen being the main driver of changes in soil microbial communities. The metabolic capacities of the microbial communities were predicted to identify differences in their functional profiles, including amino acid transport and metabolism, energy production and conversion, and the presence of fungi, including saprotrophs and symbiotrophs. These findings illuminate the soil microbial ecology of C. argyrophylla, and provide a scientific basis for screening rhizosphere microorganisms that are suitable for vegetation restoration and reconstruction for this important threatened species.
Collapse
Affiliation(s)
- Peng Xie
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- College of Agriculture, Forestry and Technology, Hunan Applied Technology University, Changde, Hunan, China
| | - Kerui Huang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Aihua Deng
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Ping Mo
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Fen Xiao
- Central South University of Forestry and Technology Changsha, Hunan, China
| | - Fei Wu
- Qingjie Mountain State Forest Farm, Chengbu, Hunan, China
| | - Dewei Xiao
- Chukou State-Owned Forest Farm, Zixing, Hunan, China
| | - Yun Wang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| |
Collapse
|
14
|
Chen J, Ma X, Lu X, Xu H, Chen D, Li Y, Zhou Z, Li Y, Ma S, Yakov K. Long-term phosphorus addition alleviates CO 2 and N 2O emissions via altering soil microbial functions in secondary rather primary tropical forests. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121295. [PMID: 36822311 DOI: 10.1016/j.envpol.2023.121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Tropical forests, where the soils are nitrogen (N) rich but phosphorus (P) poor, have a disproportionate influence on global carbon (C) and N cycling. While N deposition substantially alters soil C and N retention in tropical forests, whether P input can alleviate these N-induced effects by regulating soil microbial functions remains unclear. We investigated soil microbial taxonomy and functional traits in response to 10-year independent and interactive effects of N and P additions in a primary and a secondary tropical forest in Hainan Island. In the primary forest, N addition boosted oligotrophic bacteria and phosphatase and enriched genes responsible for C-, P-mineralization, nitrification and denitrification, suggesting aggravated P limitation while N excess. This might stimulate P excavation via organic matter mineralization, and enhance N losses, thereby increasing soil CO2 and N2O emissions by 86% and 110%, respectively. Phosphorus and NP additions elevated C-mining enzymes activity mainly due to intensified C limitation, causing 82% increase in CO2 emission. In secondary forest, P and NP additions reduced phosphatase activity, enriched fungal copiotrophs and increased microbial biomass, suggesting removal of nutrient deficiencies and stimulation of fungal growth. Meanwhile, soil CO2 emission decreased by 25% and N2O emission declined by 52-82% due to alleviated P acquisition from organic matter decomposition and increased microbial C and N immobilization. Overall, N addition accelerates most microbial processes for C and N release in tropical forests. Long-term P addition increases C and N retention via reducing soil CO2 and N2O emissions in the secondary but not primary forest because of strong C limitation to microbial N immobilization. Further, the seasonal and annual variations in CO2 and N2O emissions should be considered in future studies to test the generalization of these findings and predict and model dynamics in greenhouse gas emissions and C and N cycling.
