1
|
Sultan M, Cai ZX, Bao L, Duan JJ, Liu YY, Yang G, Pei DS. Trophic transfer induced gut inflammation, dysbiosis, and inflammatory pathways in zebrafish via Artemia franciscana: A differential analysis of nanoplastic toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136030. [PMID: 39362123 DOI: 10.1016/j.jhazmat.2024.136030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
Rising glbal population and plastic consumption have caused a dramatic increase in plastic waste, leading to micro- and nanoplastic ingestion by aquatic organisms and subsequent bioaccumulation in their tissues. This transfer to higher trophic levels raises nanoplastic concentrations and bioavailability, potentially harming organisms' health and development. This poses a risk to human health via seafood. To address these issues, this study assesses the toxicological impacts of nanoplastics (NPs) on brine shrimp (Artemia franciscana) and their trophic transfer to zebrafish. The research unveiled concentration-dependent bioaccumulation of NPs in zebrafish and Artemia franciscana (A. franciscana). Polystyrene nanoplastics (PS-NPs) exhibited higher accumulation in A. franciscana whereas PP-NPs showed greater accumulation in zebrafish gut. Histopathological analysis under PS-NPs exposure revealed significant tissue alterations, indicative of inflammatory responses and impaired mucosal barrier integrity. Gene expression analyses confirmed these findings, showing activation of the P38-MAPK pathway by PS-NPs, which correlated with increased inflammatory cytokines. Additionally, PE-NPs activated the JNK-MAPK pathway, while PP-NPs exposure triggered the NOD-like receptor signaling pathway. Moreover, the composition of gut microbiota shifted to a dysbiotic state, characterized by an increase in pathogenic bacteria in the PS-NPs and PP-NPs groups, elevating the risk of developing Inflammatory Bowel Disease (IBD). PS-NPs were regarded as the most toxic due to their lower stability and higher aggregation tendencies, followed by PP-NPs and PE-NPs. Taken together, the overall study highlighted the complex interactions between NPs, gut microbiota, and host health, emphasizing the importance of thoroughly assessing the ecological and physiological impacts of nanoplastic pollution.
Collapse
Affiliation(s)
- Marriya Sultan
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Xin Cai
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Li Bao
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Jin-Jing Duan
- Chongqing Miankai Biotechnology Research Institute Co., Ltd., Chongqing 400025, China
| | - Yi-Yun Liu
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Guan Yang
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China; Chongqing Miankai Biotechnology Research Institute Co., Ltd., Chongqing 400025, China.
| |
Collapse
|
2
|
Ri H, Zhu Y, Jo H, Miao X, Ri U, Yin J, Zhou L, Ye L. Di-(2-ethylhexyl) phthalate and its metabolites research trend: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50142-50165. [PMID: 39107640 DOI: 10.1007/s11356-024-34533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/24/2024] [Indexed: 09/01/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is one of the most widely used plasticizers. Many studies focus on the impact of continuous exposure to DEHP on humans and ecosystems. In this study, the bibliometric analysis of DEHP and its metabolites research was conducted to assess the research performances, hotspot issues, and trends in this field. The data was retrieved from a Web of Science Core Collection online database. VOSviewer 1.6.18 was used to analyze. A total of 4672 publications were collected from 1975 to 2022 October 21. The number of publications and citations increased annually in the last decades. China had the largest number of publications, and the USA had the highest co-authorship score. The most productive and most frequently cited institutions were the Chinese Academy of Sciences and the Centers for Disease Control & Prevention (USA), respectively. The journal with the most publications was the Science of Total Environment, and the most cited one was the Environmental Health Perspectives. The most productive and cited author was Calafat A. M. (USA). The most cited reference was "Phthalates: toxicology and exposure." Four hotspot issues were as follows: influences of DEHP on the organisms and its possible mechanisms, assessment of DEHP exposure to the human and its metabolism, dynamics of DEHP in external environments, and indoor exposure of DEHP and health outcomes. The research trends were DNOP, preterm birth, gut microbiota, microplastics, lycopene, hypertension, and thyroid hormones. This study can provide researchers with new ideas and decision-makers with reference basis to formulate relevant policies.
