1
|
Coelho LFL, de Souza Terceti M, Neto SPL, Amaral RP, Dos Santos ALC, Gozzi WP, de Carvalho BA, da Cunha GA, Durante MFR, Sanchietta L, Marangoni GS, Gabriel MLC, Malaquias LCC, Celis ELH, de Souza Apolinário G, Araujo Junior JP, de Oliveira CE, Queiroz VF, Magno de Freitas Almeida G. Mucosal-adapted bacteriophages as a preventive strategy for a lethal Pseudomonas aeruginosa challenge in mice. Commun Biol 2025; 8:13. [PMID: 39762450 PMCID: PMC11704353 DOI: 10.1038/s42003-024-07269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Pseudomonas aeruginosa is an emergent threat due to the antimicrobial resistance crisis. Bacteriophages (phages) are promising agents for phage therapy approaches against P. aeruginosa. It has been proposed that metazoans harbor phages on their mucosal surfaces, and this could be exploited for the rational design of prophylactic phage therapy. The goal of this study was to evaluate the potential of phage-mucus interaction to prevent infections caused by P. aeruginosa. We isolated two phages capable of infecting P. aeruginosa. Both are similar in morphology and closely related genetically. However, phage VAC3 is more efficient in replicating in mucin-exposed P. aeruginosa in vitro and is preferentially held in the respiratory tract of C57BL/6 mice. Pre-treatment with VAC3 phage protects mice from a lethal dose of P. aeruginosa while VAC1 does not. This shows that phages adapted to mucosal conditions have potential to be applied as prophylactic measures against an ESKAPE pathogen.
Collapse
Affiliation(s)
- Luiz Felipe Leomil Coelho
- Vaccine Laboratory, Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Mateus de Souza Terceti
- Vaccine Laboratory, Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Sergio Pereira Lima Neto
- Vaccine Laboratory, Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Raíne Piva Amaral
- Vaccine Laboratory, Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Ana Luisa Cauvila Dos Santos
- Vaccine Laboratory, Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - William Permagnani Gozzi
- Vaccine Laboratory, Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Bianca Andrade de Carvalho
- Vaccine Laboratory, Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Gustavo Aparecido da Cunha
- Vaccine Laboratory, Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Maria Fernanda Romboli Durante
- Vaccine Laboratory, Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Lais Sanchietta
- Vaccine Laboratory, Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Giovana Soares Marangoni
- Vaccine Laboratory, Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Matheus Luca Carotta Gabriel
- Vaccine Laboratory, Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Luiz Cosme Cotta Malaquias
- Vaccine Laboratory, Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | | | | | | | - Carine Ervolino de Oliveira
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Alfenas, Brazil
| | - Victoria Fulgencio Queiroz
- Federal University of Minas Gerais, Institute of Biological Sciences, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Magno de Freitas Almeida
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
2
|
Palma M, Qi B. Advancing Phage Therapy: A Comprehensive Review of the Safety, Efficacy, and Future Prospects for the Targeted Treatment of Bacterial Infections. Infect Dis Rep 2024; 16:1127-1181. [PMID: 39728014 DOI: 10.3390/idr16060092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Phage therapy, a treatment utilizing bacteriophages to combat bacterial infections, is gaining attention as a promising alternative to antibiotics, particularly for managing antibiotic-resistant bacteria. This study aims to provide a comprehensive review of phage therapy by examining its safety, efficacy, influencing factors, future prospects, and regulatory considerations. The study also seeks to identify strategies for optimizing its application and to propose a systematic framework for its clinical implementation. METHODS A comprehensive analysis of preclinical studies, clinical trials, and regulatory frameworks was undertaken to evaluate the therapeutic potential of phage therapy. This included an in-depth assessment of key factors influencing clinical outcomes, such as infection site, phage-host specificity, bacterial burden, and immune response. Additionally, innovative strategies-such as combination therapies, bioengineered phages, and phage cocktails-were explored to enhance efficacy. Critical considerations related to dosing, including inoculum size, multiplicity of infection, therapeutic windows, and personalized medicine approaches, were also examined to optimize treatment outcomes. RESULTS Phage therapy has demonstrated a favorable safety profile in both preclinical and clinical settings, with minimal adverse effects. Its ability to specifically target harmful bacteria while preserving beneficial microbiota underpins its efficacy in treating a range of infections. However, variable outcomes in some studies highlight the importance of addressing critical factors that influence therapeutic success. Innovative approaches, including combination therapies, bioengineered phages, expanded access to diverse phage banks, phage cocktails, and personalized medicine, hold significant promise for improving efficacy. Optimizing dosing strategies remains a key area for enhancement, with critical considerations including inoculum size, multiplicity of infection, phage kinetics, resistance potential, therapeutic windows, dosing frequency, and patient-specific factors. To support the clinical application of phage therapy, a streamlined four-step guideline has been developed, providing a systematic framework for effective treatment planning and implementation. CONCLUSION Phage therapy offers a highly adaptable, targeted, and cost-effective approach to addressing antibiotic-resistant infections. While several critical factors must be thoroughly evaluated to optimize treatment efficacy, there remains significant potential for improvement through innovative strategies and refined methodologies. Although phage therapy has yet to achieve widespread approval in the U.S. and Europe, its accessibility through Expanded Access programs and FDA authorizations for food pathogen control underscores its promise. Established practices in countries such as Poland and Georgia further demonstrate its clinical feasibility. To enable broader adoption, regulatory harmonization and advancements in production, delivery, and quality control will be essential. Notably, the affordability and scalability of phage therapy position it as an especially valuable solution for developing regions grappling with escalating rates of antibiotic resistance.
