1
|
Guo S, Zhang S. The Cysteine Protease CfAtg4 Interacts with CfAtg8 to Govern the Growth, Autophagy and Pathogenicity of Colletotrichum fructicola. J Fungi (Basel) 2024; 10:431. [PMID: 38921417 PMCID: PMC11204552 DOI: 10.3390/jof10060431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Camellia oleifera is a native woody oil plant in southern China and is infected with anthracnose wherever it is grown. We previously identified Colletotrichum fructicola as the major causal agent of anthracnose on C. oleifera and found that CfAtg8 regulates the pathogenicity and development of C. fructicola. Here, we revealed that CfAtg4 interacts with CfAtg8, contributing to the formation of autophagosomes. The CfAtg81-160 allele, which only contains 1-160 amino acids of the CfAtg8, partially recovered the autophagosome numbers and autophagy defects of the ΔCfatg4 mutant. Consequently, these recoveries resulted in the restoration of the defects of the ΔCfatg4 mutant in growth and responses to different external stresses, albeit to an extent. Importantly, we illustrated the critical roles of CfAtg81-160 in appressoria formation, and pathogenicity. Collectively, our findings provide new insights into the importance of the interaction between CfAtg8 and CfAtg4 in the growth, autophagy and pathogenicity of the phytopathogenic fungi.
Collapse
Affiliation(s)
- Shufeng Guo
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China;
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Changsha 410004, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China
| | - Shengpei Zhang
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China;
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Changsha 410004, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha 410004, China
| |
Collapse
|
2
|
Yang D, Luo L, Liu Y, Li H. O-Mannosyltransferase CfPmt4 Regulates the Growth, Development and Pathogenicity of Colletotrichum fructicola. J Fungi (Basel) 2024; 10:330. [PMID: 38786685 PMCID: PMC11121770 DOI: 10.3390/jof10050330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Camellia oleifera is a woody, edible-oil plant native to China. Anthracnose is the major disease of Ca. oleifera, and Colletotrichum fructicola is the main epidemic pathogen. Our previous research indicated that CfHac1 (homologous to ATF/CREB1) and CfGcn5 (general control nonderepressible 5, Gcn5) are integral to key cellular processes that govern fungal development and pathogenesis. Further transcriptomic analyses of the CfHac1 and CfGcn5 mutants, particularly under conditions of endoplasmic reticulum (ER) stress, hold the potential to unveil additional genes implicated in this critical cellular response. We identified all OST/PMT (oligosaccharyltransferase/Protein O-Mannosyltransferases) genes in C. fructicola and analyzed their expression levels. To elucidate novel glycosylation-related genes that may be important for the virulence of C. fructicola, we took an unbiased transcriptomic approach comparing wild-type and the ∆Cfhac1 mutant. Notably, all OST/PMT genes were induced by dithiothreitol and down-regulated in the ΔCfhac1 mutant, yet only the CfPMT4 (Protein O-Mannosyltransferases 4) gene (A04626) was unaffected in the ΔCfgcn5. The results of targeted gene deletion experiments indicate that CfPMT4 plays a crucial role in both vegetative growth and conidiation. Additionally, our investigation revealed that the ΔCfpmt4 exhibits deficiencies in appressorium formation, as well as in its response to cell wall integrity and endoplasmic reticulum stresses. Furthermore, the mutant displayed impaired glycogen metabolism, which may contribute to reduced penetration ability. Overall, CfPmt4, an O-mannosyltransferase, controls the growth, development, and pathogenicity of Colletotrichum fructicola. Understanding the function of the CfPMT4 homolog could provide a potential molecular target for controlling Ca. oleifera anthracnose.
