1
|
Bai YZ, Wang S, Sun Y, Liu YG, Zhang HL, Wang Q, Huang R, Rao CH, Xu SJ, Tian ZJ, An TQ, Cai XH, Tang YD. The full-length nsp2 replicase contributes to viral assembly in highly pathogenic PRRSV-2. J Virol 2024:e0182124. [PMID: 39601570 DOI: 10.1128/jvi.01821-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Porcine reproductive and respiratory syndrome viruses (PRRSVs) are significant pathogens that affect the global swine industry. Its virions consist of a central core composed of nucleocapsid (N) protein, surrounded by multiple distinct viral envelope proteins. However, the mechanisms underlying the recognition and packaging of N protein by viral envelope proteins remain elusive. In this study, we elucidated the role of nonstructural protein 2 (nsp2) from highly pathogenic PRRSV-2 (HP-PRRSV-2) in viral assembly. Firstly, among all the tested envelope proteins, only glycoprotein 5 (GP5) exhibits limited interaction with N protein. Interestingly, we demonstrated that full-length nsp2 co-immunoprecipitates (Co-IPs) with the N protein and all tested viral envelope proteins. In the presence of full-length nsp2, the N protein interacts with distinct viral envelope proteins. Moreover, upon viral infection, Co-IP experiments using nsp2-specific antibodies or N-specific antibodies revealed the formation of a complex between N and nsp2 with the M protein, GP2a, and GP5. However, neither of the two short forms of nsp2-namely nsp2TF nor nsp2N-participates in this process as they fail to interact with the N protein. Finally, our results demonstrate that this process occurs in the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment (ERGIC). Overall, our findings unveil a novel functional role for full-length nsp2 of HP-PRRSV-2 in facilitating the assembly of the N protein with viral envelope proteins.IMPORTANCEThe virus assembly process of arteriviruses remains largely elusive, including the direct interaction between N protein and viral envelope proteins or the potential requirement for additional proteins in facilitating assembly. Moreover, where the N protein assembles with viral envelope proteins during the virus lifecycle remains unclear. This study reveals a novel role for nonstructural protein 2 (nsp2) in highly pathogenic porcine reproductive and respiratory syndrome virus type 2 (HP-PRRSV-2), highlighting its involvement in HP-PRRSV-2 assembly. These findings provide crucial insights into HP-PRRSV-2 assembly and enhance our understanding of their lifecycle. Overall, this study offers an alternative approach to developing a new antiviral strategy targeting PRRSV-2 assembly.
Collapse
Affiliation(s)
- Yuan-Zhe Bai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yue Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yong-Gang Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Hong-Liang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Qian Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Rui Huang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Cui-Hong Rao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Shi-Jia Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Zhi-Jun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Tong-Qing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Xue-Hui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Zhang W, Wang X, Zhang H, Pan Y, Ma W, Xu Y, Tian Z, Xia C, Fu L, Wang Y. Comparison of pathogenicity and host responses of emerging porcine reproductive and respiratory syndrome virus variants in piglets. J Virol 2024; 98:e0154223. [PMID: 39445829 PMCID: PMC11575335 DOI: 10.1128/jvi.01542-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/15/2024] [Indexed: 10/25/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a highly variable virus with genetic diversity. This study comparatively examines the pathogenicity and immunological impact of two emergent PRRSV strains, SD53 and HuN4, in piglets. Our results indicate that SD53 strain induces milder clinical syndromes and less severe tissue damage than HuN4, despite similar replication rates. Hematological tests showed less perturbations in peripheral blood cell profiles after SD53 infection, suggesting a less systemic impact. The neutrophil-to-lymphocyte ratio was notably lower in SD53-infected piglets, suggesting a less intense inflammatory reaction. Moreover, SD53 infection led to lower levels of pro-inflammatory cytokines, further supporting a less pronounced inflammatory profile. Both strains induced the production of PRRSV-specific antibodies. However, transcriptomic analysis of lung and lymph node tissues from infected piglets disclosed a more moderate up-regulation of core genes, including ISGs, in the SD53 group. Further analysis indicated that SD53 primarily enhanced immune-related signaling, particularly in T cell response modules, while HuN4 caused a more robust pro-inflammatory reaction and a dampening of T cell functionality. Flow cytometry analyses confirmed these findings, showing higher CD4/CD8 ratios and increased CD4+ T cell percentages in SD53-infected piglets, implying a more robust T cell response. Collectively, these findings broaden our comprehension of PRRSV pathogenesis and may inform the development of future therapeutic or prophylactic strategies for controlling PRRSV infections more effectively. IMPORTANCE The high mutation rate of porcine reproductive and respiratory syndrome virus (PRRSV) poses significant challenges to its accurate diagnosis and the implementation of effective control measures. This research explores the pathogenic profiles of two emerging PRRSV stains: the NADC30-like strain SD53 and the highly pathogenic strain HuN4. Our investigation reveals that SD53 initiates distinct immunopathological responses in vivo compared with those provoked by HuN4. By conducting a transcriptome analysis of differential gene expression in the lungs and lymph nodes of infected piglets, we unveil the intricate molecular mechanisms underlying the contrasting pathogenicity of these two strains. The comprehensive insights yielded by this study are instrumental in advancing our understanding of the dominant NADC30-like PRRSV strain, which has become increasingly prevalent in China's swine industry.
