1
|
Yu Y, Dong H, Zhao Q, Zhu S, Wang H, Yao Y, Huang W, Han H. Combined transcriptome and whole genome sequencing analyses reveal candidate drug-resistance genes of Eimeria tenella. iScience 2025; 28:111592. [PMID: 39811641 PMCID: PMC11732515 DOI: 10.1016/j.isci.2024.111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Avian coccidiosis is a widespread intestinal disease found in poultry that causes substantial economic losses. To extensively investigate the molecular mechanism of drug resistance in Eimeria tenella, we analyzed the sporozoites and second-generation merozoites of drug-sensitive (DS), diclazuril-resistant (DZR) strain, and salinomycin-resistant (SMR) strains of E. tenella through transcriptome sequencing. Whole genome sequencing analyses were performed on resistant strains at different concentrations-11 sensitive strains, 16 field diclazuril-resistant strains, and 15 field salinomycin-resistant strains of E. tenella. Co-analysis indicated that the ABC transporter protein showed differential expression and base mutations in the two resistant strains compared with the DS strain. KEGG pathway analysis demonstrated that the expression of pABAS and HPPK-DHPS, which are associated with the folate biosynthetic pathway, showed downregulation only in the DZR strain with respect to the DS strain. Several key enzymes in the glycolytic pathway were differentially expressed between DS and SMR strains.
Collapse
Affiliation(s)
- Yu Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Haixia Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Yawen Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Wenhao Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| | - Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, P.R. China
| |
Collapse
|
2
|
Powell LM, Choi SJ, Grund ME, Demkowicz R, Berisio R, LaSala PR, Lukomski S. Regulation of erm(T) MLS B phenotype expression in the emergent emm92 type group A Streptococcus. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:44. [PMID: 39843607 PMCID: PMC11721399 DOI: 10.1038/s44259-024-00062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/11/2024] [Indexed: 01/24/2025]
Abstract
In the last decade, invasive group A Streptococcus (iGAS) infections have doubled in the US, with equivalent increases in MLSB (macrolide, lincosamide, and streptogramin B)-resistance. The emm92-type isolates carrying the erm(T) gene have been associated with an alarming emergence of iGAS infections in people who inject drugs or experience homelessness. Our goal was to elucidate the mechanisms behind inducible (iMLSB) and constitutive (cMLSB) resistance in emm92 isolates. Sequence analysis identified polymorphisms in the erm(T) regulatory region associated with cMLSB resistance. RT-qPCR and RNAseq revealed increased erm(T) mRNA levels in iMLSB isolates in response to erythromycin exposure, while cMLSB isolates exhibited high erm(T) expression independent from antibiotic exposure. Transcription results were coupled with shifting levels of ribosomal methylation. A homology model of the ErmT enzyme identified structural elements and residues conserved in methyltransferases. Delayed growth of iMLSB isolates cultured with erythromycin and increased clindamycin resistance in cMLSB isolates were observed.
Collapse
Affiliation(s)
- Lillie M Powell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Soo Jeon Choi
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Megan E Grund
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Ryan Demkowicz
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Rita Berisio
- Institute of Biostructure and Bioimaging, National Research Council, CNR, Naples, Italy
| | - P Rocco LaSala
- Department of Pathology, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Pathology and Laboratory Medicine, University of Connecticut, Farmington, CT, USA
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
3
|
Dec M, Zomer A, Webster J, Nowak T, Stępień-Pyśniak D, Urban-Chmiel R. Integrative and Conjugative Elements and Prophage DNA as Carriers of Resistance Genes in Erysipelothrix rhusiopathiae Strains from Domestic Geese in Poland. Int J Mol Sci 2024; 25:4638. [PMID: 38731857 PMCID: PMC11083093 DOI: 10.3390/ijms25094638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Goose erysipelas is a serious problem in waterfowl breeding in Poland. However, knowledge of the characteristics of Erysipelothrix rhusiopathiae strains causing this disease is limited. In this study, the antimicrobial susceptibility and serotypes of four E. rhusiopathiae strains from domestic geese were determined, and their whole-genome sequences (WGSs) were analyzed to detect resistance genes, integrative and conjugative elements (ICEs), and prophage DNA. Sequence type and the presence of resistance genes and transposons were compared with 363 publicly available E. rhusiopathiae strains, as well as 13 strains of other Erysipelothrix species. Four strains tested represented serotypes 2 and 5 and the MLST groups ST 4, 32, 242, and 243. Their assembled circular genomes ranged from 1.8 to 1.9 kb with a GC content of 36-37%; a small plasmid was detected in strain 1023. Strains 1023 and 267 were multidrug-resistant. The resistance genes detected in the genome of strain 1023 were erm47, tetM, and lsaE-lnuB-ant(6)-Ia-spw cluster, while strain 267 contained the tetM and ermB genes. Mutations in the gyrA gene were detected in both strains. The tetM gene was embedded in a Tn916-like transposon, which in strain 1023, together with the other resistance genes, was located on a large integrative and conjugative-like element of 130 kb designated as ICEEr1023. A minor integrative element of 74 kb was identified in strain 1012 (ICEEr1012). This work contributes to knowledge about the characteristics of E. rhusiopathiae bacteria and, for the first time, reveals the occurrence of erm47 and ermB resistance genes in strains of this species. Phage infection appears to be responsible for the introduction of the ermB gene into the genome of strain 267, while ICEs most likely play a key role in the spread of the other resistance genes identified in E. rhusiopathiae.
