1
|
Shinfuku MS, Domeignoz-Horta LA, Choudoir MJ, Frey SD, Mitchell MF, Ranjan R, DeAngelis KM. Seasonal effects of long-term warming on ecosystem function and bacterial diversity. PLoS One 2024; 19:e0311364. [PMID: 39446706 PMCID: PMC11500971 DOI: 10.1371/journal.pone.0311364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/09/2024] [Indexed: 10/26/2024] Open
Abstract
Across biomes, soil biodiversity promotes ecosystem functions. However, whether this relationship will be maintained within ecosystems under climate change is uncertain. Here, using two long-term soil warming experiments, we investigated how warming affects the relationship between ecosystem functions and bacterial diversity across seasons, soil horizons, and warming duration. Soils were sampled from these warming experiments located at the Harvard Forest Long-Term Ecological Research (LTER) site, where soils had been heated +5°C above ambient for 13 or 28 years at the time of sampling. We assessed seven measurements representative of different ecosystem functions and nutrient pools. We also surveyed bacterial community diversity. We found that ecosystem function was significantly affected by season, with autumn samples having a higher intercept than summer samples in our model, suggesting a higher overall baseline of ecosystem function in the fall. The effect of warming on bacterial diversity was similarly affected by season, where warming in the summer was associated with decreased bacterial evenness in the organic horizon. Despite the decreased bacterial evenness in the warmed plots, we found that the relationship between ecosystem function and bacterial diversity was unaffected by warming or warming duration. Our findings highlight that season is a consistent driver of ecosystem function as well as a modulator of climate change effects on bacterial community evenness.
Collapse
Affiliation(s)
- Melissa S. Shinfuku
- Microbiology Department, University of Massachusetts, Amherst, MA, United States of America
| | - Luiz A. Domeignoz-Horta
- Microbiology Department, University of Massachusetts, Amherst, MA, United States of America
- INRAE, AgroParisTech, UMR EcoSys, Université Paris-Saclay, Palaiseau, France
| | - Mallory J. Choudoir
- Microbiology Department, University of Massachusetts, Amherst, MA, United States of America
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States of America
| | - Serita D. Frey
- Center for Soil Biogeochemistry and Microbial Ecology, Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, United States of America
| | - Megan F. Mitchell
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, United States of America
| | - Ravi Ranjan
- Genomics Resource Laboratory, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Kristen M. DeAngelis
- Microbiology Department, University of Massachusetts, Amherst, MA, United States of America
| |
Collapse
|
2
|
Li S, Zhong L, Zhang B, Fan C, Gao Y, Wang M, Xiao H, Tang X. Microplastics induced the differential responses of microbial-driven soil carbon and nitrogen cycles under warming. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133141. [PMID: 38056262 DOI: 10.1016/j.jhazmat.2023.133141] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
The input of microplastics (MPs) and warming interfere with soil carbon (C) or nitrogen (N) cycles. Although the effects of warming and/or MPs on the cycles have been well studied, the biological coupling of microbial-driven cycles was neglected. Here, the synergistic changes of the cycles were investigated using batch incubation experiments. As results, the influences of MPs were not significant at 15, 20, and 25 °C, and yet, high temperature (i.e., 30 °C) reduced the respiration of high-concentration MPs-amended soil by 9.80%, and increased dissolved organic carbon (DOC) by 14.74%. In contrast, high temperature did not change the effect of MPs on N. The decrease of microbial biomass carbon (MBC) and the constant of microbial biomass nitrogen (MBN) indicated that microbial N utilization was enhanced, which might be attributed to the enrichments of adapted populations, such as Conexibacter, Acidothermus, and Acidibacter. These observations revealed that high temperature and MPs drove the differential response of soil C and N cycles. Additionally, the transcriptomic provided genomic evidence of the response. In summary, the high temperature was a prerequisite for the MPs-driven response, which underscored new ecological risks of MPs under global warming and emphasized the need for carbon emission reduction and better plastic product regulation.
