1
|
Arbi M, Khedhiri M, Ayouni K, Souiai O, Dhouib S, Ghanmi N, Benkahla A, Triki H, Haddad-Boubaker S. Recombination Events Among SARS-CoV-2 Omicron Subvariants: Impact on Spike Interaction With ACE2 Receptor and Neutralizing Antibodies. Evol Bioinform Online 2024; 20:11769343241272415. [PMID: 39149136 PMCID: PMC11325312 DOI: 10.1177/11769343241272415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
The recombination plays a key role in promoting evolution of RNA viruses and emergence of potentially epidemic variants. Some studies investigated the recombination occurrence among SARS-CoV-2, without exploring its impact on virus-host interaction. In the aim to investigate the burden of recombination in terms of frequency and distribution, the occurrence of recombination was first explored in 44 230 Omicron sequences among BQ subvariants and the under investigation "ML" (Multiple Lineages) denoted sequences, using 3seq software. Second, the recombination impact on interaction between the Spike protein and ACE2 receptor as well as neutralizing antibodies (nAbs), was analyzed using docking tools. Recombination was detected in 56.91% and 82.20% of BQ and ML strains, respectively. It took place mainly in spike and ORF1a genes. For BQ recombinant strains, the docking analysis showed that the spike interacted strongly with ACE2 and weakly with nAbs. The mutations S373P, S375F and T376A constitute a residue network that enhances the RBD interaction with ACE2. Thirteen mutations in RBD (S373P, S375F, T376A, D405N, R408S, K417N, N440K, S477N, P494S, Q498R, N501Y, and Y505H) and NTD (Y240H) seem to be implicated in immune evasion of recombinants by altering spike interaction with nAbs. In conclusion, this "in silico" study demonstrated that the recombination mechanism is frequent among Omicron BQ and ML variants. It highlights new key mutations, that potentially implicated in enhancement of spike binding to ACE2 (F376A) and escape from nAbs (RBD: F376A, D405N, R408S, N440K, S477N, P494S, and Y505H; NTD: Y240H). Our findings present considerable insights for the elaboration of effective prophylaxis and therapeutic strategies against future SARS-CoV-2 waves.
Collapse
Affiliation(s)
- Marwa Arbi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Marwa Khedhiri
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
- Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Kaouther Ayouni
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
- Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Oussema Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
- Higher Institute of Medical Technologies of Tunis, Tunis Al Manar University, Tunis, Tunisia
| | - Samar Dhouib
- High School of Statistics and Analysis of Information (ESSAI), University of Carthage, Tunis, Tunisia
| | - Nidhal Ghanmi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Alia Benkahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Henda Triki
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
- Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sondes Haddad-Boubaker
- Laboratory of Clinical Virology, WHO Regional Reference Laboratory for Poliomyelitis and Measles in the Eastern Mediterranean Region, Pasteur Institute of Tunis, University Tunis El Manar, Tunis, Tunisia
- Research Laboratory: "Virus, Vector and Host" (LR20IPT02), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Clinical Investigation Center (CIC), Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
2
|
Yin Q, Liu W, Jiang Y, Feng Q, Wang X, Dou H, Liu Z, He F, Fan Y, Jiao B, Jiao B. Comprehensive genomic analysis of the SARS-CoV-2 Omicron variant BA.2.76 in Jining City, China, 2022. BMC Genomics 2024; 25:378. [PMID: 38632523 PMCID: PMC11022347 DOI: 10.1186/s12864-024-10246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE This study aims to analyze the molecular characteristics of the novel coronavirus (SARS-CoV-2) Omicron variant BA.2.76 in Jining City, China. METHODS Whole-genome sequencing was performed on 87 cases of SARS-CoV-2 infection. Evolutionary trees were constructed using bioinformatics software to analyze sequence homology, variant sites, N-glycosylation sites, and phosphorylation sites. RESULTS All 87 SARS-CoV-2 whole-genome sequences were classified under the evolutionary branch of the Omicron variant BA.2.76. Their similarity to the reference strain Wuhan-Hu-1 ranged from 99.72 to 99.74%. In comparison to the reference strain Wuhan-Hu-1, the 87 sequences exhibited 77-84 nucleotide differences and 27 nucleotide deletions. A total of 69 amino acid variant sites, 9 amino acid deletions, and 1 stop codon mutation were identified across 18 proteins. Among them, the spike (S) protein exhibited the highest number of variant sites, and the ORF8 protein showed a Q27 stop mutation. Multiple proteins displayed variations in glycosylation and phosphorylation sites. CONCLUSION SARS-CoV-2 continues to evolve, giving rise to new strains with enhanced transmission, stronger immune evasion capabilities, and reduced pathogenicity. The application of high-throughput sequencing technologies in the epidemic prevention and control of COVID-19 provides crucial insights into the evolutionary and variant characteristics of the virus at the genomic level, thereby holding significant implications for the prevention and control of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Qiang Yin
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Wei Liu
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Yajuan Jiang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Qiang Feng
- Department of Laboratory, Rencheng Center for Disease Control and Prevention, Jining, China
| | - Xiaoyu Wang
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Huixin Dou
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Zanzan Liu
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China
| | - Feifei He
- Computer Information Technology, Northern Arizona University, Arizona, USA
| | - Yingying Fan
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China.
| | - Baihai Jiao
- Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA.
| | - Boyan Jiao
- Department of Laboratory, Jining Center for Disease Control and Prevention, Jining, China.