Collapse
Affiliation(s)
- Marco Palma
- Institute for Globally Distributed Open Research and Education (IGDORE), 03181 Torrevieja, Spain
- R&D Drug Discovery, Protheragen Inc., Holbrook, NY 11741, USA
| | - Bowen Qi
- Drug Discovery and Development, Creative Biolabs Inc., Shirley, NY 11967, USA
| |
Collapse
|
3
|
Qin K, Shi X, Yang K, Xu Q, Wang F, Chen S, Xu T, Liu J, Wen W, Chen R, Liu Z, Cui L, Zhou K. Phage-antibiotic synergy suppresses resistance emergence of Klebsiella pneumoniae by altering the evolutionary fitness. mBio 2024; 15:e0139324. [PMID: 39248568 PMCID: PMC11481518 DOI: 10.1128/mbio.01393-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Phage-antibiotic synergy (PAS) represents a superior treatment strategy for pathogen infections with less probability of resistance development. Here, we aim to understand the molecular mechanism by which PAS suppresses resistance in terms of population evolution. A novel hypervirulent Klebsiella pneumoniae (KP) phage H5 was genetically and structurally characterized. The combination of H5 and ceftazidime (CAZ) showed a robust synergistic effect in suppressing resistance emergence. Single-cell Raman analysis showed that the phage-CAZ combination suppressed bacterial metabolic activities, contrasting with the upregulation observed with phage alone. The altered population evolutionary trajectory was found to be responsible for the contrasting metabolic activities under different selective pressures, resulting in pleiotropic effects. A pre-existing wcaJ point mutation (wcaJG949A) was exclusively selected by H5, conferring a fitness advantage and up-regulated activity of carbohydrate metabolism, but also causing a trade-off between phage resistance and collateral sensitivity to CAZ. The wcaJ point mutation was counter-selected by H5-CAZ, inducing various mutations in galU that imposed evolutionary disadvantages with higher fitness costs, and suppressed carbohydrate metabolic activity. H5 and H5-CAZ treatments resulted in opposite effects on the transcriptional activity of the phosphotransferase system and the ascorbate and aldarate metabolism pathway, suggesting potential targets for phage resistance suppression. Our study reveals a novel mechanism of resistance suppression by PAS, highlighting how the complexity of bacterial adaptation to selective pressures drives treatment outcomes. IMPORTANCE Phage-antibiotic synergy (PAS) has been recently proposed as a superior strategy for the treatment of multidrug-resistant pathogens to effectively reduce bacterial load and slow down both phage and antibiotic resistance. However, the underlying mechanisms of resistance suppression by PAS have been poorly and rarely been studied. In this study, we tried to understand how PAS suppresses the emergence of resistance using a hypervirulent Klebsiella pneumoniae (KP) strain and a novel phage H5 in combination with ceftazidime (CAZ) as a model. Our study reveals a novel mechanism by which PAS drives altered evolutionary trajectory of bacterial populations, leading to suppressed emergence of resistance. The findings advance our understanding of how PAS suppresses the emergence of resistance, and are imperative for optimizing the efficacy of phage-antibiotic therapy to further improve clinical outcomes.
Collapse
Affiliation(s)
- Kunhao Qin
- Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Jiangxi Province Key Laboratory of Organ Development and Epigenetics, Clinical Medical Research Center, Affiliated Hospital of Jinggangshan University, Health Science Center, Medical Department of Jinggangshan University, Ji'an, China
| | - Xing Shi
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Kai Yang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Qiuqing Xu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Fuxing Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Senxiong Chen
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Tingting Xu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jinquan Liu
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Wangrong Wen
- Clinical Laboratory, The Affiliated Shunde Hospital of Jinan University, Foshan, China
- Clinical Laboratory Centre, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Rongchang Chen
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Kai Zhou
- Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen, China
- Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
4
|
Sithu Shein AM, Hongsing P, Khatib A, Phattharapornjaroen P, Miyanaga K, Cui L, Shibuya K, Amarasiri M, Monk PN, Kicic A, Chatsuwan T, Higgins PG, Abe S, Wannigama DL. Phage therapy could be key to conquering persistent bacterial lung infections in children. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:31. [PMID: 39843534 DOI: 10.1038/s44259-024-00045-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/29/2024] [Indexed: 01/24/2025]
Abstract
Persistent bacterial lung infections in children lead to significant morbidity and mortality due to antibiotic resistance. In this paper, we describe how phage therapy has shown remarkable efficacy in preclinical and clinical studies, demonstrating significant therapeutic benefits through various administration routes. Ongoing trials are evaluating its safety and effectiveness against different pathogens. Advancing phage therapy through systematic studies and international collaboration could provide a viable alternative to traditional antibiotics for persistent infections.