Collapse
Affiliation(s)
- Di Yang
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China; (D.Y.); (L.L.)
| | - Lan Luo
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China; (D.Y.); (L.L.)
| | - Yadi Liu
- Green Home Engineering Technology Research Center in Hunan, Central South University of Forestry and Technology, Changsha 410004, China;
| | - He Li
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China; (D.Y.); (L.L.)
| |
Collapse
|
3
|
Zhu Y, Ma M, Li H. Functional Roles of Two β-Tubulin Isotypes in Regulation of Sensitivity of Colletotrichum fructicola to Carbendazim. PHYTOPATHOLOGY 2024; 114:690-699. [PMID: 37942861 DOI: 10.1094/phyto-08-23-0285-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Colletotrichum fructicola is the major pathogen of anthracnose in tea-oil trees in China. Control of anthracnose in tea-oil trees mainly depends on the application of chemical fungicides such as carbendazim. However, the current sensitivity of C. fructicola isolates in tea-oil trees to carbendazim has not been reported. Here, we tested the sensitivity of 121 C. fructicola isolates collected from Guangdong, Guangxi, Guizhou, Hainan, Hunan, Jiangsu, and Jiangxi provinces in China to carbendazim. One hundred and ten isolates were sensitive to carbendazim, and 11 isolates were highly resistant to carbendazim. The growth rates, morphology, and pathogenicity of three resistant isolates were identical to those of three sensitive isolates, which indicates that these resistant isolates could form a resistant population under carbendazim application. These results suggest that carbendazim should not be the sole fungicide in control of anthracnose in tea-oil trees; other fungicides with different mechanisms of action or mixtures of fungicides could be considered. In addition, bioinformatics analysis identified two β-tubulin isotypes in C. fructicola: Cfβ1tub and Cfβ2tub. E198A mutation was discovered in the Cfβ2tub of three carbendazim-resistant isolates. We also investigated the functional roles of two β-tubulin isotypes. CfΔβ1tub exhibited slightly increased sensitivity to carbendazim and normal phenotypes. Surprisingly, CfΔβ2tub was highly resistant to carbendazim and showed a seriously decreased growth rate, conidial production, pathogenicity, and abnormal hyphae morphology. Promoter replacement mutant CfΔβ2-2×β1 showed partly restored phenotypes, but it was still highly resistant to carbendazim, which suggests that Cfβ1tub and Cfβ2tub are functionally interchangeable to a certain degree.
Collapse
Affiliation(s)
- Yuanye Zhu
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China
- Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| | - Mengting Ma
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China
- Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| | - He Li
- College of Forestry, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China
- Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| |
Collapse
|
4
|
Zhang C, Zhou Z, Guo T, Huang X, Peng C, Lin Z, Chen M, Liu W. CFHTF2 Is Needed for Vegetative Growth, Conidial Morphogenesis and the Osmotic Stress Response in the Tea Plant Anthracnose ( Colletotrichum fructicola). Genes (Basel) 2023; 14:2235. [PMID: 38137057 PMCID: PMC10743015 DOI: 10.3390/genes14122235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Tea is an important cash crop worldwide, and its nutritional value has led to its high economic benefits. Tea anthracnose is a common disease of tea plants that seriously affects food safety and yield and has a far-reaching impact on the sustainable development of the tea industry. In this study, phenotypic analysis and pathogenicity analysis were performed on knockout and complement strains of HTF2-the transcriptional regulator of tea anthracnose homeobox-and the pathogenic mechanism of these strains was explored via RNA-seq. The MoHox1 gene sequence of the rice blast fungus was indexed, and the anthracnose genome was searched for CfHTF2. Evolutionary analysis recently reported the affinity of HTF2 for C. fructicola and C. higginsianum. The loss of CfHTF2 slowed the vegetative growth and spore-producing capacity of C. fructicola and weakened its resistance and pathogenesis to adverse conditions. The transcriptome sequencing of wild-type N425 and CfHTF2 deletion mutants was performed, and a total of 3144 differentially expressed genes (DEGs) were obtained, 1594 of which were upregulated and 1550 of which were downregulated. GO and KEGG enrichment analyses of DEGs mainly focused on signaling pathways such as the biosynthesis of secondary metabolites. In conclusion, this study lays a foundation for further study of the pathogenic mechanism of tea anthracnose and provides a molecular basis for the analysis of the pathogenic molecular mechanism of CfHTF2.