Collapse
Affiliation(s)
- Hyonju Ri
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
- Pyongyang Medical University, Pyongyang, 999093, Democratic People's Republic of Korea
| | - Ying Zhu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
| | - Hyonsu Jo
- Pyongyang Medical University, Pyongyang, 999093, Democratic People's Republic of Korea
- Department of Breast Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, China
| | - Xiaohan Miao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
| | - Unsim Ri
- Department of Epidemiology, Central Hygienic and Anti-Epidemiologic Institute, Ministry of Health, Pyongyang, 999093, Democratic People's Republic of Korea
| | - Jianli Yin
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, 130000, Jilin, China.
| |
Collapse
|
3
|
Teng M, Sun J, Zhao L, Li Y, Zhang Z, Zhu W, Zhang Y, Xu F, Xing S, Zhao X, Wu F. Effects of BBIBP-CorV vaccine on gut microbiota and short-chain fatty acids in mice exposed to bis (2-ethylhexyl) phthalate and dioctyl terephthalate. ENVIRONMENT INTERNATIONAL 2024; 190:108851. [PMID: 38941942 DOI: 10.1016/j.envint.2024.108851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
As the COVID-19 pandemic has progressed, increasing evidences suggest that the gut microbiota may play a crucial role in the effectiveness of SARS-CoV-2 vaccine. Thus, this study was aimed at investigating the influence of SARS-CoV-2 vaccine on the gut microbiota and short-chain fatty acids (SCFAs) of organisms exposed to environmental contaminants, i.e., plasticizers: phthalate esters. We found that in mice, exposure to dioctyl terephthalate (DOTP) and bis -2-ethylhexyl phthalate (DEHP) decreased the blood glucose level and white fat weight, induced inflammatory responses, caused damage to liver and intestinal tissues, and disrupted the gut microbiota composition and SCFAs metabolism. Specifically, the Bacteroidetes phylum was positively correlated with BBIBP-CorV vaccine, while acetic acid was negatively associated with the vaccine. Interestingly, the BBIBP-CorV vaccine somewhat alleviated tissue inflammation and reduced the contents of acetic acid and propionic acid in mice exposed to DEHP and DOTP. These findings were confirmed by a fecal microbiota transplantation assay. Overall, this study revealed that exposure to DEHP and DOTP adversely affects the gut microbiota and SCFAs, while the BBIBP-CorV vaccine can protect mice against these effects. This work highlighted the relationship between BBIBP-CorV vaccination, gut microbiome composition, and responses to plasticizers, which may facilitate the development and risk assessment of SARS-CoV-2 vaccines and environmental contaminants on microbiota health.
Collapse
Affiliation(s)
- Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiaqi Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lihui Zhao
- College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China
| | - Yunxia Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zixuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yuntao Zhang
- China National Biotec Group Company Limited, Beijing 100024, China
| | - Fangjingwei Xu
- China National Biotec Group Company Limited, Beijing 100024, China
| | - Sixi Xing
- China National Biotec Group Company Limited, Beijing 100024, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
4
|
Cao Y, Bi L, Chen Q, Liu Y, Zhao H, Jin L, Peng R. Understanding the links between micro/nanoplastics-induced gut microbes dysbiosis and potential diseases in fish: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124103. [PMID: 38734053 DOI: 10.1016/j.envpol.2024.124103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
At present, the quantity of micro/nano plastics in the environment is steadily rising, and their pollution has emerged as a global environmental issue. The tendency of their bioaccumulation in aquatic organisms (especially fish) has intensified people's attention to their persistent ecotoxicology. This review critically studies the accumulation of fish in the intestines of fish through active or passive intake of micro/nano plastics, resulting in their accumulation in intestinal organs and subsequent disturbance of intestinal microflora. The key lies in the complex toxic effect on the host after the disturbance of fish intestinal microflora. In addition, this review pointed out the characteristics of micro/nano plastics and the effects of their combined toxicity with adsorbed pollutants on fish intestinal microorganisms, in order to fully understand the characteristics of micro/nano plastics and emphasize the complex interaction between MNPs and other pollutants. We have an in-depth understanding of MNPs-induced intestinal flora disorders and intestinal dysfunction, affecting the host's systemic system, including immune system, nervous system, and reproductive system. The review also underscores the imperative for future research to investigate the toxic effects of prolonged exposure to MNPs, which are crucial for evaluating the ecological risks posed by MNPs and devising strategies to safeguard aquatic organisms.