Collapse
Affiliation(s)
- Wenli Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - He Zhang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yu Pan
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenjie Ma
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Yunfei Xu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhijun Tian
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Yue Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| |
Collapse
|
3
|
Arjin C, Hnokaew P, Tasuksai P, Thongkham M, Pringproa K, Arunorat J, Yano T, Seel-audom M, Rachtanapun P, Sringarm K, Chuammitri P. Transcriptome Analysis of Porcine Immune Cells Stimulated by Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Caesalpinia sappan Extract. Int J Mol Sci 2024; 25:12285. [PMID: 39596350 PMCID: PMC11595159 DOI: 10.3390/ijms252212285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The current level of knowledge on transcriptome responses triggered by Caesalpinia sappan (CS) extract in porcine peripheral blood mononuclear cells (PBMCs) after porcine reproductive and respiratory syndrome virus (PRRSV) infection is limited. Therefore, in the present study, we aimed to detect significant genes and pathways involved in CS extract supplementation responsiveness of PBMCs after PRRSV infection. RNA sequencing was conducted on PBMCs, which were isolated from six weaned piglets. The resultant transcriptional responses were examined by mRNA sequencing. Differential expression analysis identified 263 and 274 differentially expressed genes (DEGs) between the PRRSV and CTRL groups, and the PRRSV+CS and CTRL groups, respectively. Among these, ZNF646 and KAT5 emerged as the most promising candidate genes, potentially influencing the interaction between PRRSV-infected PBMCs and CS extract supplementation through the regulation of gene networks and cellular homeostasis during stress. Two pathways were detected to be associated with CS extract supplementation responsiveness: the cellular response to stress pathway and the NF-kB signaling pathway. Consequently, our study reveals a novel mechanism underlying cellular stress response and the NF-κB signaling pathway in PRRSV-infected PBMCs, and identifies a potential application of CS extract for activating the NF-κB signaling pathway. In conclusion, by supplementing CS extract in PBMC cells infected with PRRSV, we found that CS extract modulates PRRSV infection by inducing cellular stress, which is regulated by the NF-κB signaling pathway. This induced stress creates an adverse environment for PRRSV survival. This study contributes to a deeper understanding of the therapeutic targets and pathogenesis of PRRSV infection. Importantly, our results demonstrate that CS extract has the potential to be a candidate for modulating PRRSV infection.
Collapse
Affiliation(s)
- Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Patipan Hnokaew
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patchara Tasuksai
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Marninphan Thongkham
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Kidsadagon Pringproa
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| | - Jirapat Arunorat
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| | - Terdsak Yano
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| | - Mintra Seel-audom
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (C.A.); (P.H.); (P.T.); (M.T.); (M.S.-a.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phongsakorn Chuammitri
- Veterinary Academic Office, Faculty of Veterinary Medicine, Chiang Mai University, Muang, Chiang Mai 50100, Thailand; (K.P.); (J.A.); (T.Y.)
| |
Collapse
|
4
|
Wang J, Sun H, Li R, Xu S, Guo J, Xing G, Jia B, Qiao S, Chen XX, Zhang G. PRRSV non-structural protein 5 inhibits antiviral innate immunity by degrading multiple proteins of RLR signaling pathway through FAM134B-mediated ER-phagy. J Virol 2024; 98:e0081624. [PMID: 39264156 PMCID: PMC11495150 DOI: 10.1128/jvi.00816-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Viruses employ various evasion strategies to establish prolonged infection, with evasion of innate immunity being particularly crucial. Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant pathogen in swine industry, characterized by reproductive failures in sows and respiratory distress in pigs of all ages, leading to substantial economic losses globally. In this study, we found that the non-structural protein 5 (Nsp5) of PRRSV antagonizes innate immune responses via inhibiting the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs), which is achieved by degrading multiple proteins of RIG-I-like receptor (RLR) signaling pathway (RIG-I, MDA5, MAVS, TBK1, IRF3, and IRF7). Furthermore, we showed that PRRSV Nsp5 is located in endoplasmic reticulum (ER), where it promotes accumulation of RLR signaling pathway proteins. Further data demonstrated that Nsp5 activates reticulophagy (ER-phagy), which is responsible for the degradation of RLR signaling pathway proteins and IFN-I production. Mechanistically, Nsp5 interacts with one of the ER-phagy receptor family with sequence similarity 134 member B (FAM134B), promoting the oligomerization of FAM134B. These findings elucidate a novel mechanism by which PRRSV utilizes FAM134B-mediated ER-phagy to elude host antiviral immunity.IMPORTANCEInnate immunity is the first line of host defense against viral infections. Therefore, viruses developed numerous mechanisms to evade the host innate immune responses for their own benefit. PRRSV, one of the most important endemic swine viruses, poses a significant threat to the swine industry worldwide. Here, we demonstrate for the first time that PRRSV utilizes its non-structural protein Nsp5 to degrade multiple proteins of RLR signaling pathways, which play important roles in IFN-I production. Moreover, FAM134B-mediated ER-phagy was further proved to be responsible for the protein's degradation. Our study highlights the critical role of ER-phagy in immune evasion of PRRSV to favor replication and provides new insights into the prevention and control of PRRSV.
Collapse
Affiliation(s)
- Jing Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Huiqin Sun
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Rui Li
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Shixuan Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Junqing Guo
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Guangxu Xing
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Bin Jia
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Songlin Qiao
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Xin-xin Chen
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Key Laboratory of Animal Immunology of the Ministry of Agriculture, Zhengzhou, China
- Longhu Laboratory, Zhengzhou, China
| |
Collapse
|
5
|
Grevelinger J, Bourry O, Meurens F, Perrin A, Hervet C, Dubreil L, Simon G, Bertho N. Impact of swine influenza A virus on porcine reproductive and respiratory syndrome virus infection in alveolar macrophages. Front Vet Sci 2024; 11:1454762. [PMID: 39253525 PMCID: PMC11381391 DOI: 10.3389/fvets.2024.1454762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Porcine respiratory disease complex represents a major challenge for the swine industry, with swine influenza A virus (swIAV) and porcine reproductive and respiratory syndrome virus (PRRSV) being major contributors. Epidemiological studies have confirmed the co-circulation of these viruses in pig herds, making swIAV-PRRSV co-infections expected. A couple of in vivo co-infection studies have reported replication interferences between these two viruses. Herein, using a reductionist in vitro model, we investigated the potential mechanisms of these in vivo interferences. We first examined the impact of swIAV on porcine alveolar macrophages (AMs) and its effects on AMs co-infection by PRRSV. This was done either in monoculture or in co-culture with respiratory tracheal epithelial cells to represent the complexity of the interactions between the viruses and their respective target cells (epithelial cells for swIAV and AMs for PRRSV). AMs were obtained either from conventional or specific pathogen-free (SPF) pigs. SwIAV replication was abortive in AMs, inducing cell death at high multiplicity of infections. In AMs from three out of four conventional animals, swIAV showed no impact on PRRSV replication. However, inhibition of PRRSV multiplication was observed in AMs from one animal, accompanied by an early increase in the expression of interferon (IFN)-I and IFN-stimulated genes. In AMs from six SPF pigs, swIAV inhibited PRRSV replication in all animals, with an early induction of antiviral genes. Co-culture experiments involving tracheal epithelial cells and AMs from either SPF or conventional pigs all showed swIAV-induced inhibition of PRRSV replication, together with early induction of antiviral genes. These findings highlight the complex interactions between swIAV and PRRSV in porcine AMs, and would suggest a role of host factors, such as sanitary status, in modulating viral propagation. Our co-culture experiments demonstrated that swIAV inhibits PRRSV replication more effectively in the presence of respiratory tracheal epithelial cells, suggesting a synergistic antiviral response between AMs and epithelial cells, consistent with in vivo experiments.