Collapse
Affiliation(s)
- Chengkang Zhang
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
- Key Laboratory of Bio-Pesticide and Chemistry Biology, Fujian Agricultural and Forestry University, Ministry of Education, Fuzhou 350002, China
| | - Ziwen Zhou
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianlong Guo
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
- Key Laboratory of Bio-Pesticide and Chemistry Biology, Fujian Agricultural and Forestry University, Ministry of Education, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Huang
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
- Key Laboratory of Bio-Pesticide and Chemistry Biology, Fujian Agricultural and Forestry University, Ministry of Education, Fuzhou 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengbin Peng
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
| | - Zhideng Lin
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
| | - Meixia Chen
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
| | - Wei Liu
- Industry and University Research Cooperation Demonstration Base of Science and Technology Agency in Fujian Province, College of Life Science, Ningde Normal University, Ningde 352100, China; (C.Z.); (Z.Z.); (T.G.); (X.H.); (C.P.); (Z.L.); (M.C.)
| |
Collapse
|
5
|
Li R, Chen F, Li S, Yuan L, Zhao L, Tian S, Chen B. Comparative acetylomic analysis reveals differentially acetylated proteins regulating fungal metabolism in hypovirus-infected chestnut blight fungus. MOLECULAR PLANT PATHOLOGY 2023; 24:1126-1138. [PMID: 37278715 PMCID: PMC10423328 DOI: 10.1111/mpp.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
Cryphonectria parasitica, the chestnut blight fungus, and hypoviruses are excellent models for examining fungal pathogenesis and virus-host interactions. Increasing evidence suggests that lysine acetylation plays a regulatory role in cell processes and signalling. To understand protein regulation in C. parasitica by hypoviruses at the level of posttranslational modification, a label-free comparative acetylome analysis was performed in the fungus with or without Cryphonectria hypovirus 1 (CHV1) infection. Using enrichment of acetyl-peptides with a specific anti-acetyl-lysine antibody, followed by high accuracy liquid chromatography-tandem mass spectrometry analysis, 638 lysine acetylation sites were identified on 616 peptides, corresponding to 325 unique proteins. Further analysis revealed that 80 of 325 proteins were differentially acetylated between C. parasitica strain EP155 and EP155/CHV1-EP713, with 43 and 37 characterized as up- and down-regulated, respectively. Moreover, 75 and 65 distinct acetylated proteins were found in EP155 and EP155/CHV1-EP713, respectively. Bioinformatics analysis revealed that the differentially acetylated proteins were involved in various biological processes and were particularly enriched in metabolic processes. Differences in acetylation in C. parasitica citrate synthase, a key enzyme in the tricarboxylic acid cycle, were further validated by immunoprecipitation and western blotting. Site-specific mutagenesis and biochemical studies demonstrated that the acetylation of lysine-55 plays a vital role in the regulation of the enzymatic activity of C. parasitica citrate synthase in vitro and in vivo. These findings provide a valuable resource for the functional analysis of lysine acetylation in C. parasitica, as well as improving our understanding of fungal protein regulation by hypoviruses from a protein acetylation perspective.
Collapse
Affiliation(s)
- Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Fengyue Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Shuangcai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Luying Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Lijiu Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Shigen Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
- Guangxi Key Laboratory of Sugarcane Biology, College of AgricultureGuangxi UniversityNanningChina
| |
Collapse
|
6
|
Zhu Y, Ma M, Zhang S, Li H. Baseline Sensitivity and Resistance Mechanism of Colletotrichum Isolates on Tea-Oil Trees of China to Tebuconazole. PHYTOPATHOLOGY 2023; 113:1022-1033. [PMID: 36576403 DOI: 10.1094/phyto-09-22-0325-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Colletotrichum fungi could cause anthracnose, a destructive disease in tea-oil trees. The sterol demethylation inhibitor (DMI) tebuconazole has been widely used in controlling plant diseases for many years. However, the baseline sensitivity of Colletotrichum isolates on tea-oil trees to tebuconazole has not been determined. In this study, the sensitivity to tebuconazole of 117 Colletotrichum isolates from tea-oil trees of seven provinces in southern China was tested. The mean effective concentration resulted in 50% mycelial growth inhibition (EC50), 0.7625 μg/ml. The EC50 values of 100 isolates (83%) were lower than 1 μg/ml, and those of 20 isolates (17%) were higher than 1 μg/ml, which implied that resistance has already occurred in Colletotrichum isolates on tea-oil trees. The EC50 values of the most resistant and sensitive isolates (named Ca-R and Cc-S1, respectively) were 1.8848 and 0.1561 μg/ml, respectively. The resistance mechanism was also investigated in this study. A gene replacement experiment indicated that the CYP51A/B gene of resistant isolates Ca-R and Cf-R1 cannot confer Cc-S1 full resistance to DMI fungicides, although three single point mutants, Cc-S1CYP51A-T306A and Cc-S1CYP51A-R478K, exhibited decreased sensitivity to DMI fungicides. This result suggested that resistance of Colletotrichum isolates was partly caused by mutations in CYP51A. Moreover, the expression level of CYP51A/B was almost identical among Ca-R, Cf-R1, Cc-S1, and Cc-S1CYP51A point mutants, which indicated that the resistance was irrelevant to the expression level of CYP51A, and other nontarget-based resistance mechanisms may exist. Our results could help to guide the application of DMI fungicides and be useful for investigating the mechanism of resistance.