| |
Collapse
|
3
|
Gonzalez-Alba JM, Rojo-Alba S, Perez-Martinez Z, Boga JA, Alvarez-Arguelles ME, Gomez J, Herrero P, Costales I, Alba LM, Martin-Rodriguez G, Campo R, Castelló-Abietar C, Sandoval M, Abreu-Salinas F, Coto E, Rodriguez M, Rubianes P, Sanchez ML, Vazquez F, Antuña L, Álvarez V, Melón García S. Monitoring and tracking the spread of SARS-CoV-2 in Asturias, Spain. Access Microbiol 2023; 5:000573.v4. [PMID: 37841093 PMCID: PMC10569657 DOI: 10.1099/acmi.0.000573.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Mutational analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can quantify the relative importance of variants over time, enable dominant mutations to be identified, and facilitate near real-time detection, comparison and tracking of evolving variants. SARS-CoV-2 in Asturias, an autonomous community of Spain with a large ageing population, and high levels of migration and tourism, was monitored and tracked from the beginning of the pandemic in February 2020 until its decline and stabilization in August 2021, and samples were characterized using whole genomic sequencing and single nucleotide polymorphisms. Data held in the GISAID database were analysed to establish patterns in the appearance and persistence of SARS-CoV-2 strains. Only 138 non-synonymous mutations occurring in more than 1 % of the population with SARS-CoV-2 were found, identifying ten major variants worldwide (seven arose before January 2021), 19 regional and one local. In Asturias only 17 different variants were found. After vaccination, no further regional major variants were found. Only half of the defined variants circulated and no new variants were generated, indicating that infection control measures such as rapid diagnosis, isolation and vaccination were efficient.
Collapse
Affiliation(s)
- Jose Maria Gonzalez-Alba
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Susana Rojo-Alba
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Zulema Perez-Martinez
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Jose A. Boga
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Marta Elena Alvarez-Arguelles
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Juan Gomez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Genética Molecular, Oviedo, Spain
| | - Pablo Herrero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Urgencias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Isabel Costales
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luz Maria Alba
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Gabriel Martin-Rodriguez
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rainer Campo
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Cristian Castelló-Abietar
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Marta Sandoval
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Fátima Abreu-Salinas
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Eliecer Coto
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Genética Molecular, Oviedo, Spain
| | - Mercedes Rodriguez
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Pablo Rubianes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Urgencias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Maria Luisa Sanchez
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Fernando Vazquez
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis Antuña
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Urgencias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Victoria Álvarez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Genética Molecular, Oviedo, Spain
| | - Santiago Melón García
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
4
|
Jiang H, Joshi A, Gan T, Janowski AB, Fujii C, Bricker TL, Darling TL, Harastani HH, Seehra K, Chen H, Tahan S, Jung A, Febles B, Blatter JA, Handley SA, Parikh BA, Wang D, Boon ACM. The Highly Conserved Stem-Loop II Motif Is Dispensable for SARS-CoV-2. J Virol 2023; 97:e0063523. [PMID: 37223945 PMCID: PMC10308922 DOI: 10.1128/jvi.00635-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/25/2023] Open
Abstract
The stem-loop II motif (s2m) is an RNA structural element that is found in the 3' untranslated region (UTR) of many RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Though the motif was discovered over 25 years ago, its functional significance is unknown. In order to understand the importance of s2m, we created viruses with deletions or mutations of the s2m by reverse genetics and also evaluated a clinical isolate harboring a unique s2m deletion. Deletion or mutation of the s2m had no effect on growth in vitro or on growth and viral fitness in Syrian hamsters in vivo. We also compared the secondary structure of the 3' UTR of wild-type and s2m deletion viruses using selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) and dimethyl sulfate mutational profiling and sequencing (DMS-MaPseq). These experiments demonstrate that the s2m forms an independent structure and that its deletion does not alter the overall remaining 3'-UTR RNA structure. Together, these findings suggest that s2m is dispensable for SARS-CoV-2. IMPORTANCE RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), contain functional structures to support virus replication, translation, and evasion of the host antiviral immune response. The 3' untranslated region of early isolates of SARS-CoV-2 contained a stem-loop II motif (s2m), which is an RNA structural element that is found in many RNA viruses. This motif was discovered over 25 years ago, but its functional significance is unknown. We created SARS-CoV-2 with deletions or mutations of the s2m and determined the effect of these changes on viral growth in tissue culture and in rodent models of infection. Deletion or mutation of the s2m element had no effect on growth in vitro or on growth and viral fitness in Syrian hamsters in vivo. We also observed no impact of the deletion on other known RNA structures in the same region of the genome. These experiments demonstrate that s2m is dispensable for SARS-CoV-2.
Collapse
Affiliation(s)
- Hongbing Jiang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tianyu Gan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew B. Janowski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chika Fujii
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Traci L. Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamarand L. Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Houda H. Harastani
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kuljeet Seehra
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hongwei Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Stephen Tahan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ana Jung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Binita Febles
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua A. Blatter
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott A. Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bijal A. Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adrianus C. M. Boon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Wang X, Zhu X, Lin Y, He L, Yang J, Wang C, Zhu W. Tracking the first SARS-CoV-2 Omicron BA.5.1.3 outbreak in China. Front Microbiol 2023; 14:1183633. [PMID: 37275159 PMCID: PMC10232789 DOI: 10.3389/fmicb.2023.1183633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
The SARS-CoV-2 is still undergoing rapid evolution, resulting in the emergence of several variants of concern, especially the Omicron variants (B.1.1.529), which are surging worldwide. In this study, we tracked Omicron subvariant BA.5.1.3 as the causative agent in the Hainan Province wave in China, which started on 1 August 2022. This was China's first case of Omicron subvariant BA.5.1.3 and led to an indefinite total lockdown in Hainan with more than 8,500 confirmed cases. We obtained 391 whole genomes from positive nasopharyngeal swab samples in the city of Sanya in Hainan Province, which was the center of this outbreak. More than half of the infected cases were female (58%, 227/391) with a median age of 37.0 years (IQR 23.0-53.0). Median Ct values were 24.9 (IQR 22.6-27.3) and 25.2 (IQR 22.9-27.6) for ORF1ab and N genes, respectively. The total single-nucleotide polymorphism (SNP) numbers of Omicron BA.5.1.3 sampled in Sanya (median 69.0, IQR = 69.0-70.0) compared to those worldwide (median 63.0, IQR = 61.0-64.0) showed a significant difference (p < 0.05). Unique core mutations, including three non-synonymous mutations in ORF1ab (Y1064N, S2844G, and R3574K) and one synonymous mutation in ORF3a (S74S), were found. Phylogenetic analysis showed that virus from Sanya formed an independent sub-clade within the BA.5.1.3 subvariant, and could be divided into 15 haplotypes based on the S gene. The most recent common ancestor for the virus from Sanya was estimated as appearing on 5 July 2022, with 95% HPD ranging from 15 May to 20 September 2022. Thanks to our results, we were also able to delineate the mutational profile of this outbreak and highlight the importance of global genomic surveillance and data sharing.