Collapse
Affiliation(s)
- Jie Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Xiaomin Ma
- The State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, 311300, Hangzhou, China
| | - Xiankai Lu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Han Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| | - Dexiang Chen
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Yanpeng Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Zhang Zhou
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Yide Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Suhui Ma
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Kuzyakov Yakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, 37077, Göttingen, Germany; Peoples Friendship University of Russia (RUDN University), 117198, Moscow, Russia
| |
Collapse
|
15
|
He L, Sun X, Li S, Zhou W, Chen Z, Bai X. The vertical distribution and control factor of microbial biomass and bacterial community at macroecological scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161754. [PMID: 36709888 DOI: 10.1016/j.scitotenv.2023.161754] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Microorganisms exist throughout the soil profile and those microorganisms living in deeper soil horizons likely play key roles in regulating biogeochemical processes. However, the vertical differentiations of microbes along soil depth and their global biogeographical patterns remain poorly understood. Herein, we conducted a global meta-analysis to clarify the vertical changes of microbial biomass, diversity, and microbial relative abundance across the soil profiles. Data was collected from 43 peer-reviewed articles of 110 soil profiles (467 observations in total) from around the world. We found soil microbial biomass and bacterial diversity decreased with depth in soils. Among examined edaphic factors, the depth variation in soil pH exhibited significant negative associations with the depth change in microbial biomass and bacterial Shannon index, while soil total organic carbon (TOC) and total nitrogen (TN) exhibited significant positive associations. For the major bacteria phyla, the relative abundances of Proteobacteria and Bacteroidetes decreased with soil depth, while Chloroflexi, Gemmatimonadetes, and Nitrospirae increased. We found both parallels and differences in the biogeographical patterns of microbial attribute of topsoil vs. subsoil. Microbial biomass was significantly controlled by the soil nutrient concentrations in both topsoil and subsoil compared with climatic factors, while bacterial Shannon index was significantly controlled by the edaphic factors and across latitudes or climatic factors. Moreover, mean annual precipitation can also be used as a predictor of microbial biomass in subsoil which is different from topsoil. Collectively, our results provide a novel integrative view of how microbial biomass and bacterial community response to soil depth change and clarify the controlling factors of the global distribution patterns of microbial biomass and diversity, which are critical to enhance ecosystem simulation models and for formulating sustainable ecosystem management and conservation policies.
Collapse
Affiliation(s)
- Libing He
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiangyang Sun
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Suyan Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Wenzhi Zhou
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Zhe Chen
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xueting Bai
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
16
|
Bello A, Liu W, Chang N, Erinle KO, Deng L, Egbeagu UU, Babalola BJ, Yue H, Sun Y, Wei Z, Xu X. Deciphering biochar compost co-application impact on microbial communities mediating carbon and nitrogen transformation across different stages of corn development. ENVIRONMENTAL RESEARCH 2023; 219:115123. [PMID: 36549490 DOI: 10.1016/j.envres.2022.115123] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/27/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Under current climatic conditions, developing eco-friendly and climate-smart fertilizers has become increasingly important.The co-application of biochar and compost on agricultural soils has received considerable attention recently.Unfortunately, little is known about its effects on specific microbial taxa involved in carbon and nitrogen transformation in the soil.Herein, we report the efficacy of applying biochar-based amendments on soil physicochemical indices, enzymatic activity, functional genes, bacterial community, and their network patterns in corn rhizosphere at seedling (SS), flowering (FS), and maturity (MS) stages.The applied treatments were: compost alone (COM), biochar alone (BIOC), composted biochar (CMB), fortified compost (CMWB), and the control (no fertilizer (CNTRL).The non-metric multidimensional scaling (NMDS) indicated total nitrogen (TN), pH, NO3--N, urease, protease, and microbial biomass C (MBC) as the dominant environmental factors driving soil bacteria in this study.The dominant N mediating genes belonged to nitrate reductase (narG) and nitronate monooxygenase (amo), while beta-galactosidase, catalase, and alpha-amylase were the dominant genes observed relating to C cycling.Interestingly, the abundance of these genes was higher in COM, CMWB, and CMB compared with the CNTRL and BIOC treatments.The bacteria network properties of CWMB and CMB indicated robust niche overlap associated with high cross-feeding between bacterial communities compared to other treatments.Path and stepwise regression analyses revealed norank_Reyranellaceae and Sphingopyxis in CMWB as the major bacterial genera and the major predictive indices mediating soil organic C (SOC), NH4+-N, NO3--N, and TN transformation.Overall, biochar with compost amendments improved soil nutrient conditions, regulated the composition of the bacterial community, and benefited C/N cycling in the soil ecosystem.