Collapse
Affiliation(s)
- Yuanye Zhu
- College of Forestry, Central South University of Forestry and Technology, Changsha, China; Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China; and Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| | - Mengting Ma
- College of Forestry, Central South University of Forestry and Technology, Changsha, China; Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China; and Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| | - Shengpei Zhang
- College of Forestry, Central South University of Forestry and Technology, Changsha, China; Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China; and Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| | - He Li
- College of Forestry, Central South University of Forestry and Technology, Changsha, China; Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Changsha, China; Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Changsha, China; and Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Changsha, China
| |
Collapse
|
7
|
Gan R, Zhang S, Li H. Cell Wall Integrity Mediated by CfCHS1 Is Important for Growth, Stress Responses and Pathogenicity in Colletotrichum fructicola. J Fungi (Basel) 2023; 9:643. [PMID: 37367579 DOI: 10.3390/jof9060643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Camellia oleifera, a woody plant that produces edible oil, is indigenous to China. The devastating disease of anthracnose inflicts significant financial losses on Ca. oleifera. The primary causative agent of anthracnose on Ca. oleifera is Colletotrichum fructicola. Chitin, a pivotal constituent of fungal cell walls, assumes a critical function in their proliferation and maturation. To study the biological functions of chitin synthase 1(Chs1) in C. fructicola, the CfCHS1 gene knockout mutants, ∆Cfchs1-1 and ∆Cfchs1-2, and their complementary strain, ∆Cfchs1/CfCHS1, of C. fructicola were generated. Our results showed that the colony diameters of wild-type and complement-strain ∆Cfchs1/CfCHS1, mutant ∆Cfchs1-1 and ∆Cfchs1-2 cultured on the CM and MM medium were 5.2, 5.0, 2.2 and 2.4 cm and 4.0, 4.0, 2.1 and 2.6 cm, respectively, which were significantly smaller for the mutant than for the wild type and complement strain; the inhibition rates on the CM medium supplemented with H2O2, DTT, SDS and CR were 87.0% and 88.5%, 29.6% and 27.1%, 88.0% and 89.4%, and 41.7% and 28.7%, respectively, for the mutant strains, ∆Cfchs1-1 and ∆Cfchs1-2, which were significantly higher than those for the other two strains; the rate of hyphal tips with CFW fluorescence in ∆Cfchs1-1 and ∆Cfchs1-2 was 13.3% and 15.0%, which was significantly lower than those for the other two strains; the mutant strains, ∆Cfchs1-1 and ∆Cfchs1-2, lost the ability to produce conidia; the mutant strains showed weaker pathogenicity on wounded and unwounded Ca. oleifera leaves than the wild type and complement strain. The findings of this study suggest that CfChs1 plays a crucial role in the growth and development, stress responses, and pathogenicity of C. fructicola. Thus, this gene could be a potential target for developing novel fungicide.