Collapse
Affiliation(s)
- Xiaoxia Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Central and Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, China
| | - Xiong Zhu
- Central and Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, China
| | - Yujin Lin
- Central and Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, China
| | - Lvfen He
- Central and Clinical Laboratory of Sanya People's Hospital, Sanya, Hainan, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wentao Zhu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Jiang H, Joshi A, Gan T, Janowski AB, Fujii C, Bricker TL, Darling TL, Harastani HH, Seehra K, Chen H, Tahan S, Jung A, Febles B, Blatter JA, Handley SA, Parikh BA, Wang D, Boon ACM. The highly conserved stem-loop II motif is dispensable for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532878. [PMID: 36993345 PMCID: PMC10055069 DOI: 10.1101/2023.03.15.532878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The stem-loop II motif (s2m) is a RNA structural element that is found in the 3' untranslated region (UTR) of many RNA viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Though the motif was discovered over twenty-five years ago, its functional significance is unknown. In order to understand the importance of s2m, we created viruses with deletions or mutations of the s2m by reverse genetics and also evaluated a clinical isolate harboring a unique s2m deletion. Deletion or mutation of the s2m had no effect on growth in vitro , or growth and viral fitness in Syrian hamsters in vivo . We also compared the secondary structure of the 3' UTR of wild type and s2m deletion viruses using SHAPE-MaP and DMS-MaPseq. These experiments demonstrate that the s2m forms an independent structure and that its deletion does not alter the overall remaining 3'UTR RNA structure. Together, these findings suggest that s2m is dispensable for SARS-CoV-2. IMPORTANCE RNA viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contain functional structures to support virus replication, translation and evasion of the host antiviral immune response. The 3' untranslated region of early isolates of SARS-CoV-2 contained a stem-loop II motif (s2m), which is a RNA structural element that is found in many RNA viruses. This motif was discovered over twenty-five years ago, but its functional significance is unknown. We created SARS-CoV-2 with deletions or mutations of the s2m and determined the effect of these changes on viral growth in tissue culture and in rodent models of infection. Deletion or mutation of the s2m element had no effect on growth in vitro , or growth and viral fitness in Syrian hamsters in vivo . We also observed no impact of the deletion on other known RNA structures in the same region of the genome. These experiments demonstrate that the s2m is dispensable for SARS-CoV-2.
Collapse
Affiliation(s)
- Hongbing Jiang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Astha Joshi
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tianyu Gan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew B Janowski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chika Fujii
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Traci L Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamarand L Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Houda H. Harastani
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kuljeet Seehra
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hongwei Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Stephen Tahan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ana Jung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Binita Febles
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua A Blatter
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bijal A Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Address correspondence to: Adrianus Boon (), Washington University School of Medicine, 660 Euclid Avenue, Campus Box 8051, St Louis MO 63110 USA. or David Wang (), Washington University School of Medicine, 425 S Euclid Avenue, Campus Box 8230, St Louis MO 63110 USA
| | - Adrianus CM Boon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Lead contact
- Address correspondence to: Adrianus Boon (), Washington University School of Medicine, 660 Euclid Avenue, Campus Box 8051, St Louis MO 63110 USA. or David Wang (), Washington University School of Medicine, 425 S Euclid Avenue, Campus Box 8230, St Louis MO 63110 USA
| |
Collapse
|
7
|
Horlacher M, Oleshko S, Hu Y, Ghanbari M, Cantini G, Schinke P, Vergara EE, Bittner F, Mueller NS, Ohler U, Moyon L, Marsico A. A computational map of the human-SARS-CoV-2 protein-RNA interactome predicted at single-nucleotide resolution. NAR Genom Bioinform 2023; 5:lqad010. [PMID: 36814457 PMCID: PMC9940458 DOI: 10.1093/nargab/lqad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/10/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
RNA-binding proteins (RBPs) are critical host factors for viral infection, however, large scale experimental investigation of the binding landscape of human RBPs to viral RNAs is costly and further complicated due to sequence variation between viral strains. To fill this gap, we investigated the role of RBPs in the context of SARS-CoV-2 by constructing the first in silico map of human RBP-viral RNA interactions at nucleotide-resolution using two deep learning methods (pysster and DeepRiPe) trained on data from CLIP-seq experiments on more than 100 human RBPs. We evaluated conservation of RBP binding between six other human pathogenic coronaviruses and identified sites of conserved and differential binding in the UTRs of SARS-CoV-1, SARS-CoV-2 and MERS. We scored the impact of mutations from 11 variants of concern on protein-RNA interaction, identifying a set of gain- and loss-of-binding events, as well as predicted the regulatory impact of putative future mutations. Lastly, we linked RBPs to functional, OMICs and COVID-19 patient data from other studies, and identified MBNL1, FTO and FXR2 RBPs as potential clinical biomarkers. Our results contribute towards a deeper understanding of how viruses hijack host cellular pathways and open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Marc Horlacher