Collapse
Affiliation(s)
- Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Wanying Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Nuo Chang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Kehinde Olajide Erinle
- School of Agriculture, Food and Wine, Faculty of Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Busayo Joshua Babalola
- Department of Plant Biology and Plant Pathology, University of Georgia, Athens, Georgia, 30602, USA
| | - Han Yue
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
17
|
Araujo ASF, Miranda ARL, Pereira APDA, de Melo WJ, Melo VMM, Ventura SH, Brito Junior ES, de Medeiros EV, Araujo FF, Mendes LW. Microbial communities in the rhizosphere of maize and cowpea respond differently to chromium contamination. CHEMOSPHERE 2023; 313:137417. [PMID: 36460149 DOI: 10.1016/j.chemosphere.2022.137417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Chromium (Cr) contamination can affect microorganisms in the soil, but the response of the microbial community in the rhizosphere of plants grown in Cr-contaminated soils is poorly understood. Therefore, this study assessed the microbial community, by amplicon sequencing, in the rhizosphere of maize and cowpea growing in uncontaminated (∼6.0 mg kg-1 Cr) and Cr-contaminated soils (∼250 mg kg-1 Cr). Comparing Cr-contaminated and uncontaminated soils, the microbial community in the maize rhizosphere clustered separately, while the microbial community in the cowpea rhizosphere did not present clear clustering. The microbial richness ranged from ∼5000 (rhizosphere in Cr-contaminated soil) to ∼8000 OTUs (in uncontaminated soil). In the comparison of specific bacterial groups in the rhizosphere of maize, Firmicutes were enriched in Cr-contaminated soil, including Bacilli, Bacillales, and Paenibacillus. Cowpea rhizosphere showed a higher abundance of six microbial groups in Cr-contaminated soil, highlighting Rhizobiales, Pedomicrobium, and Gemmatimonadetes. The microbial community in both rhizospheres presented a similar proportion of specialists comparing uncontaminated (2.2 and 3.4% in the rhizosphere of maize and cowpea, respectively) and Cr-contaminated soils (1.8 and 3.2% in the rhizosphere of maize and cowpea, respectively). This study showed that each plant species drove differently the microbial community in the rhizosphere, with an important effect of Cr-contamination on the microbial community assembly.
Collapse
Affiliation(s)
| | | | | | - Wanderley José de Melo
- Universidade Estadual Paulista (Unesp), Faculdade de Agronomia e Veterinaria, Jaboticabal, Brazil
| | | | | | | | | | | | - Lucas William Mendes
- Centro de Energia Nuclear Na Agricultura, Universidade de Sao Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
18
|
Tian Q, Jiang Q, Huang L, Li D, Lin Q, Tang Z, Liu F. Vertical Distribution of Soil Bacterial Communities in Different Forest Types Along an Elevation Gradient. MICROBIAL ECOLOGY 2023; 85:628-641. [PMID: 35083529 DOI: 10.1007/s00248-021-01949-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/15/2021] [Indexed: 05/25/2023]
Abstract
Microorganisms inhabit the entire soil profile and play important roles in nutrient cycling and soil formation. Recent studies have found that soil bacterial diversity and composition differ significantly among soil layers. However, little is known about the vertical variation in soil bacterial communities and how it may change along an elevation gradient. In this study, we collected soil samples from 5 forest types along an elevation gradient in Taibai Mountain to characterize the bacterial communities and their vertical patterns and variations across soil profiles. The richness and Shannon index of soil bacterial communities decreased from surface soils to deep soils in three forest types, and were comparable among soil layers in the other two forests at the medium elevation. The composition of soil bacterial communities differed significantly between soil layers in all forest types, and was primarily affected by soil C availability. Oligotrophic members of the bacterial taxa, such as Chloroflexi, Gemmatimonadetes, Nitrospirae, and AD3, were more abundant in the deep layers. The assembly of soil bacterial communities within each soil profile was mainly governed by deterministic processes based on environmental heterogeneity. The vertical variations in soil bacterial communities differed among forest types, and the soil bacterial communities in the Betula albo-sinensis forest at the medium elevation had the lowest vertical variation. The vertical variation was negatively correlated with mean annual precipitation (MAP), weighted rock content, and weighted sand particle content in soils, among which MAP had the highest explanatory power. These results indicated that the vertical mobilization of microbes with preferential and matrix flows likely enhanced bacterial homogeneity. Overall, our results suggest that the vertical variations in soil bacterial communities differ along the elevation gradient and potentially affect soil biological processes across soil profiles.