Collapse
Affiliation(s)
- Marta Dec
- Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (D.S.-P.); (R.U.-C.)
| | - Aldert Zomer
- Division of Infectious Diseases and Immunology, Faculty of Veterinaty Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
- WOAH Reference Laboratory for Campylobacteriosis, WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective, 3584 CL Utrecht, The Netherlands
| | - John Webster
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, PMB 4008, Narellan, NSW 2570, Australia;
| | - Tomasz Nowak
- Diagnostic Veterinary Laboratory “Vet-Lab Brudzew Dr. Piotr Kwieciński”, 62-720 Brudzew, Poland;
| | - Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (D.S.-P.); (R.U.-C.)
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (D.S.-P.); (R.U.-C.)
| |
Collapse
|
4
|
Shields KE, Ranava D, Tan Y, Zhang D, Yap MNF. Epitranscriptional m6A modification of rRNA negatively impacts translation and host colonization in Staphylococcus aureus. PLoS Pathog 2024; 20:e1011968. [PMID: 38252661 PMCID: PMC10833563 DOI: 10.1371/journal.ppat.1011968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/01/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Macrolides, lincosamides, and streptogramin B (MLS) are structurally distinct molecules that are among the safest antibiotics for prophylactic use and for the treatment of bacterial infections. The family of erythromycin resistance methyltransferases (Erm) invariantly install either one or two methyl groups onto the N6,6-adenosine of 2058 nucleotide (m6A2058) of the bacterial 23S rRNA, leading to bacterial cross-resistance to all MLS antibiotics. Despite extensive structural studies on the mechanism of Erm-mediated MLS resistance, how the m6A epitranscriptomic mark affects ribosome function and bacterial physiology is not well understood. Here, we show that Staphylococcus aureus cells harboring m6A2058 ribosomes are outcompeted by cells carrying unmodified ribosomes during infections and are severely impaired in colonization in the absence of an unmodified counterpart. The competitive advantage of m6A2058 ribosomes is manifested only upon antibiotic challenge. Using ribosome profiling (Ribo-Seq) and a dual-fluorescence reporter to measure ribosome occupancy and translational fidelity, we found that specific genes involved in host interactions, metabolism, and information processing are disproportionally deregulated in mRNA translation. This dysregulation is linked to a substantial reduction in translational capacity and fidelity in m6A2058 ribosomes. These findings point to a general "inefficient translation" mechanism of trade-offs associated with multidrug-resistant ribosomes.