Collapse
Affiliation(s)
- Rongcun Gan
- Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shengpei Zhang
- Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China
| | - He Li
- Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
8
|
Cheng Y, Ning K, Chen Y, Hou C, Yu H, Yu H, Chen S, Guo X, Dong L. Identification of histone acetyltransferase genes responsible for cannabinoid synthesis in hemp. Chin Med 2023; 18:16. [PMID: 36782242 PMCID: PMC9926835 DOI: 10.1186/s13020-023-00720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Histone acetyltransferases (HATs) play an important role in plant growth and development, stress response, and regulation of secondary metabolite biosynthesis. Hemp (Cannabis sativa L.) is famous for its high industrial, nutritional, and medicinal value. It contains non-psychoactive cannabinoid cannabidiol (CBD) and cannabinol (CBG), which play important roles as anti-inflammatory and anti-anxiety. At present, the involvement of HATs in the regulation of cannabinoid CBD and CBG synthesis has not been clarified. METHODS The members of HAT genes family in hemp were systematically analyzed by bioinformatics analysis. In addition, the expression level of HATs and the level of histone acetylation modification were analyzed based on transcriptome data and protein modification data. Real-time quantitative PCR was used to verify the changes in gene expression levels after inhibitor treatment. The changes of CBD and CBG contents after inhibitor treatment were verified by HPLC-MS analysis. RESULTS Here, 11 HAT genes were identified in the hemp genome. Phylogenetic analysis showed that hemp HAT family genes can be divided into six groups. Cannabinoid synthesis genes exhibited spatiotemporal specificity, and histones were acetylated in different inflorescence developmental stages. The expression of cannabinoid synthesis genes was inhibited and the content of CBD and CBG declined by 10% to 55% in the samples treated by HAT inhibitor (PU139). Results indicated that CsHAT genes may regulate cannabinoid synthesis through altering histone acetylation. CONCLUSIONS Our study provides genetic information of HATs responsible for cannabinoid synthesis, and offers a new approach for increasing the content of cannabinoid in hemp.
Collapse
Affiliation(s)
- Yufei Cheng
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China ,grid.443651.10000 0000 9456 5774College of Agronomy, Ludong University, Yantai, 264000 China
| | - Kang Ning
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Yongzhong Chen
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Cong Hou
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Haibin Yu
- Yunnan Hemp Industrial Investment CO.LTD, Kunming, 650217 China
| | - Huatao Yu
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Shilin Chen
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Xiaotong Guo
- College of Agronomy, Ludong University, Yantai, 264000, China.
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
9
|
Ye C, He Z, Peng J, Wang R, Wang X, Fu M, Zhang Y, Wang A, Liu Z, Jia G, Chen Y, Tian B. Genomic and genetic advances of oiltea-camellia ( Camellia oleifera). FRONTIERS IN PLANT SCIENCE 2023; 14:1101766. [PMID: 37077639 PMCID: PMC10106683 DOI: 10.3389/fpls.2023.1101766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Oiltea-camellia (C. oleifera) is a widely cultivated woody oil crop in Southern China and Southeast Asia. The genome of oiltea-camellia was very complex and not well explored. Recently, genomes of three oiltea-camellia species were sequenced and assembled, multi-omic studies of oiltea-camellia were carried out and provided a better understanding of this important woody oil crop. In this review, we summarized the recent assembly of the reference genomes of oiltea-camellia, genes related to economic traits (flowering, photosynthesis, yield and oil component), disease resistance (anthracnose) and environmental stress tolerances (drought, cold, heat and nutrient deficiency). We also discussed future directions of integrating multiple omics for evaluating genetic resources and mining key genes of important traits, and the application of new molecular breeding and gene editing technologies to accelerate the breeding process of oiltea-camellia.