Collapse
Affiliation(s)
- Aye Mya Sithu Shein
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Aisha Khatib
- Department of Family & Community Medicine, University of Toronto, Toronto, ON, Canada
| | - Phatthranit Phattharapornjaroen
- Faculty of Health Science Technology, Chulabhorn Royal Academy, Bangkok, Thailand
- HRH Princess Chulabhorn Disaster and Emergency Medicine Center, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kazuhiko Miyanaga
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Longzhu Cui
- Division of Bacteriology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kenji Shibuya
- Tokyo Foundation for Policy Research, Minato-ku, Tokyo, Japan
| | - Mohan Amarasiri
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Peter N Monk
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, 6009, WA, Australia.
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, 6009, WA, Australia.
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, WA, Australia.
- School of Population Health, Curtin University, Bentley, 6102, WA, Australia.
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935, Cologne, Germany.
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Dhammika Leshan Wannigama
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
- Center of Excellence in Antimicrobial Resistance and Stewardship Research, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedland, WA, Australia.
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, UK.
- Pathogen Hunter's Research Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan.
| |
Collapse
|
5
|
Sun S, Chen X. Mechanism-guided strategies for combating antibiotic resistance. World J Microbiol Biotechnol 2024; 40:295. [PMID: 39122871 DOI: 10.1007/s11274-024-04106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Bacterial antibiotic resistance has been recognized as a global threat to public health. It challenges the antibiotics currently used in clinical practice and causes severe and often fatal infectious diseases. Fighting against antibiotic-resistant bacteria (ARB) is growing more urgent. While understanding the molecular mechanisms that underlie resistance is a prerequisite, several major mechanisms have been previously proposed including bacterial efflux systems, reduced cell membrane permeability, antibiotic inactivation by enzymes, target modification, and target protection. In this context, this review presents a panel of promising and potential strategies to combat antibiotic resistance/resistant bacteria. Different types of direct-acting and indirect resistance breakers, such as efflux pump inhibitors, antibiotic adjuvants, and oxidative treatments are discussed. In addition, the emerging multi-omics approaches for rapid resistance identification and promising alternatives to existing antibiotics are highlighted. Overall, this review suggests that continued effort and investment in research are required to develop new antibiotics and alternatives to existing antibiotics and translate them into environmental and clinical applications.
Collapse
Affiliation(s)
- Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xueyingzi Chen
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
6
|
Li S, Wei B, Xu L, Cong C, Murtaza B, Wang L, Li X, Li J, Xu M, Yin J, Xu Y. In vivo efficacy of phage cocktails against carbapenem resistance Acinetobacter baumannii in the rat pneumonia model. J Virol 2024; 98:e0046724. [PMID: 38864621 PMCID: PMC11265278 DOI: 10.1128/jvi.00467-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/22/2024] [Indexed: 06/13/2024] Open
Abstract
Acinetobacter baumannii, an opportunistic pathogen, poses a significant threat in intensive care units, leading to severe nosocomial infections. The rise of multi-drug-resistant strains, particularly carbapenem-resistant A. baumannii, has created formidable challenges for effective treatment. Given the prolonged development cycle and high costs associated with antibiotics, phages have garnered clinical attention as an alternative for combating infections caused by drug-resistant bacteria. However, the utilization of phage therapy encounters notable challenges, including the narrow host spectrum, where each phage targets a limited subset of bacteria, increasing the risk of phage resistance development. Additionally, uncertainties in immune system dynamics during treatment hinder tailoring symptomatic interventions based on patient-specific states. In this study, we isolated two A. baumannii phages from wastewater and conducted a comprehensive assessment of their potential applications. This evaluation included sequencing analysis, genome classification, pH and temperature stability assessments, and in vitro bacterial inhibition assays. Further investigations involved analyzing histological and cytokine alterations in rats undergoing phage cocktail treatment for pneumonia. The therapeutic efficacy of the phages was validated, and transcriptomic studies of rat lung tissue during phage treatment revealed crucial changes in the immune system. The findings from our study underscore the potential of phages for future development as a treatment strategy and offer compelling evidence regarding immune system dynamics throughout the treatment process.IMPORTANCEDue to the growing problem of multi-drug-resistant bacteria, the use of phages is being considered as an alternative to antibiotics, and the genetic safety and application stability of phages determine the potential of phage application. The absence of drug resistance genes and virulence genes in the phage genome can ensure the safety of phage application, and the fact that phage can remain active in a wide range of temperatures and pH is also necessary for application. In addition, the effect evaluation of preclinical studies is especially important for clinical application. By simulating the immune response situation during the treatment process through mammalian models, the changes in animal immunity can be observed, and the effect of phage therapy can be further evaluated. Our study provides compelling evidence that phages hold promise for further development as therapeutic agents for Acinetobacter baumannii infections.