Collapse
Affiliation(s)
- Janaïna Grevelinger
- Oniris, INRAE, BIOEPAR, Nantes, France
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, Ploufragan, France
| | - Olivier Bourry
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, Ploufragan, France
| | - François Meurens
- Oniris, INRAE, BIOEPAR, Nantes, France
- CRIPA, Fonds de Recherche du Québec, Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | | | | | | | - Gaëlle Simon
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, Ploufragan, France
| | | |
Collapse
|
6
|
Fiers J, Cay AB, Maes D, Tignon M. A Comprehensive Review on Porcine Reproductive and Respiratory Syndrome Virus with Emphasis on Immunity. Vaccines (Basel) 2024; 12:942. [PMID: 39204065 PMCID: PMC11359659 DOI: 10.3390/vaccines12080942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in pig production worldwide and responsible for enormous production and economic losses. PRRSV infection in gestating gilts and sows induces important reproductive failure. Additionally, respiratory distress is observed in infected piglets and fattening pigs, resulting in growth retardation and increased mortality. Importantly, PRRSV infection interferes with immunity in the respiratory tract, making PRRSV-infected pigs more susceptible to opportunistic secondary pathogens. Despite the availability of commercial PRRSV vaccines for more than three decades, control of the disease remains a frustrating and challenging task. This paper provides a comprehensive overview of PRRSV, covering its history, economic and scientific importance, and description of the viral structure and genetic diversity. It explores the virus's pathogenesis, including cell tropism, viral entry, replication, stages of infection and epidemiology. It reviews the porcine innate and adaptative immune responses to comprehend the modulation mechanisms employed by PRRS for immune evasion.
Collapse
Affiliation(s)
- Jorian Fiers
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Ann Brigitte Cay
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| | - Dominiek Maes
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Marylène Tignon
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| |
Collapse
|
7
|
Ringo RS, Choonnasard A, Okabayashi T, Saito A. Conserved Antagonization of Type I Interferon Signaling by Arterivirus GP5 Proteins. Viruses 2024; 16:1240. [PMID: 39205214 PMCID: PMC11358952 DOI: 10.3390/v16081240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Arteriviruses can establish persistent infections in animals such as equids, pigs, nonhuman primates, rodents, and possums. Some Arteriviruses can even cause overt and severe diseases such as Equine Arteritis in horses and Porcine Reproductive and Respiratory Syndrome in pigs, leading to huge economic losses. Arteriviruses have evolved viral proteins to antagonize the host cell's innate immune responses by inhibiting type I interferon (IFN) signaling, assisting viral evasion and persistent infection. So far, the role of the Arterivirus glycoprotein 5 (GP5) protein in IFN signaling inhibition remains unclear. Here, we investigated the inhibitory activity of 47 Arterivirus GP5 proteins derived from various hosts. We demonstrated that all GP5 proteins showed conserved activity for antagonizing TIR-domain-containing adapter proteins inducing interferon-β (TRIF)-mediated IFN-β signaling through TRIF degradation. In addition, Arterivirus GP5 proteins showed a conserved inhibitory activity against IFN-β signaling, induced by either pig or human TRIF. Furthermore, certain Arterivirus GP5 proteins could inhibit the induction of IFN-stimulated genes. These findings highlight the role of Arterivirus GP5 proteins in supporting persistent infection.
Collapse
Affiliation(s)
- Rissar Siringo Ringo
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (R.S.R.); (A.C.); (T.O.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Amonrat Choonnasard
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (R.S.R.); (A.C.); (T.O.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Tamaki Okabayashi
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (R.S.R.); (A.C.); (T.O.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan; (R.S.R.); (A.C.); (T.O.)
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
8
|
Wang S, Xiang Z, Gao P, Zhang Y, Zhou L, Ge X, Guo X, Han J, Yang H. African swine fever virus structural protein p17 inhibits IRF3 activation by recruiting host protein PR65A and inducing apoptotic degradation of STING. Front Microbiol 2024; 15:1428233. [PMID: 38957619 PMCID: PMC11217484 DOI: 10.3389/fmicb.2024.1428233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
African swine fever virus (ASFV) is notoriously known for evolving strategies to modulate IFN signaling. Despite lots of efforts, the underlying mechanisms have remained incompletely understood. This study concerns the regulatory role of viral inner membrane protein p17. We found that the ASFV p17 shows a preferential interaction with cGAS-STING-IRF3 pathway, but not the RIG-I-MAVS-NF-κB signaling, and can inhibit both poly(I:C)- and poly(A:T)-induced activation of IRF3, leading to attenuation of IFN-β induction. Mechanistically, p17 interacts with STING and IRF3 and recruits host scaffold protein PR65A, a subunit of cellular phosphatase PP2A, to down-regulate the level of p-IRF3. Also, p17 targets STING for partial degradation via induction of cellular apoptosis that consequently inhibits activation of both p-TBK1 and p-IRF3. Thus, our findings reveal novel regulatory mechanisms for p17 modulation of IFN signaling and shed light on the intricate interplay between ASFV proteins and host immunity.