Collapse
Affiliation(s)
- Kathryn E. Shields
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - David Ranava
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yongjun Tan
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, United States of America
| | - Dapeng Zhang
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, United States of America
- Program of Bioinformatics and Computational Biology, College of Arts and Sciences, St. Louis, Missouri, United States of America
| | - Mee-Ngan F. Yap
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
5
|
Zahari NIN, Engku Abd Rahman ENS, Irekeola AA, Ahmed N, Rabaan AA, Alotaibi J, Alqahtani SA, Halawi MY, Alamri IA, Almogbel MS, Alfaraj AH, Ibrahim FA, Almaghaslah M, Alissa M, Yean CY. A Review of the Resistance Mechanisms for β-Lactams, Macrolides and Fluoroquinolones among Streptococcus pneumoniae. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1927. [PMID: 38003976 PMCID: PMC10672801 DOI: 10.3390/medicina59111927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
Streptococcus pneumoniae (S. pneumoniae) is a bacterial species often associated with the occurrence of community-acquired pneumonia (CAP). CAP refers to a specific kind of pneumonia that occurs in individuals who acquire the infection outside of a healthcare setting. It represents the leading cause of both death and morbidity on a global scale. Moreover, the declaration of S. pneumoniae as one of the 12 leading pathogens was made by the World Health Organization (WHO) in 2017. Antibiotics like β-lactams, macrolides, and fluoroquinolones are the primary classes of antimicrobial medicines used for the treatment of S. pneumoniae infections. Nevertheless, the efficacy of these antibiotics is diminishing as a result of the establishment of resistance in S. pneumoniae against these antimicrobial agents. In 2019, the WHO declared that antibiotic resistance was among the top 10 hazards to worldwide health. It is believed that penicillin-binding protein genetic alteration causes β-lactam antibiotic resistance. Ribosomal target site alterations and active efflux pumps cause macrolide resistance. Numerous factors, including the accumulation of mutations, enhanced efflux mechanisms, and plasmid gene acquisition, cause fluoroquinolone resistance. Furthermore, despite the advancements in pneumococcal vaccinations and artificial intelligence (AI), it is not feasible for individuals to rely on them indefinitely. The ongoing development of AI for combating antimicrobial resistance necessitates more research and development efforts. A few strategies can be performed to curb this resistance issue, including providing educational initiatives and guidelines, conducting surveillance, and establishing new antibiotics targeting another part of the bacteria. Hence, understanding the resistance mechanism of S. pneumoniae may aid researchers in developing a more efficacious antibiotic in future endeavors.
Collapse
Affiliation(s)
- Nurul Izzaty Najwa Zahari
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia (E.N.S.E.A.R.)
| | - Engku Nur Syafirah Engku Abd Rahman
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia (E.N.S.E.A.R.)
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia (E.N.S.E.A.R.)
- Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Nigeria
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia (E.N.S.E.A.R.)
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Jawaher Alotaibi
- Infectious Diseases Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | | | - Mohammed Y. Halawi
- Cytogenetics Department, Dammam Regional Laboratory and Blood Bank, Dammam 31411, Saudi Arabia
| | - Ibrahim Ateeq Alamri
- Blood Bank Department, Dammam Regional Laboratory and Blood Bank, Dammam 31411, Saudi Arabia
| | - Mohammed S. Almogbel
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 4030, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Fatimah Al Ibrahim
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Manar Almaghaslah
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia (E.N.S.E.A.R.)
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Malaysia
| |
Collapse
|
6
|
Díaz-Palafox G, Tamayo-Ordoñez YDJ, Bello-López JM, Ayil-Gutiérrez BA, RodrÍguez-Garza MM, Antonio Rodríguez-de la Garza J, Sosa-Santillán GDJ, Acosta-Cruz E, Ruiz-Marín A, Córdova-Quiroz AV, Pérez-Reda LJ, Tamayo-Ordoñez FA, Tamayo-Ordoñez MC. Regulation Transcriptional of Antibiotic Resistance Genes (ARGs) in Bacteria Isolated from WWTP. Curr Microbiol 2023; 80:338. [PMID: 37672120 PMCID: PMC10482803 DOI: 10.1007/s00284-023-03449-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023]
Abstract
The incidence of antibiotics and transcriptional regulation of ARGs in isolated bacteria from wastewater needs to be explored. By HPLC, in samples of untreated wastewater, ampicillin (49.74 ± 5.70 µg/mL), chloramphenicol (0.60 ± 0.03 µg/mL), tylosin (72.95 ± 2.03 µg/mL), and oxytetracycline (0.22 ± 0.01 µg/mL) was determined. Through metagenomic analysis identified 58 bacterial species belonging to 9 phyla and at least 14 species have shown resistance to a variety of antibiotics. Twenty-two bacterial isolates were proved to be resistant to fifteen antibiotics of new generation and used in medical research to combat infectious diseases. Fourteen strains were shown to harbor plasmids in size ranges of 2-5 Kb, 6-10 Kb and plasmids with size greater than 10 Kb. By quantitative PCR it was possible to identify genes sul, qnr, cat1, aadA1, and sat-1 gene were shown to be present in gDNA samples from treated and untreated samples of wastewater and by relative expression analysis, differential expression of cat1, ermB, act, and tetA genes was demonstrated in strains that showed identity with Escherichia coli, Bacteroides fragilis, and Salmonella thyphi, and that were stressed with different concentrations of antibiotics. The presence of ARGs in untreated water samples, as well as in bacterial isolates, was indicative that in these habitats there are microorganisms that can resist β-lactams, aminoglycosides, tetracyclines, sulfonamides, and quinolones.