Collapse
Affiliation(s)
- Changrong Ye
- Academy of Innovation and Research, Huazhi Biotechnology Co. Ltd., Changsha, China
| | - Zhilong He
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
| | - Jiayu Peng
- Academy of Innovation and Research, Huazhi Biotechnology Co. Ltd., Changsha, China
| | - Rui Wang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
| | - Xiangnan Wang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
| | - Mengjiao Fu
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
| | - Ying Zhang
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
| | - Ai Wang
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
| | - Zhixian Liu
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
| | - Gaofeng Jia
- Academy of Innovation and Research, Huazhi Biotechnology Co. Ltd., Changsha, China
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
- *Correspondence: Gaofeng Jia, ; Yongzhong Chen, ; Bingchuan Tian,
| | - Yongzhong Chen
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Changsha, China
- *Correspondence: Gaofeng Jia, ; Yongzhong Chen, ; Bingchuan Tian,
| | - Bingchuan Tian
- Academy of Innovation and Research, Huazhi Biotechnology Co. Ltd., Changsha, China
- Department of Research and Development, Mountain Yuelu Breeding Innovation Center, Changsha, China
- *Correspondence: Gaofeng Jia, ; Yongzhong Chen, ; Bingchuan Tian,
| |
Collapse
|
10
|
The CfSnt2-Dependent Deacetylation of Histone H3 Mediates Autophagy and Pathogenicity of Colletotrichum fructicola. J Fungi (Basel) 2022; 8:jof8090974. [PMID: 36135699 PMCID: PMC9506038 DOI: 10.3390/jof8090974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 12/12/2022] Open
Abstract
Camellia oleifera is one of the most valuable woody edible-oil crops, and anthracnose seriously afflicts its yield and quality. We recently showed that the CfSnt2 regulates the pathogenicity of Colletotrichum fructicola, the dominant causal agent of anthracnose on C. oleifera. However, the molecular mechanisms of CfSnt2-mediated pathogenesis remain largely unknown. Here, we found that CfSnt2 is localized to the nucleus to regulate the deacetylation of histone H3. The further transcriptomic analysis revealed that CfSnt2 mediates the expression of global genes, including most autophagy-related genes. Furthermore, we provided evidence showing that CfSnt2 negatively regulates autophagy and is involved in the responses to host-derived ROS and ER stresses. These combined functions contribute to the pivotal roles of CfSnt2 on pathogenicity. Taken together, our studies not only illustrate how CfSnt2 functions in the nucleus, but also link its roles on the autophagy and responses to host-derived stresses with pathogenicity in C. fructicola.
Collapse
|
11
|
Li XY, Zhang SP, He L. Retromer subunit, CfVps35 is required for growth development and pathogenicity of Colletotrichum fructicola. BMC Genom Data 2022; 23:68. [PMID: 36031614 PMCID: PMC9420259 DOI: 10.1186/s12863-022-01084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Background Tea oil is widely used as edible oil in China, which extracted from the seeds of Camellia oleifera. In China, the national oil-tea camellia planting area reached 4.533 million hectares, the output of oil-tea camellia seed oil was 627 000 tons, and the total output value reached 18.3 billion dollars. Anthracnose is the common disease of Ca. oleifera, which affected the production and brought huge economic losses. Colletotrichum fructicola is the dominant pathogen causing anthracnose in Ca. oleifera. The retromer complex participates in the intracellular retrograde transport of cargos from the endosome to the trans-Golgi network in eukaryotes. Vacuolar protein sorting 35 is a core part of the retromer complex. This study aimed to investigate the role of CfVps35 in C. fructicola. Results The CfVPS35 gene was deleted, resulting in reduced mycelial growth, conidiation, and response to cell wall stresses. Further analysis revealed that CfVps35 was required for C. fructicola virulence on tea oil leaves. In addition, the ΔCfvps35 mutant was defective in glycogen metabolism and turgor during appressorium development. Conclusion This study illustrated that the crucial functions of CfVps35 in growth, development, and pathogenicity. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01084-4.