Collapse
Affiliation(s)
- Shibin Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bingdong Wei
- Institute of Animal Nutrition and Feed Science, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Le Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Cong Cong
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Jibin Li
- R&D Centre, Liaoning Innovation Center for Phage Application Professional Technology, Dalian, China
| | - Mu Xu
- R&D Department, Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, China
| | - Jiajun Yin
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
- R&D Department, Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, China
| |
Collapse
|
7
|
Spencer E, Peters T, Eline Y, Saucedo L, Linzan K, Paull K, Miller C, Van Leuven J. Bacteriophage resistance evolution in a honey bee pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602782. [PMID: 39026776 PMCID: PMC11257554 DOI: 10.1101/2024.07.09.602782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Honey bee (Apis mellifera) larvae are susceptible to the bacterial pathogen Paenibacillus larvae, which causes severe damage to bee colonies. Antibiotic treatment requires veterinary supervision in the United States, is not used in many parts of the world, perpetuates problems associated with antibiotic resistance, and can necessitate residual testing in bee products. There is interest in using bacteriophages to treat infected colonies (bacteriophage therapy) and several trials are promising. Nevertheless, the safety of using biological agents in the environment must be scrutinized. In this study we analyzed the ability of P. larvae to evolve resistance to several different bacteriophages. We found that bacteriophage resistance is rapidly developed in culture but often results in growth defects. Mutations in the bacteriophage-resistant isolates are concentrated in genes encoding potential surface receptors. Testing one of these isolates in bee larvae, we found it to have reduced virulence compared to the parental P. larvae strain. We also found that bacteriophages are likely able to counteract resistance evolution. This work suggests that while bacteriophage-resistance may arise, its impact will likely be mitigated by reduced pathogenicity and secondary bacteriophage mutations that overcome resistance.
Collapse
Affiliation(s)
- Emma Spencer
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Tracey Peters
- Department of Biological Sciences, University of Idaho, Moscow, ID
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID
| | - Yva Eline
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID
| | - Lauren Saucedo
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | | | - Keera Paull
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Craig Miller
- Department of Biological Sciences, University of Idaho, Moscow, ID
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID
| | - James Van Leuven
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID
- Department of Animal Veterinary and Food Sciences, University of Idaho, Moscow, ID
| |
Collapse
|
8
|
Mason G, Footer MJ, Rojas ER. Mechanosensation induces persistent bacterial growth during bacteriophage predation. mBio 2023; 14:e0276622. [PMID: 37909775 PMCID: PMC10746221 DOI: 10.1128/mbio.02766-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Bacteria and bacteriophage form one of the most important predator-prey relationships on earth, yet how the long-term stability of this ecological interaction is achieved is unclear. Here, we demonstrate that Escherichia coli can rapidly grow during bacteriophage predation if they are doing so in spatially confined environments. This discovery revises our understanding of bacteria-bacteriophage population dynamics in many real-world environments where bacteria grow in confinement, such as the gut and the soil. Additionally, this result has clear implications for the potential of bacteriophage therapy and the role of mechanosensation during bacterial pathogenesis.
Collapse
Affiliation(s)
- Guy Mason
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - Matthew J. Footer
- Department of Biology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Enrique R. Rojas
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| |
Collapse
|
9
|
Oromí-Bosch A, Antani JD, Turner PE. Developing Phage Therapy That Overcomes the Evolution of Bacterial Resistance. Annu Rev Virol 2023; 10:503-524. [PMID: 37268007 DOI: 10.1146/annurev-virology-012423-110530] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The global rise of antibiotic resistance in bacterial pathogens and the waning efficacy of antibiotics urge consideration of alternative antimicrobial strategies. Phage therapy is a classic approach where bacteriophages (bacteria-specific viruses) are used against bacterial infections, with many recent successes in personalized medicine treatment of intractable infections. However, a perpetual challenge for developing generalized phage therapy is the expectation that viruses will exert selection for target bacteria to deploy defenses against virus attack, causing evolution of phage resistance during patient treatment. Here we review the two main complementary strategies for mitigating bacterial resistance in phage therapy: minimizing the ability for bacterial populations to evolve phage resistance and driving (steering) evolution of phage-resistant bacteria toward clinically favorable outcomes. We discuss future research directions that might further address the phage-resistance problem, to foster widespread development and deployment of therapeutic phage strategies that outsmart evolved bacterial resistance in clinical settings.