- Computational Health Center, Helmholtz Center Munich, Munich, Germany
| | - Svitlana Oleshko
- Computational Health Center, Helmholtz Center Munich, Munich, Germany
| | - Yue Hu
- Computational Health Center, Helmholtz Center Munich, Munich, Germany
- Informatics 12 Chair of Bioinformatics, Technical University Munich, Garching, Germany
| | - Mahsa Ghanbari
- Institutes of Biology and Computer Science, Humboldt University, Berlin, Germany
- Max Delbruck Center, Computational Regulatory Genomics, Berlin, Germany
| | - Giulia Cantini
- Computational Health Center, Helmholtz Center Munich, Munich, Germany
| | - Patrick Schinke
- Computational Health Center, Helmholtz Center Munich, Munich, Germany
| | | | | | | | - Uwe Ohler
- Institutes of Biology and Computer Science, Humboldt University, Berlin, Germany
- Max Delbruck Center, Computational Regulatory Genomics, Berlin, Germany
| | - Lambert Moyon
- Computational Health Center, Helmholtz Center Munich, Munich, Germany
| | - Annalisa Marsico
- Computational Health Center, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
8
|
State of the art in epitope mapping and opportunities in COVID-19. Future Sci OA 2023; 16:FSO832. [PMID: 36897962 PMCID: PMC9987558 DOI: 10.2144/fsoa-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The understanding of any disease calls for studying specific biological structures called epitopes. One important tool recently drawing attention and proving efficiency in both diagnosis and vaccine development is epitope mapping. Several techniques have been developed with the urge to provide precise epitope mapping for use in designing sensitive diagnostic tools and developing rpitope-based vaccines (EBVs) as well as therapeutics. In this review, we will discuss the state of the art in epitope mapping with a special emphasis on accomplishments and opportunities in combating COVID-19. These comprise SARS-CoV-2 variant analysis versus the currently available immune-based diagnostic tools and vaccines, immunological profile-based patient stratification, and finally, exploring novel epitope targets for potential prophylactic, therapeutic or diagnostic agents for COVID-19.
Collapse
|
9
|
Demongeot J, Fougère C. mRNA COVID-19 Vaccines-Facts and Hypotheses on Fragmentation and Encapsulation. Vaccines (Basel) 2022; 11:40. [PMID: 36679885 PMCID: PMC9864138 DOI: 10.3390/vaccines11010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The adventure of the mRNA vaccine began thirty years ago in the context of influenza. This consisted in encapsulating the mRNA coding for a viral protein in a lipid particle. We show how the mRNA encoding S protein has been modified for that purpose in the context of the anti-SARS-CoV-2 vaccination. RESULTS by using data coming from genetic and epidemiologic databases, we show the theoretical possibility of fragmentation of this mRNA into small RNA sequences capable of inhibiting important bio-syntheses such as the production of beta-globin. DISCUSSION we discuss two aspects related to mRNA vaccine: (i) the plausibility of mRNA fragmentation, and (ii) the role of liposomal nanoparticles (LNPs) used in the vaccine and their impact on mRNA biodistribution. CONCLUSION we insist on the need to develop lipid nanoparticles allowing personalized administration of vaccines and avoiding adverse effects due to mRNA fragmentation and inefficient biodistribution. Hence, we recommend (i) adapting the mRNA of vaccines to the least mutated virus proteins and (ii) personalizing its administration to the categories of chronic patients at risk most likely to suffer from adverse effects.
Collapse
Affiliation(s)
- Jacques Demongeot
- AGEIS & Telecom4Health, Faculty of Medicine, University Grenoble Alpes, 38700 La Tronche, France
| | | |
Collapse
|
10
|
Alisoltani A, Jaroszewski L, Godzik A, Iranzadeh A, Simons LM, Dean TJ, Lorenzo-Redondo R, Hultquist JF, Ozer EA. ViralVar: A Web Tool for Multilevel Visualization of SARS-CoV-2 Genomes. Viruses 2022; 14:2714. [PMID: 36560718 PMCID: PMC9781208 DOI: 10.3390/v14122714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The unprecedented growth of publicly available SARS-CoV-2 genome sequence data has increased the demand for effective and accessible SARS-CoV-2 data analysis and visualization tools. The majority of the currently available tools either require computational expertise to deploy them or limit user input to preselected subsets of SARS-CoV-2 genomes. To address these limitations, we developed ViralVar, a publicly available, point-and-click webtool that gives users the freedom to investigate and visualize user-selected subsets of SARS-CoV-2 genomes obtained from the GISAID public database. ViralVar has two primary features that enable: (1) the visualization of the spatiotemporal dynamics of SARS-CoV-2 lineages and (2) a structural/functional analysis of genomic mutations. As proof-of-principle, ViralVar was used to explore the evolution of the SARS-CoV-2 pandemic in the USA in pediatric, adult, and elderly populations (n > 1.7 million genomes). Whereas the spatiotemporal dynamics of the variants did not differ between these age groups, several USA-specific sublineages arose relative to the rest of the world. Our development and utilization of ViralVar to provide insights on the evolution of SARS-CoV-2 in the USA demonstrates the importance of developing accessible tools to facilitate and accelerate the large-scale surveillance of circulating pathogens.