Collapse
|
12
|
Histone Acetyltransferase CfGcn5-Mediated Autophagy Governs the Pathogenicity of Colletotrichum fructicola. mBio 2022; 13:e0195622. [PMID: 35975920 PMCID: PMC9600425 DOI: 10.1128/mbio.01956-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Camellia oleifera is a woody edible-oil plant in China, and anthracnose occurs wherever it is grown, causing serious losses each year. We previously identified that the histone acetyltransferase CfGcn5 orchestrates growth, development, and pathogenicity in Colletotrichum fructicola, the major causal agent of anthracnose on C. oleifera. To elucidate the underlying mechanism, we conducted a transcriptome analysis and found that CfGcn5 is mainly involved in ribosomes, catalytic and metabolic processes, primary metabolism, and autophagy. In addition, we provided evidence showing that CfGcn5 serves as an autophagy repressor to mediate the expression of many autophagy-related genes (ATG) and undergoes degradation during autophagy. Moreover, we found that the CfATG8 and CfATG9 gene-deletion mutants had defects in mitosis and autophagy, resulting in their decreased appressoria formation rates and lower turgor pressure. These combined effects caused the failure of their appressoria functions and caused defects on their pathogenicity, revealing the importance of autophagy in pathogenicity. Taken together, our study illustrates that the autophagy repressor CfGcn5 undergoes degradation in order to regulate autophagy-dependent pathogenicity in C. fructicola.
Collapse
|
13
|
Li S, Li X, Li H. The Retromer Subunit CfVps29 Is Involved in the Growth, Development, and Pathogenicity of Colletotrichum fructicola. J Fungi (Basel) 2022; 8:jof8080835. [PMID: 36012823 PMCID: PMC9409673 DOI: 10.3390/jof8080835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Camellia oleifera is an edible oil tree species native to China. Anthracnose is a common disease of Ca. oleifera, which reduces the production of the trees and brings huge economic losses. We have previously identified the fungus Colletotrichum fructicola as the major pathogen of anthracnose in Ca. oleifera. The retromer complex participates in the intracellular retrograde transport of the cargos from the endosome to the trans-Golgi network in the eukaryotes. Vacuolar protein sorting 29 is a subunit of the retromer complex. Targeted CfVPS29 gene deletion revealed that CfVps29 is involved in growth, conidiation, and the response to cell wall stress. We further found that the ΔCfvps29 mutant was minimally pathogenic to Ca. oleifera leaves, as a result of its defect in appressorium formation. This study illustrated the crucial functions of CfVps29 in the development, cell wall stress response, and pathogenicity of C. fructicola and, therefore, identified it as a potential fungicide target for the control of anthracnose.
Collapse
Affiliation(s)
- Sizheng Li
- Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiya Li
- Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China
| | - He Li
- Key Laboratory of National Forestry, Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence:
| |
Collapse
|
14
|
Chen X, Chen X, Tan Q, Mo X, Liu J, Zhou G. Recent progress on harm, pathogen classification, control and pathogenic molecular mechanism of anthracnose of oil-tea. Front Microbiol 2022; 13:918339. [PMID: 35966682 PMCID: PMC9372368 DOI: 10.3389/fmicb.2022.918339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/30/2022] [Indexed: 12/26/2022] Open
Abstract
Oil tea (Camellia oleifera), mainly used to produce high-quality edible oil, is an important cash crop in China. Anthracnose of oil tea is a considerable factor that limits the yield of tea oil. In order to effectively control the anthracnose of oil tea, researchers have worked hard for many years, and great progress has been made in the research of oil tea anthracnose. For instance, researchers isolated a variety of Colletotrichum spp. from oil tea and found that Colletotrichum fructicola was the most popular pathogen in oil tea. At the same time, a variety of control methods have been explored, such as cultivating resistant varieties, pesticides, and biological control, etc. Furthermore, the research on the molecular pathogenesis of Colletotrichum spp. has also made good progress, such as the elaboration of the transcription factors and effector functions of Colletotrichum spp. The authors summarized the research status of the harm, pathogen types, control, and pathogenic molecular mechanism of oil tea anthracnose in order to provide theoretical support and new technical means for the green prevention and control of oil tea anthracnose.
Collapse
Affiliation(s)
| | | | | | | | - Junang Liu
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
15
|
H3K4 Methyltransferase CfSet1 Is Required for Development and Pathogenesis in Colletotrichum fructicola. J Fungi (Basel) 2022; 8:jof8040363. [PMID: 35448594 PMCID: PMC9025643 DOI: 10.3390/jof8040363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Tea-oil tree (Camellia oleifera Abel.) is a unique woody edible oil species in China. Anthracnose is the common disease of Ca. oleifera, which affected the production and brought huge economic losses. Colletotrichum fructicola is the dominant pathogen causing Ca. oleifera anthracnose. The gene CfSET1 was deleted and its roles in development and pathogenicity of C. fructicola were studied. Our results show that this protein participated in the growth, conidiation, appressorium formation, and pathogenicity of this fungal pathogen. Our results help us understand the mechanisms of pathogenesis in C. fructicola and suggest CfSet1 as a potential target for the development of new fungicide.