Collapse
Affiliation(s)
| | - Jyot D Antani
- Department of Ecology and Evolutionary Biology, Center for Phage Biology & Therapy, and Quantitative Biology Institute, Yale University, New Haven, Connecticut, USA;
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Center for Phage Biology & Therapy, and Quantitative Biology Institute, Yale University, New Haven, Connecticut, USA;
- Program in Microbiology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Miranda RP, Turrini PCG, Bonadio DT, Zerillo MM, Berselli AP, Creste S, Van Sluys MA. Genome Organization of Four Brazilian Xanthomonas albilineans Strains Does Not Correlate with Aggressiveness. Microbiol Spectr 2023; 11:e0280222. [PMID: 37052486 PMCID: PMC10269729 DOI: 10.1128/spectrum.02802-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 03/03/2023] [Indexed: 04/14/2023] Open
Abstract
An integrative approach combining genomics, transcriptomics, and cell biology is presented to address leaf scald disease, a major problem for the sugarcane industry. To gain insight into the biology of the causal agent, the complete genome sequences of four Brazilian Xanthomonas albilineans strains with differing virulence capabilities are presented and compared to the GPEPC73 reference strain and FJ1. Based on the aggressiveness index, different strains were compared: Xa04 and Xa11 are highly aggressive, Xa26 is intermediate, and Xa21 is the least, while, based on genome structure, Xa04 shares most of its genomic features with Xa26, and Xa11 share most of its genomic features with Xa21. In addition to presenting more clustered regularly interspaced short palindromic repeats (CRISPR) clusters, four more novel prophage insertions are present than the previously sequenced GPEPC73 and FJ1 strains. Incorporating the aggressiveness index and in vitro cell biology into these genome features indicates that disease establishment is not a result of a single determinant factor, as in most other Xanthomonas species. The Brazilian strains lack the previously described plasmids but present more prophage regions. In pairs, the most virulent and the least virulent share unique prophages. In vitro transcriptomics shed light on the 54 most highly expressed genes among the 4 strains compared to ribosomal proteins (RPs), of these, 3 outer membrane proteins. Finally, comparative albicidin inhibition rings and in vitro growth curves of the four strains also do not correlate with pathogenicity. In conclusion, the results disclose that leaf scald disease is not associated with a single shared characteristic between the most or the least pathogenic strains. IMPORTANCE An integrative approach is presented which combines genomics, transcriptomics, and cell biology to address leaf scald disease. The results presented here disclose that the disease is not associated with a single shared characteristic between the most pathogenic strains or a unique genomic pattern. Sequence data from four Brazilian strains are presented that differ in pathogenicity index: Xa04 and Xa11 are highly virulent, Xa26 is intermediate, and Xa21 is the least pathogenic strain, while, based on genome structure, Xa04 shares with Xa26, and Xa11 shares with X21 most of the genome features. Other than presenting more CRISPR clusters and prophages than the previously sequenced strains, the integration of aggressiveness and cell biology points out that disease establishment is not a result of a single determinant factor as in other xanthomonads.
Collapse
Affiliation(s)
- Raquel P. Miranda
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo (USP), Butanta, São Paulo, Brazil
| | - Paula C. G. Turrini
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo (USP), Butanta, São Paulo, Brazil
| | - Dora T. Bonadio
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo (USP), Butanta, São Paulo, Brazil
| | - Marcelo M. Zerillo
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo (USP), Butanta, São Paulo, Brazil
| | - Arthur P. Berselli
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo (USP), Butanta, São Paulo, Brazil
| | - Silvana Creste
- Centro de Cana, Instituto Agronômico de Campinas (IAC), Campinas, São Paulo, Brazil
| | - Marie-Anne Van Sluys
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo (USP), Butanta, São Paulo, Brazil
| |
Collapse
|
11
|
Fungo GBN, Uy JCW, Porciuncula KLJ, Candelario CMA, Chua DPS, Gutierrez TAD, Clokie MRJ, Papa DMD. "Two Is Better Than One": The Multifactorial Nature of Phage-Antibiotic Combinatorial Treatments Against ESKAPE-Induced Infections. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:55-67. [PMID: 37350995 PMCID: PMC10282822 DOI: 10.1089/phage.2023.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Phage-antibiotic synergy (PAS) has been extensively explored over the past decade, with the aim of developing more effective treatments against multidrug-resistant organisms. However, it remains unclear how to effectively combine these two approaches. To address this uncertainty, we assessed four main aspects of PAS interactions in this review, seeking to identify commonalities of combining treatments within and between bacterial species. We examined all literature on PAS efficacy toward ESKAPE pathogens and present an analysis of the data in papers focusing on: (1) order of treatment, (2) dose of both phage and antibiotics, (3) mechanism of action, and (4) viability of transfer from in vivo or animal model trials to clinical applications. Our analysis indicates that there is little consistency within phage-antibiotic therapy regimens, suggesting that highly individualized treatment regimens should be used. We propose a set of experimental studies to address these research gaps. We end our review with suggestions on how to improve studies on phage-antibiotic combination therapy to advance this field.