Collapse
Affiliation(s)
- Arghavan Alisoltani
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lukasz Jaroszewski
- Biosciences Division, School of Medicine, University of California Riverside, Riverside, CA 92507, USA
| | - Adam Godzik
- Biosciences Division, School of Medicine, University of California Riverside, Riverside, CA 92507, USA
| | - Arash Iranzadeh
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Lacy M. Simons
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Taylor J. Dean
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Judd F. Hultquist
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Egon A. Ozer
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Xu Z, Yang D, Wang L, Demongeot J. Statistical analysis supports UTR (untranslated region) deletion theory in SARS-CoV-2. Virulence 2022; 13:1772-1789. [PMID: 36217240 PMCID: PMC9553139 DOI: 10.1080/21505594.2022.2132059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 11/08/2022] Open
Abstract
It was noticed that the mortality rate of SARS-CoV-2 infection experienced a significant declination in the early stage of the epidemic. We suspect that the sharp deterioration of virus toxicity is related to the deletion of the untranslated region (UTR) of the virus genome. It was found that the genome length of SARS-CoV-2 engaged a significant truncation due to UTR deletion after a mega-sequence analysis. Sequence similarity analysis further indicated that short UTR strains originated from its long UTR ancestors after an irreversible deletion. A good correlation was discovered between genome length and mortality, which demonstrated that the deletion of the virus UTR significantly affected the toxicity of the virus. This correlation was further confirmed in a significance analysis of the genetic influence on the clinical outcomes. The viral genome length of hospitalized patients was significantly more extensive than that of asymptomatic patients. In contrast, the viral genome length of asymptomatic was considerably longer than that of ordinary patients with symptoms. A genome-level mutation scanning was performed to systematically evaluate the influence of mutations at each position on virulence. The results indicated that UTR deletion was the primary driving force in alternating virus virulence in the early evolution. In the end, we proposed a mathematical model to explain why this UTR deletion was not continuous.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou, China
| | - Dongying Yang
- Department of Medicine, Dezhou University, Dezhou, China
| | - Liyan Wang
- Department of Life Science, Dezhou University, Dezhou, China
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), La Tronche, France
| |
Collapse
|
12
|
Arikan A, Sayan M. Investigation of SARS-CoV-2 Variants and Their Effect on SARS-CoV-2 Monoclonal Antibodies, Convalescent and Vaccine Plasma by a Novel Web Tool. Diagnostics (Basel) 2022; 12:diagnostics12112869. [PMID: 36428929 PMCID: PMC9689196 DOI: 10.3390/diagnostics12112869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
(1) Background: SARS-CoV-2 variants possess specific mutations throughout their genome; however, the effect of these mutations on pathogenesis is little known. The study aimed to identify SARS-CoV-2 variants and their susceptibility rate against monoclonal antibodies, convalescent, and vaccine plasma. (2) Methods: Strains isolated from COVID-19 cases in Turkey in April and September 2021 were involved. Illuma Nextera XT was processed for NGS, followed by virtual phenotyping (Coronavirus Antiviral and Resistance Database (CoV-RDB) by Stanford University). (3) Results: Among 211 strains, 79% were SARS-CoV-2 variants. B.1.1.7 (Alpha) was the most dominant, followed by B.1.617.2 (Delta), B.1.351 (Beta), and B.1.525 (Eta). Alpha and Delta were less susceptible to Etesevimab-Sotrovimab and Bamlanivimab-Etesevimab, respectively. Reduced efficacy was observed for convalescent plasma in Beta and Delta; AstraZeneca, Comirnaty plus AstraZeneca in Alpha; Comirnaty, Moderna, Novovax in Beta; Comirnaty in Delta. (4) Conclusion: CoV-RDB analysis is an efficient, rapid, and helpful web tool for SARS-CoV-2 variant detection and susceptibility analysis.
Collapse
Affiliation(s)
- Ayse Arikan
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, Nicosia 99138, Northern Cyprus, Turkey
- DESAM Research Institute, Near East University, Nicosia 99138, Northern Cyprus, Turkey
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Kyrenia University, Kyrenia 99320, Northern Cyprus, Turkey
- Correspondence:
| | - Murat Sayan
- DESAM Research Institute, Near East University, Nicosia 99138, Northern Cyprus, Turkey
- PCR Unit, Research and Education Hospital, Kocaeli University, Izmit 41380, Kocaeli, Turkey
| |
Collapse
|
13
|
Analysis of the mutation dynamics of SARS-CoV-2 genome in the samples from Georgia State of the United States. Gene 2022; 841:146774. [PMID: 35905853 PMCID: PMC9323210 DOI: 10.1016/j.gene.2022.146774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/12/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The COVID-19 is caused by a novel coronavirus SARS-CoV-2, which started from China. It spread rapidly throughout the world and was later declared a pandemic by the WHO. Over the course of time, SARS-CoV-2 has mutated for survival advantages, and this led to multiple variants. Multiple studies on mutations identification in SARS-CoV2 have been published covering extensive sample areas. The purpose of this study was to limit the sample area to the Georgia state in the U.S. and to analyze the genome sequences for mutation profiling across the genome and origin of variants. METHODS The genome sequences (n = 3,970) were obtained from the NCBI database as of June 12, 2021, with the filter of being complete sequenced genomes, homo-sapiens host, and only from Georgia State of the U.S. NextClade, an online tool was used for the analysis of the sequences using Wuhan-Hu-1/2019 as a reference genome. The algorithm was sequence alignment, translation, mutation calling, phylogenetic placement, clade assignment, and quality control (QC). Thirty-six samples with bad QC were removed from the mutational analysis. RESULTS A total 117,743 mutations in the nucleotides were identified (averaging 31.5 mutations per sample). The mutations A23403G, C3037T, C241T, and C14408T were detected in 98% of the samples. Also, a total of 75,517 mutations in the amino acid were identified (averaging 20.2 mutations per sample). The mutations D614G and P314L were identified in >97% samples whereas R203K, G204R, P681H, and N501Y were detected in >50% samples. Analysis also revealed 16 different clades with 20I (49.6%). Clades 20G (24.2%) and 20A (5.5%) being the most abundant, showed that SARS-CoV-2 in the Georgia State originated mainly from Southeast England, other parts of the U.S., and several countries in Western Europe. CONCLUSION Looking at the three most common variants in Georgia State of the U.S., we could determine the primary locations of transmission or origin for the virus, and our analyses indicates that majority of the cases originated from Southeast England (Clade 20I), the U.S. itself (Clade 20G), and from Western Europe (Clade 20C).