Collapse
Affiliation(s)
- Shuang Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Linrui Zhong
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Baowei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Changzheng Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yuying Gao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Mier Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Huannian Xiao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
3
|
Liu XJA, Han S, Frey SD, Melillo JM, Zhou J, DeAngelis KM. Microbial responses to long-term warming differ across soil microenvironments. ISME COMMUNICATIONS 2024; 4:ycae051. [PMID: 38699060 PMCID: PMC11065356 DOI: 10.1093/ismeco/ycae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Soil carbon loss is likely to increase due to climate warming, but microbiomes and microenvironments may dampen this effect. In a 30-year warming experiment, physical protection within soil aggregates affected the thermal responses of soil microbiomes and carbon dynamics. In this study, we combined metagenomic analysis with physical characterization of soil aggregates to explore mechanisms by which microbial communities respond to climate warming across different soil microenvironments. Long-term warming decreased the relative abundances of genes involved in degrading labile compounds (e.g. cellulose), but increased those genes involved in degrading recalcitrant compounds (e.g. lignin) across aggregate sizes. These changes were observed in most phyla of bacteria, especially for Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes. Microbial community composition was considerably altered by warming, leading to declined diversity for bacteria and fungi but not for archaea. Microbial functional genes, diversity, and community composition differed between macroaggregates and microaggregates, indicating the essential role of physical protection in controlling microbial community dynamics. Our findings suggest that microbes have the capacity to employ various strategies to acclimate or adapt to climate change (e.g. warming, heat stress) by shifting functional gene abundances and community structures in varying microenvironments, as regulated by soil physical protection.
Collapse
Affiliation(s)
- Xiao Jun A Liu
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, United States
- Institute for Environmental Genomics and School of Biological Sciences, University of Oklahoma , Norman, OK 73019, United States
| | - Shun Han
- Institute for Environmental Genomics and School of Biological Sciences, University of Oklahoma , Norman, OK 73019, United States
| | - Serita D Frey
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, United States
| | - Jerry M Melillo
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics and School of Biological Sciences, University of Oklahoma , Norman, OK 73019, United States
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- School of Civil Engineering and Environmental Sciences and School of Computer Science, University of Oklahoma, Norman, OK 73019, United States
| | - Kristen M DeAngelis
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
4
|
Wang J, Chen S, Sun R, Liu B, Waghmode T, Hu C. Spatial and temporal dynamics of the bacterial community under experimental warming in field-grown wheat. PeerJ 2023; 11:e15428. [PMID: 37334112 PMCID: PMC10276554 DOI: 10.7717/peerj.15428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/25/2023] [Indexed: 06/20/2023] Open
Abstract
Climate change may lead to adverse effects on agricultural crops, plant microbiomes have the potential to help hosts counteract these effects. While plant-microbe interactions are known to be sensitive to temperature, how warming affects the community composition and functioning of plant microbiomes in most agricultural crops is still unclear. Here, we utilized a 10-year field experiment to investigate the effects of warming on root zone carbon availability, microbial activity and community composition at spatial (root, rhizosphere and bulk soil) and temporal (tillering, jointing and ripening stages of plants) scales in field-grown wheat (Triticum aestivum L.). The dissolved organic carbon and microbial activity in the rhizosphere were increased by soil warming and varied considerably across wheat growth stages. Warming exerted stronger effects on the microbial community composition in the root and rhizosphere samples than in the bulk soil. Microbial community composition, particularly the phyla Actinobacteria and Firmicutes, shifted considerably in response to warming. Interestingly, the abundance of a number of known copiotrophic taxa, such as Pseudomonas and Bacillus, and genera in Actinomycetales increased in the roots and rhizosphere under warming and the increase in these taxa implies that they may play a role in increasing the resilience of plants to warming. Taken together, we demonstrated that soil warming along with root proximity and plant growth status drives changes in the microbial community composition and function in the wheat root zone.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuaimin Chen
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | - Ruibo Sun
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | - Binbin Liu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- Xiong’an Institute of Innovation, Chinese Academy of Sciences, Xiong’an New Area, China
| | - Tatoba Waghmode