Collapse
Affiliation(s)
- Qiuxiang Tian
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Qinghu Jiang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Lin Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Center for Ecology and Environment of Qinghai-Tibetan Plateau, Tibet University, Lhasa, 850000, China
| | - Qiaoling Lin
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyao Tang
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Feng Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
19
|
Song L, Yang T, Xia S, Yin Z, Liu X, Li S, Sun R, Gao H, Chu H, Ma C. Soil depth exerts stronger impact on bacterial community than elevation in subtropical forests of Huangshan Mountain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158438. [PMID: 36055501 DOI: 10.1016/j.scitotenv.2022.158438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
The elevational distribution of bacterial communities in the surface soil of natural mountain forests has been widely studied. However, it remains unknown if microbial communities in surface and sub-surface soils exhibit a similar distribution pattern with elevation. To do so, Illumina HiSeq sequencing was applied to study the alterations in soil bacterial communities of different soil layers, along an altitudinal gradient from 500 to 1100 m on Huangshan Mountain in Anhui Province, China. Our results revealed a significant higher diversity of the bacterial communities in surface soil layers than in subsurface layers. Adonis analysis showed that soil layer had a greater influence on the composition of the bacterial communities than the elevation. The distance-based multivariate linear model suggested that soil labile organic carbon and elevation were the main element influencing the bacterial community composition in surface and subsurface soils, respectively. A remarkable difference appeared between the co-occurrence network structures of bacterial communities in different soil layers. Compared with the subsurface soil, surface soil had more edges, average degree, and much higher clustering coefficient. The two-way ANOVA results highlighted the significant impact of soil layers on the topological properties of the network compared with that of elevation. The keystone species belonged to Rhodospirillaceae in the surface soil, while the OTUs belonged to Actinomycetales in the subsurface soil. Collectively, our results demonstrate that the effects of soil depth on soil bacterial community composition and network properties of subtropical forest in Huangshan Mountain were significantly higher than those of elevation, with different keystone species in different soil layers. These findings can be served as an important basis for better understanding the microbial functions influencing the maintenance of habitat heterogeneity, biodiversity, and ecosystem services in forests ecosystems.
Collapse
Affiliation(s)
- Luyao Song
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficicent Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shangguang Xia
- Anhui Huangshan National Positioning Observation and Research Station of Forest Ecosystem, Anhui Academy of Forestry, Hefei 230031, China
| | - Zhong Yin
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficicent Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xu Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shaopeng Li
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Ruibo Sun
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficicent Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Hongjian Gao
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficicent Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Chao Ma
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, Engineering and Technology Research Center of Intelligent Manufacture and Efficicent Utilization of Green Phosphorus Fertilizer of Anhui Province, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
20
|
Luan H, Liu Y, Huang S, Qiao W, Chen J, Guo T, Zhang X, Guo S, Zhang X, Qi G. Successive walnut plantations alter soil carbon quantity and quality by modifying microbial communities and enzyme activities. Front Microbiol 2022; 13:953552. [PMID: 35958128 PMCID: PMC9358653 DOI: 10.3389/fmicb.2022.953552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Knowledge of the spatial–temporal variations of soil organic carbon (SOC) quantity and quality and its microbial regulation mechanisms is essential for long-term SOC sequestration in agroecosystems; nevertheless, this information is lacking in the process of walnut plantations. Here, we used the modified Walkley-Black method, phospholipid fatty acid analysis, and micro-plate enzyme technique to analyze the evolution of SOC stocks and quality/lability as well as microbial communities and enzyme activities at different soil depths in walnut plantations with a chronosequence of 0-, 7-, 14-, and 21-years in the Eastern Taihang Mountains, China. The results indicated that long-term walnut plantations (14-and 21-years) enhanced SOC stocks, improved SOC quality/lability (as indicated by the lability index), and promoted microbial growth and activities (i.e., hydrolase and oxidase activities) in the 0–40 cm soil layers. Besides, these above-mentioned SOC-and microbial-related indices (except for oxidase activities) decreased with increasing soil depths, while oxidase activities were higher in deeper soils (40–60 cm) than in other soils (0–40 cm). The partial least squares path model also revealed that walnut plantation ages and soil depths had positive and negative effects on microbial attributes (e.g., enzyme activities, fungal and bacterial communities), respectively. Meanwhile, the SOC stocks were closely related to the fungal community; meanwhile, the bacterial community affected SOC quality/liability by regulating enzyme activities. Comprehensively, long-term walnut plantations were conducive to increasing SOC stocks and quality through altering microbial communities and activities in the East Taihang Mountains in Hebei, China.