Collapse
|
14
|
Madi N, Safar HA, Mustafa AS, Chehadeh W, Asadzadeh M, Sadeq M, Alawadhi E, Al-Muhaini A, Benthani FA. Molecular epidemiology and genetic characterization of SARS-CoV-2 in Kuwait: A descriptive study. Front Microbiol 2022; 13:858770. [PMID: 36090111 PMCID: PMC9459148 DOI: 10.3389/fmicb.2022.858770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been fatal to human health, affecting almost the entire world. Here we reported, for the first time, characterization of the genetic variants of SARS-CoV-2 circulating in Kuwait to understand their genetic diversity and monitor the accumulation of mutations over time. This study randomly enrolled 209 COVID-19 patients whose nasopharyngeal swabs were positive for SARS-CoV-2 between February 2020 and June 2021 using RT-PCR. The whole genomes of SARS-CoV-2 from the nasopharyngeal swabs were sequenced using the Oxford Nanopore sequencing technology following the ARTIC network protocol. Whole-genome sequencing has identified different clades/sub-clades circulating in Kuwait, mimicking the virus’s global spread. Clade 20A was dominant from February 2020 until January 2021, and then clade 20I (Alpha, V1) emerged and dominated. In June 2021, the number of cases infected with clades 21I, 21A, and 21 J (Delta) increased and dominated. We detected several known clade-defining missense and synonymous mutations and other missense mutations in the genes encoding important viral proteins, including ORF1a, S, ORF3a, ORF8 regions and a novel mutation in the N region. ORF1ab region harbored more mutations and deletions (n = 62, 49.2%) compared to the other 12 gene regions, and the most prevalent missense mutations were P314L (97%) in ORF1b and D614G (97%) in the S glycoprotein regions. Detecting and analyzing mutations and monitoring the evolution of SARS-CoV-2 over time is essential to help better understand the spread of various clades/strains of SARS-CoV-2 and their implications for pathogenesis. In addition, knowledge of the circulating variants and genome sequence variability of SARS-CoV-2 may potentially influence the development of vaccines and antiviral drugs to control the COVID-19 pandemic.
Collapse
Affiliation(s)
- Nada Madi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
- *Correspondence: Nada Madi,
| | - Hussain A. Safar
- OMICS Research Unit, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Wassim Chehadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait, Kuwait
| | | | - Ebaa Alawadhi
- Jaber Al-Ahmad Hospital, Ministry of Health, Kuwait, Kuwait
| | - Ali Al-Muhaini
- Jaber Al-Ahmad Hospital, Ministry of Health, Kuwait, Kuwait
| | - Fahad A. Benthani
- Research Institute for Developmental Medicine, Johannes Kepler University of Linz, Linz, Austria
| |
Collapse
|
15
|
Mugnier N, Griffon A, Simon B, Rambaud M, Regue H, Bal A, Destras G, Tournoud M, Jaillard M, Betraoui A, Santiago E, Cheynet V, Vignola A, Ligeon V, Josset L, Brengel-Pesce K. Evaluation of EPISEQ SARS-CoV-2 and a Fully Integrated Application to Identify SARS-CoV-2 Variants from Several Next-Generation Sequencing Approaches. Viruses 2022; 14:1674. [PMID: 36016297 PMCID: PMC9416160 DOI: 10.3390/v14081674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
Whole-genome sequencing has become an essential tool for real-time genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide. The handling of raw next-generation sequencing (NGS) data is a major challenge for sequencing laboratories. We developed an easy-to-use web-based application (EPISEQ SARS-CoV-2) to analyse SARS-CoV-2 NGS data generated on common sequencing platforms using a variety of commercially available reagents. This application performs in one click a quality check, a reference-based genome assembly, and the analysis of the generated consensus sequence as to coverage of the reference genome, mutation screening and variant identification according to the up-to-date Nextstrain clade and Pango lineage. In this study, we validated the EPISEQ SARS-CoV-2 pipeline against a reference pipeline and compared the performance of NGS data generated by different sequencing protocols using EPISEQ SARS-CoV-2. We showed a strong agreement in SARS-CoV-2 clade and lineage identification (>99%) and in spike mutation detection (>99%) between EPISEQ SARS-CoV-2 and the reference pipeline. The comparison of several sequencing approaches using EPISEQ SARS-CoV-2 revealed 100% concordance in clade and lineage classification. It also uncovered reagent-related sequencing issues with a potential impact on SARS-CoV-2 mutation reporting. Altogether, EPISEQ SARS-CoV-2 allows an easy, rapid and reliable analysis of raw NGS data to support the sequencing efforts of laboratories with limited bioinformatics capacity and those willing to accelerate genomic surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Nathalie Mugnier
- BioMérieux SA, 69280 Marcy-l’Étoile, France; (N.M.); (A.G.); (M.R.); (M.T.); (M.J.); (A.B.); (E.S.); (V.C.); (V.L.)