Collapse
Affiliation(s)
- Shimin Wang
- State Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Zhiyong Xiang
- State Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Gao
- State Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongning Zhang
- State Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lei Zhou
- State Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinna Ge
- State Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xin Guo
- State Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Han
- State Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hanchun Yang
- State Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Li GL, Han YQ, Su BQ, Yu HS, Zhang S, Yang GY, Wang J, Liu F, Ming SL, Chu BB. Porcine reproductive and respiratory syndrome virus 2 hijacks CMA-mediated lipolysis through upregulation of small GTPase RAB18. PLoS Pathog 2024; 20:e1012123. [PMID: 38607975 PMCID: PMC11014436 DOI: 10.1371/journal.ppat.1012123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
RAB GTPases (RABs) control intracellular membrane trafficking with high precision. In the present study, we carried out a short hairpin RNA (shRNA) screen focused on a library of 62 RABs during infection with porcine reproductive and respiratory syndrome virus 2 (PRRSV-2), a member of the family Arteriviridae. We found that 13 RABs negatively affect the yield of PRRSV-2 progeny virus, whereas 29 RABs have a positive impact on the yield of PRRSV-2 progeny virus. Further analysis revealed that PRRSV-2 infection transcriptionally regulated RAB18 through RIG-I/MAVS-mediated canonical NF-κB activation. Disrupting RAB18 expression led to the accumulation of lipid droplets (LDs), impaired LDs catabolism, and flawed viral replication and assembly. We also discovered that PRRSV-2 co-opts chaperone-mediated autophagy (CMA) for lipolysis via RAB18, as indicated by the enhanced associations between RAB18 and perlipin 2 (PLIN2), CMA-specific lysosomal associated membrane protein 2A (LAMP2A), and heat shock protein family A (Hsp70) member 8 (HSPA8/HSC70) during PRRSV-2 infection. Knockdown of HSPA8 and LAMP2A impacted on the yield of PRRSV-2 progeny virus, implying that the virus utilizes RAB18 to promote CMA-mediated lipolysis. Importantly, we determined that the C-terminal domain (CTD) of HSPA8 could bind to the switch II domain of RAB18, and the CTD of PLIN2 was capable of associating with HSPA8, suggesting that HSPA8 facilitates the interaction between RAB18 and PLIN2 in the CMA process. In summary, our findings elucidate how PRRSV-2 hijacks CMA-mediated lipid metabolism through innate immune activation to enhance the yield of progeny virus, offering novel insights for the development of anti-PRRSV-2 treatments.
Collapse
Affiliation(s)
- Guo-Li Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Zhengzhou, Henan Province, Ministry of Agriculture and Rural Affairs of the People’s Republic of China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, Henan Province, China
| | - Ying-Qian Han
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Zhengzhou, Henan Province, Ministry of Agriculture and Rural Affairs of the People’s Republic of China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, Henan Province, China
| | - Bing-Qian Su
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Zhengzhou, Henan Province, Ministry of Agriculture and Rural Affairs of the People’s Republic of China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, Henan Province, China
| | - Hai-Shen Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Zhengzhou, Henan Province, Ministry of Agriculture and Rural Affairs of the People’s Republic of China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, Henan Province, China
| | - Shuang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Zhengzhou, Henan Province, Ministry of Agriculture and Rural Affairs of the People’s Republic of China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, Henan Province, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Zhengzhou, Henan Province, Ministry of Agriculture and Rural Affairs of the People’s Republic of China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, Henan Province, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Zhengzhou, Henan Province, Ministry of Agriculture and Rural Affairs of the People’s Republic of China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, Henan Province, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, China
| | - Fang Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Sheng-Li Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Zhengzhou, Henan Province, Ministry of Agriculture and Rural Affairs of the People’s Republic of China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, Henan Province, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- Key Laboratory of Animal Biochemistry and Nutrition, Zhengzhou, Henan Province, Ministry of Agriculture and Rural Affairs of the People’s Republic of China
- Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, Henan Province, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan Province, China
- Longhu Advanced Immunization Laboratory, Zhengzhou, Henan Province, China
| |
Collapse
|
10
|
Huang X, Liu W. Role of microRNAs in host defense against porcine reproductive and respiratory syndrome virus infection: a hidden front line. Front Immunol 2024; 15:1376958. [PMID: 38590524 PMCID: PMC10999632 DOI: 10.3389/fimmu.2024.1376958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most globally devastating viruses threatening the swine industry worldwide. Substantial advancements have been achieved in recent years towards comprehending the pathogenesis of PRRSV infection and the host response, involving both innate and adaptive immune responses. Not only a multitude of host proteins actively participate in intricate interactions with viral proteins, but microRNAs (miRNAs) also play a pivotal role in the host response to PRRSV infection. If a PRRSV-host interaction at the protein level is conceptualized as the front line of the battle between pathogens and host cells, then their fight at the RNA level resembles the hidden front line. miRNAs are endogenous small non-coding RNAs of approximately 20-25 nucleotides (nt) that primarily regulate the degradation or translation inhibition of target genes by binding to the 3'-untranslated regions (UTRs). Insights into the roles played by viral proteins and miRNAs in the host response can enhance our comprehensive understanding of the pathogenesis of PRRSV infection. The intricate interplay between viral proteins and cellular targets during PRRSV infection has been extensively explored. This review predominantly centers on the contemporary understanding of the host response to PRRSV infection at the RNA level, in particular, focusing on the twenty-six miRNAs that affect viral replication and the innate immune response.
Collapse
Affiliation(s)
- Xuewei Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | | |
Collapse
|
11
|
Pang F, Long Q, Wei M. Immune evasion strategies of bovine viral diarrhea virus. Front Cell Infect Microbiol 2023; 13:1282526. [PMID: 37900320 PMCID: PMC10613064 DOI: 10.3389/fcimb.2023.1282526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) is a significant pathogen that causes great economic losses in the global livestock industry. During the long-term interactions between BVDV and its hosts, the virus has evolved multiple strategies to evade the host's innate immunity and adaptive immunity, thereby promoting viral survival and replication. This review focuses on the most recent research on immune evasion strategies employed by BVDV, including evading type I IFN signaling pathway, evading host adaptive immunity, mediating NF-κB signaling pathway, mediating cell apoptosis and inducing autophagy. Unraveling BVDV's immune evasion strategies will enhance our understanding of the pathogenesis of BVDV and contribute to the development of more effective therapies for the prevention, control and eradication of BVDV.