Collapse
|
16
|
Yang C, Wu P, Yao X, Sheng Y, Zhang C, Lin P, Wang K. Integrated Transcriptome and Metabolome Analysis Reveals Key Metabolites Involved in Camellia oleifera Defense against Anthracnose. Int J Mol Sci 2022; 23:536. [PMID: 35008957 PMCID: PMC8745097 DOI: 10.3390/ijms23010536] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/19/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Camellia oleifera (Ca. oleifera) is a woody tree species cultivated for the production of edible oil from its seed. The growth and yield of tea-oil trees are severely affected by anthracnose (caused by Colletotrichum gloeosporioides). In this study, the transcriptomic and metabolomic analyses were performed to detect the key transcripts and metabolites associated with differences in the susceptibility between anthracnose-resistant (ChangLin150) and susceptible (ChangLin102) varieties of Ca. oleifera. In total, 5001 differentially expressed genes (DEGs) were obtained, of which 479 DEGs were common between the susceptible and resistant varieties and further analyzed. KEGG enrichment analysis showed that these DEGs were significantly enriched in tyrosine metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis and isoquinoline alkaloid biosynthesis pathways. Furthermore, 68 differentially accumulated metabolites (DAMs) were detected, including flavonoids, such as epicatechin, phenethyl caffeate and procyanidin B2. Comparison of the DEGs and DAMs revealed that epicatechin, procyanidin B2 and arachidonic acid (peroxide free) are potentially important. The expression patterns of genes involved in flavonoid biosynthesis were confirmed by qRT-PCR. These results suggested that flavonoid biosynthesis might play an important role in the fight against anthracnose. This study provides valuable molecular information about the response of Ca. oleifera to Co. gloeosporioides infection and will aid the selection of resistant varieties using marker-assisted breeding.
Collapse
Affiliation(s)
| | | | - Xiaohua Yao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (C.Y.); (P.W.); (Y.S.); (C.Z.); (P.L.); (K.W.)
| | | | | | | | | |
Collapse
|
17
|
Li S, Zhang S, Li B, Li H. The SNARE Protein CfVam7 Is Required for Growth, Endoplasmic Reticulum Stress Response, and Pathogenicity of Colletotrichum fructicola. Front Microbiol 2021; 12:736066. [PMID: 34721333 PMCID: PMC8551764 DOI: 10.3389/fmicb.2021.736066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023] Open
Abstract
The tea-oil tree Camellia oleifera is native to China and is cultivated in many parts of southern China. This plant has been grown for over 2,000 years, mainly for its high-quality cooking oil. Anthracnose is the main disease of tea-oil tree and results in a huge loss annually. Colletotrichum fructicola is a major pathogen causing anthracnose on tea-oil tree. In a previous study, we characterized that the bZIP transcription factor CfHac1 controlled the development and pathogenicity of C. fructicola. Here, we identified and characterized the function of CfVAM7 gene, which was significantly downregulated at the transcriptional level in the ΔCfhac1 strain under dithiothreitol stress. Targeted gene deletion revealed that CfVam7 is important in growth, pathogenicity, and responses to endoplasmic reticulum-related stresses. Further analysis revealed that CfVam7 is required for appressorium formation and homotypic vacuole fusion, which are important for fungal pathogen invasion. Cytological examinations revealed that CfVam7 is localized to vacuole membranes in the hyphal stage. The Phox homology (PX) and SNARE domains of CfVam7 were indispensable for normal cellular localization and biological function. Taken together, our results suggested that CfVam7-mediated vacuole membrane fusion promotes growth, stress response, and pathogenicity of C. fructicola.
Collapse
Affiliation(s)
- Sizheng Li
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Shengpei Zhang
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Bing Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - He Li
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|