| | - Aurélien Griffon
- BioMérieux SA, 69280 Marcy-l’Étoile, France; (N.M.); (A.G.); (M.R.); (M.T.); (M.J.); (A.B.); (E.S.); (V.C.); (V.L.)
| | - Bruno Simon
- GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, 69004 Lyon, France; (B.S.); (H.R.); (A.B.); (G.D.); (L.J.)
| | - Maxence Rambaud
- BioMérieux SA, 69280 Marcy-l’Étoile, France; (N.M.); (A.G.); (M.R.); (M.T.); (M.J.); (A.B.); (E.S.); (V.C.); (V.L.)
| | - Hadrien Regue
- GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, 69004 Lyon, France; (B.S.); (H.R.); (A.B.); (G.D.); (L.J.)
| | - Antonin Bal
- GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, 69004 Lyon, France; (B.S.); (H.R.); (A.B.); (G.D.); (L.J.)
| | - Gregory Destras
- GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, 69004 Lyon, France; (B.S.); (H.R.); (A.B.); (G.D.); (L.J.)
| | - Maud Tournoud
- BioMérieux SA, 69280 Marcy-l’Étoile, France; (N.M.); (A.G.); (M.R.); (M.T.); (M.J.); (A.B.); (E.S.); (V.C.); (V.L.)
| | - Magali Jaillard
- BioMérieux SA, 69280 Marcy-l’Étoile, France; (N.M.); (A.G.); (M.R.); (M.T.); (M.J.); (A.B.); (E.S.); (V.C.); (V.L.)
| | - Abel Betraoui
- BioMérieux SA, 69280 Marcy-l’Étoile, France; (N.M.); (A.G.); (M.R.); (M.T.); (M.J.); (A.B.); (E.S.); (V.C.); (V.L.)
| | - Emmanuelle Santiago
- BioMérieux SA, 69280 Marcy-l’Étoile, France; (N.M.); (A.G.); (M.R.); (M.T.); (M.J.); (A.B.); (E.S.); (V.C.); (V.L.)
| | - Valérie Cheynet
- BioMérieux SA, 69280 Marcy-l’Étoile, France; (N.M.); (A.G.); (M.R.); (M.T.); (M.J.); (A.B.); (E.S.); (V.C.); (V.L.)
- Joint Research Unit Hospices Civils de Lyon-bioMerieux, Centre Hospitalier Lyon Sud, 69310 Pierre-Benite, France
| | | | - Véronique Ligeon
- BioMérieux SA, 69280 Marcy-l’Étoile, France; (N.M.); (A.G.); (M.R.); (M.T.); (M.J.); (A.B.); (E.S.); (V.C.); (V.L.)
| | - Laurence Josset
- GenEPII Sequencing Platform, Institut des Agents Infectieux, Hospices Civils de Lyon, 69004 Lyon, France; (B.S.); (H.R.); (A.B.); (G.D.); (L.J.)
| | - Karen Brengel-Pesce
- BioMérieux SA, 69280 Marcy-l’Étoile, France; (N.M.); (A.G.); (M.R.); (M.T.); (M.J.); (A.B.); (E.S.); (V.C.); (V.L.)
- Joint Research Unit Hospices Civils de Lyon-bioMerieux, Centre Hospitalier Lyon Sud, 69310 Pierre-Benite, France
| |
Collapse
|
16
|
Yu T, Ling Q, Xu M, Wang N, Wang L, Lin H, Cao M, Ma Y, Wang Y, Li K, Liubing D, Jin Y, Li Y, Guo D, Peng X, Chen Y, Zhao B, Pan J. ORF8 protein of SARS‐CoV‐2 reduces male fertility in mice. J Med Virol 2022; 94:4193-4205. [PMID: 35570330 PMCID: PMC9348351 DOI: 10.1002/jmv.27855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/11/2022]
Abstract
As one of the most rapidly evolving proteins of the genus Betacoronavirus, open reading frames (ORF8's) function and potential pathological consequence in vivo are still obscure. In this study, we show that the secretion of ORF8 is dependent on its N‐terminal signal peptide sequence and can be inhibited by reactive oxygen species scavenger and endoplasmic reticulum‐Golgi transportation inhibitor in cultured cells. To trace the effect of its possible in vivo secretion, we examined the plasma samples of coronavirus disease 2019 (COVID‐19) convalescent patients and found that the patients aged from 40 to 60 had higher antibody titers than those under 40. To explore ORF8's in vivo function, we administered the mice with ORF8 via tail‐vein injection to simulate the circulating ORF8 in the patient. Although no apparent difference in body weight, food intake, and vitality was detected between vehicle‐ and ORF8‐treated mice, the latter displayed morphological abnormalities of testes and epididymides, as indicated by the loss of the central ductal lumen accompanied by a decreased fertility in 5‐week‐old male mice. Furthermore, the analysis of gene expression in the testes between vehicle‐ and ORF8‐treated mice identified a decreased expression of Col1a1, the loss of which is known to be associated with mice's infertility. Although whether our observation in mice could be translated to humans remains unclear, our study provides a potential mouse model that can be used to investigate the impact of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection on the human reproductive system.