Collapse
Affiliation(s)
- Feng Pang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China
| | | | | |
Collapse
|
12
|
Peng O, Xia Y, Wei Y, Zeng S, Zou C, Hu F, Xu Q, Huang Y, Geng R, Hu G, Cao Y, Zhang H. Integrative transcriptomic profiling of mRNA, miRNA, circRNA, and lncRNA in alveolar macrophages isolated from PRRSV-infected porcine. Front Immunol 2023; 14:1258778. [PMID: 37691924 PMCID: PMC10491896 DOI: 10.3389/fimmu.2023.1258778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction The porcine reproductive and respiratory syndrome virus (PRRSV) continues to pose a significant threat to the global swine industry, attributed largely to its immunosuppressive properties and the chronic nature of its infection. The absence of effective vaccines and therapeutics amplifies the urgency to deepen our comprehension of PRRSV's intricate pathogenic mechanisms. Previous transcriptomic studies, although informative, are partially constrained by their predominant reliance on in vitro models or lack of long-term infections. Moreover, the role of circular RNAs (circRNAs) during PRRSV invasion is yet to be elucidated. Methods In this study, we employed an in vivo approach, exposing piglets to a PRRSV challenge over varied durations of 3, 7, or 21 days. Subsequently, porcine alveolar macrophages were isolated for a comprehensive transcriptomic investigation, examining the expression patterns of mRNAs, miRNAs, circRNAs, and long non-coding RNAs (lncRNAs). Results Differentially expressed RNAs from all four categories were identified, underscoring the dynamic interplay among these RNA species during PRRSV infection. Functional enrichment analyses indicate that these differentially expressed RNAs, as well as their target genes, play a pivotal role in immune related pathways. For the first time, we integrated circRNAs into the lncRNA-miRNA-mRNA relationship, constructing a competitive endogenous RNA (ceRNA) network. Our findings highlight the immune-related genes, CTLA4 and SAMHD1, as well as their associated miRNAs, lncRNAs, and circRNAs, suggesting potential therapeutic targets for PRRS. Importantly, we corroborated the expression patterns of selected RNAs through RT-qPCR, ensuring consistency with our transcriptomic sequencing data. Discussion This study sheds lights on the intricate RNA interplay during PRRSV infection and provides a solid foundation for future therapeutic strategizing.
Collapse
Affiliation(s)
- Ouyang Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Xia
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Wei
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
| | - Siying Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuangchao Zou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fangyu Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yihui Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guangli Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Yi H, Wang Q, Lu L, Ye R, Xie E, Yu Z, Sun Y, Chen Y, Cai M, Qiu Y, Wu Q, Peng J, Wang H, Zhang G. PSMB4 Degrades the Porcine Reproductive and Respiratory Syndrome Virus Nsp1α Protein via the Autolysosome Pathway and Induces the Production of Type I Interferon. J Virol 2023; 97:e0026423. [PMID: 36943051 PMCID: PMC10134815 DOI: 10.1128/jvi.00264-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/23/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes respiratory disease in pigs of all ages and reproductive failure in sows, resulting in great economic losses to the swine industry. In this work, we identified the interaction between PSMB4 and PRRSV Nsp1α by yeast two-hybrid screening. The PSMB4-Nsp1α interaction was further confirmed by coimmunoprecipitation, glutathione S-transferase (GST) pulldown, and laser confocal experiments. The PCPα domain (amino acids 66 to 166) of Nsp1α and the C-terminal domain (amino acids 250 to 264) of PSMB4 were shown to be critical for the PSMB4-Nsp1α interaction. PSMB4 overexpression reduced PRRSV replication, whereas PSMB4 knockdown elicited opposing effects. Mechanistically, PSMB4 targeted K169 in Nsp1α for K63-linked ubiquitination and targeted Nsp1α for autolysosomal degradation by interacting with LC3 to enhance the activation of the lysosomal pathway. Meanwhile, we found that PSMB4 activated the NF-κB signaling pathway to produce type I interferons by downregulating the expression of IκBα and p-IκBα. In conclusion, our data revealed a new mechanism of PSMB4-mediated restriction of PRRSV replication, whereby PSMB4 was found to induce Nsp1α degradation and type I interferon expression, in order to impede the replication of PRRSV. IMPORTANCE In the swine industry, PRRSV is a continuous threat, and the current vaccines are not effective enough to block it. This study determined that PSMB4 plays an antiviral role against PRRSV. PSMB4 was found to interact with PRRSV Nsp1α, mediate K63-linked ubiquitination of Nsp1α at K169, and thus trigger its degradation via the lysosomal pathway. Additionally, PSMB4 activated the NF-κB signaling pathway to produce type I interferons by downregulating the expression of IκBα and p-IκBα. This study extends our understanding of the proteasome subunit PSMB4 against PRRSV replication and will contribute to the development of new antiviral strategies.
Collapse
Affiliation(s)
- Heyou Yi
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Qiumei Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lechen Lu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ruirui Ye
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ermin Xie
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiqing Yu
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhongmu Institutes of China Animal Husbandry Industry Co. Ltd., Beijing, China
| | - Yankuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yao Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mengkai Cai
- Guangdong Meizhou Vocational and Technical College, Meizhou, China
| | - Yingwu Qiu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qianwen Wu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jie Peng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Chen XX, Qiao S, Li R, Wang J, Li X, Zhang G. Evasion strategies of porcine reproductive and respiratory syndrome virus. Front Microbiol 2023; 14:1140449. [PMID: 37007469 PMCID: PMC10063791 DOI: 10.3389/fmicb.2023.1140449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
During the co-evolution of viruses and their hosts, viruses have developed various strategies for overcoming host immunological defenses so that they can proliferate efficiently. Porcine reproductive and respiratory syndrome virus (PRRSV), a significant virus to the swine industry across the world, typically establishes prolonged infection via diverse and complicated mechanisms, which is one of the biggest obstacles for controlling the associated disease, porcine reproductive and respiratory syndrome (PRRS). In this review, we summarize the latest research on how PRRSV circumvents host antiviral responses from both the innate and adaptive immune systems and how this virus utilizes other evasion mechanisms, such as the manipulation of host apoptosis and microRNA. A thorough understanding of the exact mechanisms of PRRSV immune evasion will help with the development of novel antiviral strategies against PRRSV.