Collapse
Affiliation(s)
- Gale Bernice N. Fungo
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - John Christian W. Uy
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Kristiana Louise J. Porciuncula
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Chiarah Mae A. Candelario
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Deneb Philip S. Chua
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | - Tracey Antaeus D. Gutierrez
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| | | | - Donna May D. Papa
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
- Bacteriophage Ecology, Aquaculture, Therapy and Systematics (BEATS) Research Group, University of Santo Tomas, Manila, Philippines
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines
| |
Collapse
|
12
|
Petrovic Fabijan A, Iredell J, Danis-Wlodarczyk K, Kebriaei R, Abedon ST. Translating phage therapy into the clinic: Recent accomplishments but continuing challenges. PLoS Biol 2023; 21:e3002119. [PMID: 37220114 PMCID: PMC10204993 DOI: 10.1371/journal.pbio.3002119] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Phage therapy is a medical form of biological control of bacterial infections, one that uses naturally occurring viruses, called bacteriophages or phages, as antibacterial agents. Pioneered over 100 years ago, phage therapy nonetheless is currently experiencing a resurgence in interest, with growing numbers of clinical case studies being published. This renewed enthusiasm is due in large part to phage therapy holding promise for providing safe and effective cures for bacterial infections that traditional antibiotics acting alone have been unable to clear. This Essay introduces basic phage biology, provides an outline of the long history of phage therapy, highlights some advantages of using phages as antibacterial agents, and provides an overview of recent phage therapy clinical successes. Although phage therapy has clear clinical potential, it faces biological, regulatory, and economic challenges to its further implementation and more mainstream acceptance.
Collapse
Affiliation(s)
- Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Jonathan Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Western Sydney Local Health District, Westmead, New South Wales, Australia
| | - Katarzyna Danis-Wlodarczyk
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Razieh Kebriaei
- P3 Research Laboratory, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Mansfield, Ohio, United States of America
| |
Collapse
|
13
|
Natterson-Horowitz B, Aktipis A, Fox M, Gluckman PD, Low FM, Mace R, Read A, Turner PE, Blumstein DT. The future of evolutionary medicine: sparking innovation in biomedicine and public health. FRONTIERS IN SCIENCE 2023; 1:997136. [PMID: 37869257 PMCID: PMC10590274 DOI: 10.3389/fsci.2023.997136] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Evolutionary medicine - i.e. the application of insights from evolution and ecology to biomedicine - has tremendous untapped potential to spark transformational innovation in biomedical research, clinical care and public health. Fundamentally, a systematic mapping across the full diversity of life is required to identify animal model systems for disease vulnerability, resistance, and counter-resistance that could lead to novel clinical treatments. Evolutionary dynamics should guide novel therapeutic approaches that target the development of treatment resistance in cancers (e.g., via adaptive or extinction therapy) and antimicrobial resistance (e.g., via innovations in chemistry, antimicrobial usage, and phage therapy). With respect to public health, the insight that many modern human pathologies (e.g., obesity) result from mismatches between the ecologies in which we evolved and our modern environments has important implications for disease prevention. Life-history evolution can also shed important light on patterns of disease burden, for example in reproductive health. Experience during the COVID-19 (SARS-CoV-2) pandemic has underlined the critical role of evolutionary dynamics (e.g., with respect to virulence and transmissibility) in predicting and managing this and future pandemics, and in using evolutionary principles to understand and address aspects of human behavior that impede biomedical innovation and public health (e.g., unhealthy behaviors and vaccine hesitancy). In conclusion, greater interdisciplinary collaboration is vital to systematically leverage the insight-generating power of evolutionary medicine to better understand, prevent, and treat existing and emerging threats to human, animal, and planetary health.
Collapse
Affiliation(s)
- B. Natterson-Horowitz
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Athena Aktipis
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
| | - Molly Fox
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Peter D. Gluckman
- Koi Tū: The Centre for Informed Futures, University of Auckland, Auckland, New Zealand
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Felicia M. Low
- Koi Tū: The Centre for Informed Futures, University of Auckland, Auckland, New Zealand
| | - Ruth Mace
- Department of Anthropology, University College London, London, United Kingdom
| | - Andrew Read
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, State College, PA, United States
- Department of Entomology, The Pennsylvania State University, State College, PA, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, United States
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
- Program in Microbiology, Yale School of Medicine, New Haven, CT, United States
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
14
|
Abedon ST. Ecology and Evolutionary Biology of Hindering Phage Therapy: The Phage Tolerance vs. Phage Resistance of Bacterial Biofilms. Antibiotics (Basel) 2023; 12:245. [PMID: 36830158 PMCID: PMC9952518 DOI: 10.3390/antibiotics12020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
As with antibiotics, we can differentiate various acquired mechanisms of bacteria-mediated inhibition of the action of bacterial viruses (phages or bacteriophages) into ones of tolerance vs. resistance. These also, respectively, may be distinguished as physiological insensitivities (or protections) vs. resistance mutations, phenotypic resistance vs. genotypic resistance, temporary vs. more permanent mechanisms, and ecologically vs. also near-term evolutionarily motivated functions. These phenomena can result from multiple distinct molecular mechanisms, many of which for bacterial tolerance of phages are associated with bacterial biofilms (as is also the case for the bacterial tolerance of antibiotics). The resulting inhibitions are relevant from an applied perspective because of their potential to thwart phage-based treatments of bacterial infections, i.e., phage therapies, as well as their potential to interfere more generally with approaches to the phage-based biological control of bacterial biofilms. In other words, given the generally low toxicity of properly chosen therapeutic phages, it is a combination of phage tolerance and phage resistance, as displayed by targeted bacteria, that seems to represent the greatest impediments to phage therapy's success. Here I explore general concepts of bacterial tolerance of vs. bacterial resistance to phages, particularly as they may be considered in association with bacterial biofilms.