Collapse
Affiliation(s)
- Grethel Díaz-Palafox
- Laboratorio de Ingeniería Genética, Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing J. Cárdenas Valdez s/n, República, 25280, Saltillo, Coah, Mexico
| | - Yahaira de Jesús Tamayo-Ordoñez
- Laboratorio de Biotecnología Ambiental del Centro de Biotecnología Genómica del Instituto Politécnico Nacional, CP 88710, Reynosa, TAMPS, México
| | | | - Benjamin Abraham Ayil-Gutiérrez
- CONACYT- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Biotecnologia Vegetal, Blvd. del Maestro, s/n, Esq. Elías Piña, 88710, Reynosa, Mexico
| | - Mónica Margarita RodrÍguez-Garza
- Laboratorio de Biotecnología Ambiental, Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing J. Cárdenas Valdez s/n, República, 25280, Saltillo, Coah, Mexico
| | - José Antonio Rodríguez-de la Garza
- Laboratorio de Biotecnología Ambiental, Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing J. Cárdenas Valdez s/n, República, 25280, Saltillo, Coah, Mexico
| | - Gerardo de Jesús Sosa-Santillán
- Laboratorio de Biosíntesis Enzimática, Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing J. Cárdenas Valdez s/n, República, 25280, Saltillo, Coah, Mexico
| | - Erika Acosta-Cruz
- Laboratorio de Microbiología Molecular, Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing J. Cárdenas Valdez s/n, República, 25280, Saltillo, Coah, Mexico
| | - Alejandro Ruiz-Marín
- Facultad de Química, Universidad Autónoma del Carmen, Campus "General José Ortiz Ávila, Calle 56 No. 4, 24180, Carmen, Campeche, Mexico
| | - Atl Victor Córdova-Quiroz
- Facultad de Química, Universidad Autónoma del Carmen, Campus "General José Ortiz Ávila, Calle 56 No. 4, 24180, Carmen, Campeche, Mexico
| | - Luis Jorge Pérez-Reda
- Facultad de Química, Universidad Autónoma del Carmen, Campus "General José Ortiz Ávila, Calle 56 No. 4, 24180, Carmen, Campeche, Mexico
| | - Francisco Alberto Tamayo-Ordoñez
- Facultad de Química, Universidad Autónoma del Carmen, Campus "General José Ortiz Ávila, Calle 56 No. 4, 24180, Carmen, Campeche, Mexico
| | - Maria Concepción Tamayo-Ordoñez
- Laboratorio de Ingeniería Genética, Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing J. Cárdenas Valdez s/n, República, 25280, Saltillo, Coah, Mexico.
| |
Collapse
|
7
|
Gingras H, Peillard-Fiorente F, Godin C, Patron K, Leprohon P, Ouellette M. New Resistance Mutations Linked to Decreased Susceptibility to Solithromycin in Streptococcus pneumoniae Revealed by Chemogenomic Screens. Antimicrob Agents Chemother 2023; 67:e0039523. [PMID: 37409958 PMCID: PMC10433811 DOI: 10.1128/aac.00395-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/18/2023] [Indexed: 07/07/2023] Open
Abstract
Two strains of Streptococcus pneumoniae, one expressing the methyltransferase Erm(B) and the other negative for erm(B), were selected for solithromycin resistance in vitro either with direct drug selection or with chemical mutagenesis followed by drug selection. We obtained a series of mutants that we characterized by next-generation sequencing. We found mutations in various ribosomal proteins (L3, L4, L22, L32, and S4) and in the 23S rRNA. We also found mutations in subunits of the phosphate transporter, in the DEAD box helicase CshB, and in the erm(B)L leader peptide. All mutations were shown to decrease solithromycin susceptibility when transformed into sensitive isolates. Some of the genes derived from our in vitro screens were found to be mutated also in clinical isolates with decreased susceptibility to solithromycin. While many mutations were in coding sequences, some were found in regulatory regions. These included novel phenotypic mutations in the intergenic regions of the macrolide resistance locus mef(E)/mel and in the vicinity of the ribosome binding site of erm(B). Our screens highlighted that macrolide-resistant S. pneumoniae can easily acquire resistance to solithromycin, and they revealed many new phenotypic mutations.