Collapse
Affiliation(s)
- Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Jing Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xuewu Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
15
|
Porcine Reproductive and Respiratory Syndrome Virus Modulates the Switch of Macrophage Polarization from M1 to M2 by Upregulating MoDC-Released sCD83. Viruses 2023; 15:v15030773. [PMID: 36992481 PMCID: PMC10054646 DOI: 10.3390/v15030773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), the most economically important infectious disease of pigs, elicits poor innate and adaptive immune responses. Soluble CD83 (sCD83), a secretion from various immune cell populations, especially MoDCs, is involved in negatively regulating the immune response. We speculate sCD83 may be a critical factor in the process of PRRSV-coordinated macrophage polarization. In this study, we found that PAMs co-cultured with PRRSV-infected MoDCs inhibited the M1 macrophage while enhancing the M2 macrophage. This was accompanied by a decrease in the pro-inflammatory cytokine TNF-α and iNOS and an increase in the anti-inflammatory cytokine IL-10 and Arg1. Meanwhile, sCD83 incubation causes the same specific effects lead to a switch in macrophage from M1 to M2. Neutralization of sCD83 removes the inhibitory effects of PRRSV on PAMs. Using reverse genetics, we generated recombinant PRRSVs with mutations in N protein, nsp1α, and nsp10 (knockout sCD83-concerned key amino acid site). Four mutant viruses lost the suppression of M1 macrophage markers, in contrast to the restriction of the upregulation of M2 macrophage markers. These findings suggest that PRRSV modulates the switch of macrophage polarization from M1 to M2 by upregulating the MoDC-induced secretion of CD83, providing new insights into the mechanism by which PRRSV regulates host immunity.
Collapse
|
16
|
Wahyuningtyas R, Wu ML, Chung WB, Chaung HC, Chang KT. Toll-like Receptor-Mediated Immunomodulation of Th1-Type Response Stimulated by Recombinant Antigen of Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-2). Viruses 2023; 15:v15030775. [PMID: 36992483 PMCID: PMC10057405 DOI: 10.3390/v15030775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
PRRSV infects CD163-positive macrophages and skews their polarization toward an M2 phenotype, followed by T-cell inactivation. In our previous study, we found that recombinant protein A1 antigen derived from PRRSV-2 was a potential vaccine or adjuvant for immunization against PRRSV-2 infection due to its ability to repolarize macrophages into M1 subtype, thereby reducing CD163 expression for viral entry and promoting immunomodulation for Th1-type responses, except for stimulating Toll-like receptor (TLR) activation. The aim of our current study was to evaluate the effects of another two recombinant antigens, A3 (ORF6L5) and A4 (NLNsp10L11), for their ability to trigger innate immune responses including TLR activation. We isolated pulmonary alveolar macrophages (PAMs) from 8- to 12-week-old specific pathogen free (SPF) piglets and stimulated them with PRRSV (0.01 MOI and 0.05 MOI) or antigens. We also investigated the T-cell differentiation by immunological synapse activation of PAMs and CD4+ T-cells in the cocultured system. To confirm the infection of PRRSV in PAMs, we checked the expression of TLR3, 7, 8, and 9. Our results showed that the expression of TLR3, 7, and 9 were significantly upregulated in PAMs by A3 antigen induction, similar to the extent of PRRSV infection. Gene profile results showed that A3 repolarizes macrophages into the M1 subtype potently, in parallel with A1, as indicated by significant upregulation of proinflammatory genes (TNF-α, IL-6, IL-1β and IL-12). Upon immunological synapse activation, A3 potentially differentiated CD4 T cells into Th1 cells, determined by the expression of IL-12 and IFN-γ secretion. On the contrary, antigen A4 promoted regulatory T cell (T-reg) differentiation by significant upregulation of IL-10 expression. Finally, we concluded that the PRRSV-2 recombinant protein A3 provided better protection against PRRSV infection, suggested by its capability to reeducate immunosuppressive M2 macrophages into proinflammatory M1 cells. As M1 macrophages are prone to be functional antigen-presenting cells (APCs), they can call for TLR activation and Th1-type immune response within the immunological synapse.
Collapse
Affiliation(s)
- Rika Wahyuningtyas
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Mei-Li Wu
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Wen-Bin Chung
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Hso-Chi Chaung
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: (H.-C.C.); (K.-T.C.)
| | - Ko-Tung Chang
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: (H.-C.C.); (K.-T.C.)