Collapse
Affiliation(s)
- Stephen T Abedon
- Department of Microbiology, The Ohio State University, Mansfield, OH 44906, USA
| |
Collapse
|
15
|
Development of a Bacteriophage Cocktail against Pectobacterium carotovorum Subsp. carotovorum and Its Effects on Pectobacterium Virulence. Appl Environ Microbiol 2022; 88:e0076122. [PMID: 36165651 PMCID: PMC9552609 DOI: 10.1128/aem.00761-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pectobacterium carotovorum subsp. carotovorum is a necrotrophic plant pathogen that secretes plant cell wall-degrading enzymes (PCWDEs) that cause soft rot disease in various crops. Bacteriophages have been under consideration as harmless antibacterial agents to replace antibiotics and copper-based pesticides. However, the emergence of bacteriophage resistance is one of the main concerns that should be resolved for practical phage applications. In this study, we developed a phage cocktail with three lytic phages that recognize colanic acid (phage POP12) or flagella (phages POP15 and POP17) as phage receptors to minimize phage resistance. The phage cocktail effectively suppressed the emergence of phage-resistant P. carotovorum subsp. carotovorum compared with single phages in in vitro challenge assays. The application of the phage cocktail to napa cabbage (Brassica rapa subsp. pekinensis) resulted in significant growth retardation of P. carotovorum subsp. carotovorum (P < 0.05) and prevented the symptoms of soft rot disease. Furthermore, phage cocktail treatments of young napa cabbage leaves in a greenhouse environment indicated effective prevention of soft rot disease compared to that in the nonphage negative control. We isolated 15 phage-resistant mutants after a phage cocktail treatment to assess the virulence-associated phenotypes compared to those of wild-type (WT) strain Pcc27. All mutants showed reduced production of four different PCWDEs, leading to lower levels of tissue softening. Ten of the 15 phage-resistant mutants additionally exhibited decreased swimming motility. Taken together, these results show that the phage cocktail developed here, which targets two different types of phage receptors, provides an effective strategy for controlling P. carotovorum subsp. carotovorum in agricultural products, with a potential ability to attenuate P. carotovorum subsp. carotovorum virulence. IMPORTANCE Pectobacterium carotovorum subsp. carotovorum is a phytopathogen that causes soft rot disease in various crops by producing plant cell wall-degrading enzymes (PCWDEs). Although antibiotics and copper-based pesticides have been extensively applied to inhibit P. carotovorum subsp. carotovorum, the emergence of antibiotic-resistant bacteria and demand for harmless antimicrobial products have emphasized the necessity of finding alternative therapeutic strategies. To address this problem, we developed a phage cocktail consisting of three P. carotovorum subsp. carotovorum-specific phages that recognize colanic acids and flagella of P. carotovorum subsp. carotovorum. The phage cocktail treatments significantly decreased P. carotovorum subsp. carotovorum populations, as well as soft rot symptoms in napa cabbage. Simultaneously, they resulted in virulence attenuation in phage-resistant P. carotovorum subsp. carotovorum, which was represented by decreased PCWDE production and decreased flagellum-mediated swimming motility. These results suggested that preparations of phage cocktails targeting multiple receptors would be an effective approach to biocontrol of P. carotovorum subsp. carotovorum in crops.
Collapse
|
16
|
Jin M, Chen J, Zhao X, Hu G, Wang H, Liu Z, Chen WH. An Engineered λ Phage Enables Enhanced and Strain-Specific Killing of Enterohemorrhagic Escherichia coli. Microbiol Spectr 2022; 10:e0127122. [PMID: 35876591 PMCID: PMC9431524 DOI: 10.1128/spectrum.01271-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/08/2022] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages (phages) are ideal alternatives to traditional antimicrobial agents in a world where antimicrobial resistance (AMR) is emerging and spreading at an unprecedented speed. In addition, due to their narrow host ranges, phages are also ideal tools to modulate the gut microbiota in which alterations of specific bacterial strains underlie human diseases, while dysbiosis caused by broad-spectrum antibiotics can be harmful. Here, we engineered a lambda phage (Eλ) to target enterohemorrhagic Escherichia coli (EHEC) that causes a severe, sometimes lethal intestinal infection in humans. We enhanced the killing ability of the Eλ phage by incorporating a CRISPR-Cas3 system into the wild-type λ (wtλ) and the specificity by introducing multiple EHEC-targeting CRISPR spacers while knocking out the lytic gene cro. In vitro experiments showed that the Eλ suppressed the growth of EHEC up to 18 h compared with only 6 h with the wtλ; at the multiplicity of infection (MOI) of 10, the Eλ killed the EHEC cells with ~100% efficiency and did not affect the growth of other laboratory- and human-gut isolated E. coli strains. In addition, the EHEC cells did not develop resistance to the Eλ. Mouse experiments further confirmed the enhanced and strain-specific killing of the Eλ to EHEC, while the overall mouse gut microbiota was not disturbed. Our methods can be used to target other genes that are responsible for antibiotic resistance genes and/or human toxins, engineer other phages, and support in vivo application of the engineered phages. IMPORTANCE Pathogenic strains of Escherichia coli are responsible for 0.8 million deaths per year and together ranked the first among all pathogenic species. Here, we obtained, for the first time, an engineered phage, Eλ, that could specifically and efficiently eliminate EHEC, one of the most common and often lethal pathogens that can spread from person to person. We verified the superior performance of the Eλ over the wild-type phage with in vitro and in vivo experiments and showed that the Eλ could suppress EHEC growth to nondetectable levels, fully rescue the EHEC-infected mice, and rescore disturbed mouse gut microbiota. Our results also indicated that the EHEC did not develop resistance to the Eλ, which has been the biggest challenge in phage therapy. We believe our methods can be used to target other pathogenic strains of E. coli and support in vivo application of the engineered phages.