Collapse
Affiliation(s)
- Hélène Gingras
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Flora Peillard-Fiorente
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Chantal Godin
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Kevin Patron
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
8
|
Lee WL, Sinha A, Lam LN, Loo HL, Liang J, Ho P, Cui L, Chan CSC, Begley T, Kline KA, Dedon P. An RNA modification enzyme directly senses reactive oxygen species for translational regulation in Enterococcus faecalis. Nat Commun 2023; 14:4093. [PMID: 37433804 DOI: 10.1038/s41467-023-39790-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Bacteria possess elaborate systems to manage reactive oxygen and nitrogen species (ROS) arising from exposure to the mammalian immune system and environmental stresses. Here we report the discovery of an ROS-sensing RNA-modifying enzyme that regulates translation of stress-response proteins in the gut commensal and opportunistic pathogen Enterococcus faecalis. We analyze the tRNA epitranscriptome of E. faecalis in response to reactive oxygen species (ROS) or sublethal doses of ROS-inducing antibiotics and identify large decreases in N2-methyladenosine (m2A) in both 23 S ribosomal RNA and transfer RNA. This we determine to be due to ROS-mediated inactivation of the Fe-S cluster-containing methyltransferase, RlmN. Genetic knockout of RlmN gives rise to a proteome that mimics the oxidative stress response, with an increase in levels of superoxide dismutase and decrease in virulence proteins. While tRNA modifications were established to be dynamic for fine-tuning translation, here we report the discovery of a dynamically regulated, environmentally responsive rRNA modification. These studies lead to a model in which RlmN serves as a redox-sensitive molecular switch, directly relaying oxidative stress to modulating translation through the rRNA and the tRNA epitranscriptome, adding a different paradigm in which RNA modifications can directly regulate the proteome.
Collapse
Affiliation(s)
- Wei Lin Lee
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
| | - Ameya Sinha
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Ling Ning Lam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Hooi Linn Loo
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
| | - Jiaqi Liang
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, College of Engineering, Nanyang Technological University, Singapore, Singapore
| | - Peiying Ho
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
| | - Liang Cui
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
| | - Cheryl Siew Choo Chan
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
- Critical Analytics for Manufacturing Personalized-Medicine IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
| | - Thomas Begley
- Department of Biological Sciences and The RNA Institute, University at Albany, Albany, NY, USA
| | - Kimberly Ann Kline
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Peter Dedon
- Antimicrobial Resistance IRG, Singapore MIT Alliance for Research and Technology, Singapore, Singapore.
- Dept. of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
9
|
Szymanek-Majchrzak K, Młynarczyk G. Genomic Insights of First ermB-Positive ST338-SCC mecV T/CC59 Taiwan Clone of Community-Associated Methicillin-Resistant Staphylococcus aureus in Poland. Int J Mol Sci 2022; 23:ijms23158755. [PMID: 35955887 PMCID: PMC9369149 DOI: 10.3390/ijms23158755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
We report the first Polish representative of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA), lukS/F-PV-positive, encoding the ermB gene, as a genetic determinant of constitutive resistance to macrolides, lincosamides, and streptogramin B antibiotics, cMLS-B. This is the first detection of the CA-MRSA strain responsible for nosocomial infection in the Warsaw Clinical Hospital. Resistance to β-lactams associates with a composite genetic element, SCCmec cassette type VT (5C2&5). We assigned the strain to sequence type ST338 (single-locus variant of ST59), clonal complex CC59, spa-type t437, and agr-type I. Genomic-based comparison was designated SO574/12 as an international Taiwan clone, which has been so far described mainly in the Asia-Pacific region. The ermB gene locates on the chromosome within the 14,690 bp mobile element structure, i.e., the MESPM1-like structure, which also encodes aminoglycoside- and streptothricin-resistance genes. The MESPM1-like structure is a composite transposon containing Tn551, flanked by direct repeats of IS1216V insertion sequences, which probably originates from Enterococcus. The ermB is preceded by the 273 bp regulatory region that contains the regulatory 84 bp ermBL ORF, encoding the 27 amino acid leader peptides. The latest research suggests that a new leader peptide, ermBL2, also exists in the ermB regulatory region. Therefore, the detailed function of ermBL2 requires further investigations.