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | - Chunsheng Hu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- Xiong’an Institute of Innovation, Chinese Academy of Sciences, Xiong’an New Area, China
| |
Collapse
|
5
|
Domeignoz-Horta LA, Pold G, Erb H, Sebag D, Verrecchia E, Northen T, Louie K, Eloe-Fadrosh E, Pennacchio C, Knorr MA, Frey SD, Melillo JM, DeAngelis KM. Substrate availability and not thermal acclimation controls microbial temperature sensitivity response to long-term warming. GLOBAL CHANGE BIOLOGY 2023; 29:1574-1590. [PMID: 36448874 DOI: 10.1111/gcb.16544] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/18/2022] [Indexed: 05/28/2023]
Abstract
Microbes are responsible for cycling carbon (C) through soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms assumed to control the microbial physiological response to warming. Two mechanisms have been suggested to explain the long-term warming impact on microbial physiology: microbial thermal acclimation and changes in the quantity and quality of substrates available for microbial metabolism. Yet studies disentangling these two mechanisms are lacking. To resolve the drivers of changes in microbial physiology in response to long-term warming, we sampled soils from 13- and 28-year-old soil warming experiments in different seasons. We performed short-term laboratory incubations across a range of temperatures to measure the relationships between temperature sensitivity of physiology (growth, respiration, carbon use efficiency, and extracellular enzyme activity) and the chemical composition of soil organic matter. We observed apparent thermal acclimation of microbial respiration, but only in summer, when warming had exacerbated the seasonally-induced, already small dissolved organic matter pools. Irrespective of warming, greater quantity and quality of soil carbon increased the extracellular enzymatic pool and its temperature sensitivity. We propose that fresh litter input into the system seasonally cancels apparent thermal acclimation of C-cycling processes to decadal warming. Our findings reveal that long-term warming has indirectly affected microbial physiology via reduced C availability in this system, implying that earth system models including these negative feedbacks may be best suited to describe long-term warming effects on these soils.
Collapse
Affiliation(s)
- Luiz A Domeignoz-Horta
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Grace Pold
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hailey Erb
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - David Sebag
- IFP Energies Nouvelles, Rueil-Malmaison, France
- Faculty of Geosciences and the Environment, Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Eric Verrecchia
- Faculty of Geosciences and the Environment, Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Trent Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Katherine Louie
- The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Emiley Eloe-Fadrosh
- The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Christa Pennacchio
- The DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Melissa A Knorr
- School of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Serita D Frey
- School of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Jerry M Melillo
- The Ecosystems Center, Marine Biological Laboratories, Woods Hole, Massachusetts, USA
| | - Kristen M DeAngelis
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
6
|
Söllinger A, Séneca J, Borg Dahl M, Motleleng LL, Prommer J, Verbruggen E, Sigurdsson BD, Janssens I, Peñuelas J, Urich T, Richter A, Tveit AT. Down-regulation of the bacterial protein biosynthesis machinery in response to weeks, years, and decades of soil warming. SCIENCE ADVANCES 2022; 8:eabm3230. [PMID: 35333567 PMCID: PMC8956259 DOI: 10.1126/sciadv.abm3230] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/03/2022] [Indexed: 05/26/2023]
Abstract
How soil microorganisms respond to global warming is key to infer future soil-climate feedbacks, yet poorly understood. Here, we applied metatranscriptomics to investigate microbial physiological responses to medium-term (8 years) and long-term (>50 years) subarctic grassland soil warming of +6°C. Besides indications for a community-wide up-regulation of centralmetabolic pathways and cell replication, we observed a down-regulation of the bacterial protein biosynthesis machinery in the warmed soils, coinciding with a lower microbial biomass, RNA, and soil substrate content. We conclude that permanently accelerated reaction rates at higher temperatures and reduced substrate concentrations result in cellular reduction of ribosomes, the macromolecular complexes carrying out protein biosynthesis. Later efforts to test this, including a short-term warming experiment (6 weeks, +6°C), further supported our conclusion. Down-regulating the protein biosynthesis machinery liberates energy and matter, allowing soil bacteria to maintain high metabolic activities and cell division rates even after decades of warming.
Collapse
Affiliation(s)
- Andrea Söllinger
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Joana Séneca
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Mathilde Borg Dahl
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Liabo L. Motleleng
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Judith Prommer
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | | | | | | | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alexander T. Tveit
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|