Collapse
Affiliation(s)
- Haoan Luan
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Yingru Liu
- College of Agronomy, Hebei Agricultural University/North China Key Laboratory for Crop Germplasm Resources, Ministry of Education/State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
| | - Shaohui Huang
- Hebei Fertilizer Technology Innovation Centre, Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Wenyan Qiao
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Jie Chen
- Institute of Agricultural Resources and Regional Planning/Key Laboratory of Plant Nutrition and Fertilizer of Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tengfei Guo
- Institution of Plant Nutrition and Environmental Resources, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaojia Zhang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Suping Guo
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Xuemei Zhang
- College of Forestry, Hebei Agricultural University, Baoding, China
- *Correspondence: Xuemei Zhang,
| | - Guohui Qi
- College of Forestry, Hebei Agricultural University, Baoding, China
- Guohui Qi,
| |
Collapse
|
21
|
Bacterial Communities of Forest Soils along Different Elevations: Diversity, Structure, and Functional Composition with Potential Impacts on CO 2 Emission. Microorganisms 2022; 10:microorganisms10040766. [PMID: 35456816 PMCID: PMC9032212 DOI: 10.3390/microorganisms10040766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Soil bacteria are important components of forest ecosystems, there compostion structure and functions are sensitive to environmental conditions along elevation gradients. Using 16S rRNA gene amplicon sequencing followed by FAPROTAX function prediction, we examined the diversity, composition, and functional potentials of soil bacterial communities at three sites at elevations of 1400 m, 1600 m, and 2200 m in a temperate forest. We showed that microbial taxonomic composition did not change with elevation (p = 0.311), though soil bacterial α-diversities did. Proteobacteria, Acidobacteria, Actinobacteria, and Verrucomicrobia were abundant phyla in almost all soil samples, while Nitrospirae, closely associated with soil nitrogen cycling, was the fourth most abundant phylum in soils at 2200 m. Chemoheterotrophy and aerobic chemoheterotrophy were the two most abundant functions performed in soils at 1400 m and 1600 m, while nitrification (25.59% on average) and aerobic nitrite oxidation (19.38% on average) were higher in soils at 2200 m. Soil CO2 effluxes decreased (p < 0.050) with increasing elevation, while they were positively correlated (r = 0.55, p = 0.035) with the abundances of bacterial functional groups associated with carbon degradation. Moreover, bacterial functional composition, rather than taxonomic composition, was significantly associated with soil CO2 effluxes, suggesting a decoupling of taxonomy and function, with the latter being a better predictor of ecosystem functions. Annual temperature, annual precipitation, and pH shaped (p < 0.050) both bacterial taxonomic and functional communities. By establishing linkages between bacterial taxonomic communities, abundances of bacterial functional groups, and soil CO2 fluxes, we provide novel insights into how soil bacterial communities could serve as potential proxies of ecosystem functions.
Collapse
|