| |
Collapse
|
17
|
Development of a Multiplex Crystal Digital RT-PCR for Differential Detection of Classical, Highly Pathogenic, and NADC30-like Porcine Reproductive and Respiratory Syndrome Virus. Animals (Basel) 2023; 13:ani13040594. [PMID: 36830384 PMCID: PMC9951750 DOI: 10.3390/ani13040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) type 1 (European genotype) and PRRSV type 2 (North American genotype) are prevalent all over the world. Nowadays, the North American genotype PRRSV (NA-PRRSV) has been widely circulating in China and has caused huge economic losses to the pig industry. In recent years, classical PRRSV (C-PRRSV), highly pathogenic PRRSV (HP-PRRSV), and NADC30-like PRRSV (NL-PRRSV) have been the most common circulating strains in China. In order to accurately differentiate the circulating strains of NA-PRRSV, three pairs of specific primers and corresponding probes were designed for the Nsp2 region of C-PRRSV, HP-PRRSV, and NL-PRRSV. After optimizing the annealing temperature, primer concentration, and probe concentration, a multiplex real-time quantitative RT-PCR (qRT-PCR) and a multiplex Crystal digital RT-PCR (cdRT-PCR) for the differential detection of C-PRRSV, HP-PRRSV, and NL-PRRSV were developed. The results showed that the two assays illustrated high sensitivity, with a limit of detection (LOD) of 3.20 × 100 copies/μL for the multiplex qRT-PCR and 3.20 × 10-1 copies/μL for the multiplex cdRT-PCR. Both assays specifically detected the targeted viruses, without cross-reaction with other swine viruses, and indicated excellent repeatability, with coefficients of variation (CVs) of less than 1.26% for the multiplex qRT-PCR and 2.68% for the multiplex cdRT-PCR. Then, a total of 320 clinical samples were used to evaluate the application of these assays, and the positive rates of C-PRRSV, HP-PRRSV, and NL-PRRSV by the multiplex qRT-PCR were 1.88%, 21.56%, and 9.69%, respectively, while the positive rates by the multiplex cdRT-PCR were 2.19%, 25.31%, and 11.56%, respectively. The high sensitivity, strong specificity, excellent repeatability, and reliability of these assays indicate that they could provide useful tools for the simultaneous and differential detection of the circulating strains of C-PRRSV, HP-PRRSV, and NL-PRRSV in the field.
Collapse
|
18
|
Optimized protocol for double vaccine immunization against classical swine fever and porcine reproductive and respiratory syndrome. BMC Vet Res 2023; 19:14. [PMID: 36658569 PMCID: PMC9850545 DOI: 10.1186/s12917-022-03559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Classical swine fever and porcine reproductive and respiratory syndrome have seriously affected the development of the swine breeding industry in China. Vaccine immunization remains the main way to prevent these infections. The aim of this study was to establish an optimized protocol for vaccine immunization against classical swine fever virus (CSFV) and porcine reproductive and respiratory syndrome virus (PRRSV). METHODS Blood samples were collected from the anterior vena cava of pigs after immunization, and blood indices, secreted levels of specific antibodies and neutralizing antibodies associated with humoral immunity, the proliferation capacity of T lymphocytes as a measure of cellular immunity, and secreted levels of IFN-γ and TNF-α were determined. RESULTS The results showed that simultaneous immunization against CSFV and PRRSV infections induced strong and specific humoral and T-cellular immune responses, high levels of cytokine IFN-γ secretion and delayed secretion of cytokine TNF-α. Moreover, significantly higher lymphocyte percentages and red blood cell and leukocyte counts were found in the group simultaneously immunized against CSFV and PRRSV. However, no statistically significant differences were observed in hemoglobin values, neutrophil counts, and median cell percentages among the S + PRRS, PRRS-S, and S-PRRS groups. CONCLUSION This study demonstrated that simultaneous immunization against CSFV and PRRSV had the advantages of inducing a rapid, enhanced, and long-lasting immune response. These findings provide a theoretical basis for the establishment of a reasonable and optimized vaccine immunization protocol against CSFV and PRRSV in combination with a variety of other vaccine inoculations.
Collapse
|
19
|
Zhao K, Zhang S, Liu X, Guo X, Guo Z, Zhang X, Yuan W. The game between host antiviral innate immunity and immune evasion strategies of senecavirus A - A cell biological perspective. Front Immunol 2022; 13:1107173. [PMID: 36618383 PMCID: PMC9813683 DOI: 10.3389/fimmu.2022.1107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of the cellular host to defend against viral infection. Upon infection, viruses can be sensed by the cellular host's pattern recognition receptors (PRRs), leading to the activation of the signaling cascade and the robust production of interferons (IFNs) to restrict the infection and replication of the viruses. However, numerous cunning viruses have evolved strategies to evade host innate immunity. The senecavirus A (SVA) is a newly identified member of the Picornaviridae family, causing severe vesicular or ulcerative lesions on the oral mucosa, snout, coronary bands, and hooves of pigs of different ages. During SVA infection, the cellular host will launch the innate immune response and various physiological processes to restrict SVA. In contrast, SVA has evolved several strategies to evade the porcine innate immune responses. This review focus on the underlying mechanisms employed by SVA to evade pattern recognition receptor signaling pathways, type I interferon (IFN-α/β) receptor (IFNAR) signaling pathway, interferon-stimulated genes (ISGs) and autophagy, and stress granules. Deciphering the antiviral immune evasion mechanisms by SVA will enhance our understanding of SVA's pathogenesis and provide insights into developing antiviral strategies and improving vaccines.
Collapse
Affiliation(s)
- Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding, China
| | - Shixia Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiaona Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiaoran Guo
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Zhaomeng Guo
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
- Hebei Veterinary Biotechnology Innovation Center, Hebei Agricultural University, Baoding, China
| |
Collapse
|
20
|
Wang P, Ma X, Zhang R, Zhao Y, Hu R, Luo C, Zeshan B, Yang Z, Qiu L, Wang J, Liu H, Zhou Y, Wang X. The transcriptional characteristics of NADC34-like PRRSV in porcine alveolar macrophages. Front Microbiol 2022; 13:1022481. [PMID: 36338035 PMCID: PMC9629508 DOI: 10.3389/fmicb.2022.1022481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
The widespread and endemic circulation of porcine reproductive and respiratory syndrome virus (PRRSV) cause persistent financial losses to the swine industry worldwide. In 2017, NADC34-like PRRSV-2 emerged in northeastern China and spread rapidly. The dynamics analysis of immune perturbations associated with novel PRRSV lineage is still incomplete. This study performed a time-course transcriptome sequencing of NADC34-like PRRSV strain YC-2020-infected porcine alveolar macrophages (PAMs) and compared them with JXA1-infected PAMs. The results illustrated dramatic changes in the host’s differentially expressed genes (DEGs) presented at different timepoints after PRRSV infection, and the expression profile of YC-2020 group is distinct from that of JXA1 group. Functional enrichment analysis showed that the expression of many inflammatory cytokines was up-regulated following YC-2020 infection but at a significantly lower magnitude than JXA1 group, in line with the trends for most interferon-stimulated genes (ISGs) and their regulators. Meanwhile, numerous components of histocompatibility complex (MHC) class II and phagosome presented a stronger transcription suppression after the YC-2020 infection. All results imply that YC-2020 may induce milder inflammatory responses, weaker antiviral processes, and more severe disturbance of antigen processing and presentation compared with HP-PRRSV. Additionally, LAPTM4A, GLMP, and LITAF, which were selected from weighted gene co-expression network analysis (WGCNA), could significantly inhibit PRRSV proliferation. This study provides fundamental data for understanding the biological characteristics of NADC34-like PRRSV and new insights into PRRSV evolution and prevention.