Collapse
Affiliation(s)
- Menglu Jin
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingchao Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xueyang Zhao
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoru Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hailei Wang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Hua Chen
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
| |
Collapse
|
17
|
Evolutionary Dynamics between Phages and Bacteria as a Possible Approach for Designing Effective Phage Therapies against Antibiotic-Resistant Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11070915. [PMID: 35884169 PMCID: PMC9311878 DOI: 10.3390/antibiotics11070915] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
With the increasing global threat of antibiotic resistance, there is an urgent need to develop new effective therapies to tackle antibiotic-resistant bacterial infections. Bacteriophage therapy is considered as a possible alternative over antibiotics to treat antibiotic-resistant bacteria. However, bacteria can evolve resistance towards bacteriophages through antiphage defense mechanisms, which is a major limitation of phage therapy. The antiphage mechanisms target the phage life cycle, including adsorption, the injection of DNA, synthesis, the assembly of phage particles, and the release of progeny virions. The non-specific bacterial defense mechanisms include adsorption inhibition, superinfection exclusion, restriction-modification, and abortive infection systems. The antiphage defense mechanism includes a clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) system. At the same time, phages can execute a counterstrategy against antiphage defense mechanisms. However, the antibiotic susceptibility and antibiotic resistance in bacteriophage-resistant bacteria still remain unclear in terms of evolutionary trade-offs and trade-ups between phages and bacteria. Since phage resistance has been a major barrier in phage therapy, the trade-offs can be a possible approach to design effective bacteriophage-mediated intervention strategies. Specifically, the trade-offs between phage resistance and antibiotic resistance can be used as therapeutic models for promoting antibiotic susceptibility and reducing virulence traits, known as bacteriophage steering or evolutionary medicine. Therefore, this review highlights the synergistic application of bacteriophages and antibiotics in association with the pleiotropic trade-offs of bacteriophage resistance.
Collapse
|
18
|
Assembly and Annotation of Escherichia coli Bacteriophage U115. Microbiol Resour Announc 2022; 11:e0094921. [PMID: 35175109 PMCID: PMC8852279 DOI: 10.1128/mra.00949-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we present the annotated genome sequence of
Escherichia coli
bacteriophage U115, a T4-like bacteriophage. Phage U115 has a genome length of 166,986 bp and has 286 predicted genes.
Collapse
|
19
|
Rahman MU, Wang W, Sun Q, Shah JA, Li C, Sun Y, Li Y, Zhang B, Chen W, Wang S. Endolysin, a Promising Solution against Antimicrobial Resistance. Antibiotics (Basel) 2021; 10:1277. [PMID: 34827215 PMCID: PMC8614784 DOI: 10.3390/antibiotics10111277] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global crisis for human public health which threatens the effective prevention and control of ever-increasing infectious diseases. The advent of pandrug-resistant bacteria makes most, if not all, available antibiotics invalid. Meanwhile, the pipeline of novel antibiotics development stagnates, which prompts scientists and pharmacists to develop unconventional antimicrobials. Bacteriophage-derived endolysins are cell wall hydrolases which could hydrolyze the peptidoglycan layer from within and outside of bacterial pathogens. With high specificity, rapid action, high efficiency, and low risk of resistance development, endolysins are believed to be among the best alternative therapeutic agents to treat multidrug resistant (MDR) bacteria. As of now, endolysins have been applied to diverse aspects. In this review, we comprehensively introduce the structures and activities of endolysins and summarize the latest application progress of recombinant endolysins in the fields of medical treatment, pathogen diagnosis, food safety, and agriculture.
Collapse
Affiliation(s)
- Mujeeb ur Rahman
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Weixiao Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China;
| | - Qingqing Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, China;
| | - Chao Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Yuanrui Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Bailing Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China;
| | - Wei Chen
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China;
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| |
Collapse
|