Collapse
|
10
|
He W, Jiang K, Qiu H, Liao L, Wang S. 16-membered ring macrolides and erythromycin induce ermB expression by different mechanisms. BMC Microbiol 2022; 22:152. [PMID: 35681117 PMCID: PMC9178857 DOI: 10.1186/s12866-022-02565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Background Ribosome stalling on ermBL at the tenth codon (Asp) and mRNA stabilization are believed to be mechanisms by which erythromycin (Ery) induces ermB expression. Expression of ermB is also induced by 16-membered ring macrolides (tylosin, josamycin and spiramycin), but the mechanism underlying this induction is unknown. Methods We introduced premature termination codons, alanine-scanning mutagenesis and amino acid mutations in ermBL and ermBL2. Results In this paper, we demonstrated that 16-membered ring macrolides can induce ermB expression but not ermC expression. The truncated mutants of the ermB-coding sequence indicate that the regulatory regions of ermB whose expression is induced by Ery and 16-membered ring macrolides are different. We proved that translation of the N-terminal region of ermBL is key for the induction of ermB expression by Ery, spiramycin (Spi) and tylosin (Tyl). We also demonstrated that ermBL2 is critical for the induction of ermB expression by erythromycin but not by 16-membered ring macrolides. Conclusions The translation of ermBL and the RNA sequence of the C-terminus of ermBL are critical for the induction of ermB expression by Spi and Tyl. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02565-3.
Collapse
Affiliation(s)
- Weizhi He
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Kai Jiang
- Department of Biobank, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Hua Qiu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, No.17 Yongwai Zheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Lijun Liao
- Department of Anesthesiology and Pain Management, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Shasha Wang
- Department of Anesthesiology and Pain Management, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
11
|
The Facts and Family Secrets of Plasmids That Replicate via the Rolling-Circle Mechanism. Microbiol Mol Biol Rev 2021; 86:e0022220. [PMID: 34878299 DOI: 10.1128/mmbr.00222-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plasmids are self-replicative DNA elements that are transferred between bacteria. Plasmids encode not only antibiotic resistance genes but also adaptive genes that allow their hosts to colonize new niches. Plasmid transfer is achieved by conjugation (or mobilization), phage-mediated transduction, and natural transformation. Thousands of plasmids use the rolling-circle mechanism for their propagation (RCR plasmids). They are ubiquitous, have a high copy number, exhibit a broad host range, and often can be mobilized among bacterial species. Based upon the replicon, RCR plasmids have been grouped into several families, the best known of them being pC194 and pUB110 (Rep_1 family), pMV158 and pE194 (Rep_2 family), and pT181 and pC221 (Rep_trans family). Genetic traits of RCR plasmids are analyzed concerning (i) replication mediated by a DNA-relaxing initiator protein and its interactions with the cognate DNA origin, (ii) lagging-strand origins of replication, (iii) antibiotic resistance genes, (iv) mobilization functions, (v) replication control, performed by proteins and/or antisense RNAs, and (vi) the participating host-encoded functions. The mobilization functions include a relaxase initiator of transfer (Mob), an origin of transfer, and one or two small auxiliary proteins. There is a family of relaxases, the MOBV family represented by plasmid pMV158, which has been revisited and updated. Family secrets, like a putative open reading frame of unknown function, are reported. We conclude that basic research on RCR plasmids is of importance, and our perspectives contemplate the concept of One Earth because we should incorporate bacteria into our daily life by diminishing their virulence and, at the same time, respecting their genetic diversity.
Collapse
|