Collapse
Affiliation(s)
- Peixin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongxin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruochen Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chen Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Basit Zeshan
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan, Sabah, Malaysia
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Li Qiu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu, China
- *Correspondence: Yefei Zhou,
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Xinglong Wang,
| |
Collapse
|
21
|
You X, Lei Y, Zhang P, Xu D, Ahmed Z, Yang Y. Role of transcription factors in porcine reproductive and respiratory syndrome virus infection: A review. Front Microbiol 2022; 13:924004. [PMID: 35928151 PMCID: PMC9344050 DOI: 10.3389/fmicb.2022.924004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an infectious disease caused by the PRRS virus that leads to reproductive disorders and severe dyspnoea in pigs, which has serious economic impacts. One of the reasons PRRSV cannot be effectively controlled is that it has developed countermeasures against the host immune response, allowing it to survive and replicate for long periods. Transcription Factors acts as a bridge in the interactions between the host and PRRSV. PRRSV can create an environment conducive to PRRSV replication through transcription factors acting on miRNAs, inflammatory factors, and immune cells. Conversely, some transcription factors also inhibit PRRSV proliferation in the host. In this review, we systematically described how PRRSV uses host transcription factors such as SP1, CEBPB, STATs, and AP-1 to escape the host immune system. Determining the role of transcription factors in immune evasion and understanding the pathogenesis of PRRSV will help to develop new treatments for PRRSV.
Collapse
Affiliation(s)
- Xiangbin You
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
| | - Ying Lei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
| | - Ping Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dequan Xu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Youbing Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang, China
- *Correspondence: Youbing Yang
| |
Collapse
|
22
|
Duan H, Dong H, Wu S, Ren J, Zhang M, Chen C, Du Y, Zhang G, Zhang A. Porcine reproductive and respiratory syndrome virus non-structural protein 4 cleaves guanylate-binding protein 1 via its cysteine proteinase activity to antagonize GBP1 antiviral effect. Vet Res 2022; 53:55. [PMID: 35804432 PMCID: PMC9264745 DOI: 10.1186/s13567-022-01071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly infectious disease caused by PRRS virus (PRRSV) that causes great economic losses to the swine industry worldwide. PRRSV has been recognized to modulate the host antiviral interferon (IFN) response and downstream interferon-stimulated gene expression to intercept the antiviral effect of host cells. Guanylate-binding proteins (GBPs) are IFN-inducible GTPases that exert broad antiviral activity against several DNA and RNA viruses, of which GBP1 is considered to play a pivotal role. However, the role of GBP1 in PRRSV replication remains unknown. The present study showed that overexpression of GBP1 notably inhibited PRRSV infection, while the knockdown of endogenous GBP1 promoted PRRSV infection. The K51 and R48 residues of GBP1 were essential for the suppression of PRRSV replication. Furthermore, GBP1 abrogated PRRSV replication by disrupting normal fibrous actin structures, which was indispensable for effective PRRSV replication. By using a co-immunoprecipitation assay, we found that GBP1 interacted with the non-structural protein 4 (nsp4) protein of PRRSV, and this interaction was mapped to the N-terminal globular GTPase domain of GBP1 and amino acids 1–69 of nsp4. PRRSV infection significantly downregulated GBP1 protein expression in Marc-145 cells, and nsp4, a 3C-like serine proteinase, was responsible for GBP1 cleavage, and the cleaved site was located at glutamic acid 338 of GBP1. Additionally, the anti-PRRSV activity of GBP1 was antagonized by nsp4. Taken together, these findings expand our understanding of the sophisticated interaction between PRRSV and host cells, PRRSV pathogenesis and its mechanisms of evading the host immune response.
Collapse
Affiliation(s)
- Hong Duan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Haoxin Dong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.,International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Shuya Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.,International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Jiahui Ren
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.,International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Mingfang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Chuangwei Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Yongkun Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.,International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.,International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Angke Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China. .,International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
23
|
Paraoxonase-1 Facilitates PRRSV Replication by Interacting with Viral Nonstructural Protein-9 and Inhibiting Type I Interferon Pathway. Viruses 2022; 14:v14061203. [PMID: 35746674 PMCID: PMC9230610 DOI: 10.3390/v14061203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Paraoxonase-1 (PON1), an esterase with specifically paraoxonase activity, has been proven to be involved in inflammation and infection. Porcine reproductive and respiratory syndrome virus (PRRSV) is still a major concern in pigs and causes severe economic losses to the swine industry worldwide. In this study, the role of PON1 was investigated in porcine alveolar macrophages (PAMs) during PRRSV infection. The results showed that PRRSV replication downregulated PON1, and the knockdown of PON1 significantly decreased PRRSV replication. Similarly, PON1 overexpression could enhance PRRSV replication. Interestingly, we observed that PON1 interacted with PRRSV nonstructural protein 9 (Nsp9), the RNA-dependent RNA polymerase, and the knockdown of PON1 lowered the RNA binding ability of Nsp9, suggesting that PON1 can facilitate Nsp9 function in viral replication. In addition, the knockdown of PON1 expression led to the amplification of type I interferon (IFN) genes and vice versa. In summary, our data demonstrate that PON1 facilitates PRRSV replication by interacting with Nsp9 and inhibiting the type I IFN signaling pathway. Hence, PON1 may be an additional component of the anti-PRRSV defenses.
Collapse
|