Collapse
Affiliation(s)
- Ting Yu
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐sen University, No. 66, Gongchang Road, Guangming District, ShenzhenGuangdong518107China
| | - Qiao Ling
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐sen University, No. 66, Gongchang Road, Guangming District, ShenzhenGuangdong518107China
| | - Mengxin Xu
- School of Public Health (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityNo. 66, Gongchang Road, Guangming District, ShenzhenGuangdong518107China
| | - Niu Wang
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐sen University, No. 66, Gongchang Road, Guangming District, ShenzhenGuangdong518107China
| | - Lixia Wang
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐sen University, No. 66, Gongchang Road, Guangming District, ShenzhenGuangdong518107China
| | - Hanwen Lin
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐sen University, No. 66, Gongchang Road, Guangming District, ShenzhenGuangdong518107China
| | - Manqi Cao
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐sen University, No. 66, Gongchang Road, Guangming District, ShenzhenGuangdong518107China
| | - Yong Ma
- School of Public Health (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityNo. 66, Gongchang Road, Guangming District, ShenzhenGuangdong518107China
| | - Yuanyuan Wang
- School of Public Health (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityNo. 66, Gongchang Road, Guangming District, ShenzhenGuangdong518107China
| | - Kuibiao Li
- Guangzhou Center for Diseases Control and Prevention, GuangzhouGuangdongChina
| | - Du Liubing
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐sen University, No. 66, Gongchang Road, Guangming District, ShenzhenGuangdong518107China
| | - Yunyun Jin
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐sen University, No. 66, Gongchang Road, Guangming District, ShenzhenGuangdong518107China
| | - Ying Li
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐sen University, No. 66, Gongchang Road, Guangming District, ShenzhenGuangdong518107China
| | - Deyin Guo
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐sen University, No. 66, Gongchang Road, Guangming District, ShenzhenGuangdong518107China
| | - Xiaoxue Peng
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐sen University, No. 66, Gongchang Road, Guangming District, ShenzhenGuangdong518107China
| | - Yao‐qing Chen
- School of Public Health (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityNo. 66, Gongchang Road, Guangming District, ShenzhenGuangdong518107China
- Key Laboratory of Tropical Disease Control (Sun Yat‐sen University), Ministry of EducationGuangzhouChina
| | - Bo Zhao
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐sen University, No. 66, Gongchang Road, Guangming District, ShenzhenGuangdong518107China
| | - Ji‐An Pan
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐sen University, No. 66, Gongchang Road, Guangming District, ShenzhenGuangdong518107China
| |
Collapse
|
17
|
Janowski AB, Jiang H, Fujii C, Owen MC, Bricker TL, Darling TL, Harastani HH, Seehra K, Tahan S, Jung A, Febles B, Blatter JA, Handley SA, Parikh BA, Lulla V, Boon AC, Wang D. The highly conserved stem-loop II motif is important for the lifecycle of astroviruses but dispensable for SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.30.486882. [PMID: 35547847 PMCID: PMC9094099 DOI: 10.1101/2022.04.30.486882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The stem-loop II motif (s2m) is an RNA element present in viruses from divergent viral families, including astroviruses and coronaviruses, but its functional significance is unknown. We created deletions or substitutions of the s2m in astrovirus VA1 (VA1), classic human astrovirus 1 (HAstV1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For VA1, recombinant virus could not be rescued upon partial deletion of the s2m or substitutions of G-C base pairs. Compensatory substitutions that restored the G-C base-pair enabled recovery of VA1. For HAstV1, a partial deletion of the s2m resulted in decreased viral titers compared to wild-type virus, and reduced activity in a replicon system. In contrast, deletion or mutation of the SARS-CoV-2 s2m had no effect on the ability to rescue the virus, growth in vitro , or growth in Syrian hamsters. Our study demonstrates the importance of the s2m is virus-dependent.
Collapse
|
18
|
Tilloy V, Cuzin P, Leroi L, Guérin E, Durand P, Alain S. ASPICov: An automated pipeline for identification of SARS-Cov2 nucleotidic variants. PLoS One 2022; 17:e0262953. [PMID: 35081137 PMCID: PMC8791494 DOI: 10.1371/journal.pone.0262953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
ASPICov was developed to provide a rapid, reliable and complete analysis of NGS SARS-Cov2 samples to the biologist. This broad application tool allows to process samples from either capture or amplicon strategy and Illumina or Ion Torrent technology. To ensure FAIR data analysis, this Nextflow pipeline follows nf-core guidelines and use Singularity containers. Pipeline is implemented and available at https://gitlab.com/vtilloy/aspicov.
Collapse
Affiliation(s)
- Valentin Tilloy
- Centre National de Référence des Herpèsvirus, CHU Dupuytren, Limoges, France
- UF9481 Bioinformatique, CHU Dupuytren, Limoges, France
- UF8843 Génomique médicale, CHU Dupuytren, Limoges, France
- * E-mail:
| | - Pierre Cuzin
- IFREMER-IRSI-Service de Bioinformatique, Centre Bretagne, Plouzane, France
| | - Laura Leroi
- IFREMER-IRSI-Service de Bioinformatique, Centre Bretagne, Plouzane, France
| | - Emilie Guérin
- UF8843 Génomique médicale, CHU Dupuytren, Limoges, France
| | - Patrick Durand
- IFREMER-IRSI-Service de Bioinformatique, Centre Bretagne, Plouzane, France
| | - Sophie Alain
- Centre National de Référence des Herpèsvirus, CHU Dupuytren, Limoges, France
- UF8843 Génomique médicale, CHU Dupuytren, Limoges, France
| |
Collapse
|
19
|
Coding-Complete Genome Sequences of Alpha and Delta SARS-CoV-2 Variants from Kamphaeng Phet Province, Thailand, from May to July 2021. Microbiol Resour Announc 2021; 10:e0087721. [PMID: 34854728 PMCID: PMC8638590 DOI: 10.1128/mra.00877-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We report coding-complete genome sequences of 44 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains of the alpha and delta variants identified from patients in Kamphaeng Phet, Thailand. Two nonsense mutations in open reading frame 3a (ORF3a) (G254*) and ORF8 (K68*) were found in the alpha variant sequences. Two lineages of the delta variant, B.1.617.2 and AY.30, were found.
Collapse
|