Collapse
Affiliation(s)
- Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
5
|
Li X, Hu S, Jiang N, Yao X, Wang C, Wang Q, Yang Z, Wang J. Biotoxicity responses of zebrafish in environmentally relevant concentration of di (2-ethylhexyl) phthalate. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104423. [PMID: 38521434 DOI: 10.1016/j.etap.2024.104423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 02/09/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
As an emerging environmental contaminant, di (2-ethylhexyl) phthalate (DEHP) is widely present in the aquatic environment, however, the effects and underlying mechanisms of DEHP on the aquatic organisms are poorly understood. This study systematically investigated the ecotoxicity induced by chronic exposure to environmental relevant concentrations of DEHP (0.03 mg/L, 0.1 mg/L, and 0.3 mg/L) on zebrafish brain. Results indicated that DEHP exposure significantly increased the levels of ROS and disturbance of the antioxidant enzymes activities in the brain, which may further enhance lipid peroxidation and DNA damage. Furthermore, acetylcholinesterase activity was first stimulated and inhibited by exposure to DEHP, and the antioxidant and apoptosis related genes were mainly upregulated. Risk assessment indicated that the ecotoxicity of DEHP on the zebrafish showed an "enhancement-reduction" trend as the exposure time was prolonged. Overall, these results provided new insights and useful information to ecological risk assessment and environmental management of DEHP pollution.
Collapse
Affiliation(s)
- Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Shichang Hu
- Tai'an Eco-environmental Monitoring Center of Shandong Province, Tai'an 271000, China
| | - Nan Jiang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China; College of Natural Resources and Environment, Northwest A& F University, Yangling 712000, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Can Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Zhongkang Yang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China.
| |
Collapse
|
6
|
Cheng X, Chen J, Guo X, Cao H, Zhang C, Hu G, Zhuang Y. Disrupting the gut microbiota/metabolites axis by Di-(2-ethylhexyl) phthalate drives intestinal inflammation via AhR/NF-κB pathway in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123232. [PMID: 38171427 DOI: 10.1016/j.envpol.2023.123232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer known for its environmental endocrine-disrupting properties, posing potential risks to various organs. However, the precise impact of DEHP on intestinal health and its contribution to the initiation of intestinal inflammation remains elucidated. This study aims to investigate the underlying mechanisms of DEHP-induced intestinal inflammation in mice, specifically focusing on the complex interplay between the gut microbiota-metabolite axis and associated pathophysiological alterations. Our findings showed that DEHP-induced damage of multiple organs systemically, as indicated by abnormal liver and kidney biochemical markers, along with a disrupted ileum morphology. Additionally, DEHP exposure disrupted gut barrier function, causing intestinal inflammation characterized by bacterial translocation and alterations in defense and inflammation-related gene expressions. Moreover, 16S rRNA analysis suggested that DEHP-induced gut microbial remodeling is characterized by an upregulation of detrimental bacteria (Erysipelotrichaceae) and a downregulation of beneficial bacteria (Muribaculaceae, Ruminococcaceae, and Lachnospiraceae). Metabolomics analysis revealed DEHP perturbed gut metabolic homeostasis, particularly affecting the degradation of aromatic compounds, which generated an aberrant activation of the AhR and NF-κB, subsequently causing intestinal inflammation. Consequently, our results elucidate the mechanistic link between disrupted gut microbiota and metabolome and the initiation of DEHP-induced intestinal inflammation, mediated through the AhR/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xinyi Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Jinyan Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
7
|
Zhong X, Zhang G, Huang J, Chen L, Shi Y, Wang D, Zheng Q, Su H, Li X, Wang C, Zhang J, Guo L. Effects of Intestinal Microbiota on the Biological Transformation of Arsenic in Zebrafish: Contribution and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2247-2259. [PMID: 38179619 DOI: 10.1021/acs.est.3c08010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Both the gut microbiome and their host participate in arsenic (As) biotransformation, while their exact roles and mechanisms in vivo remain unclear and unquantified. In this study, as3mt-/- zebrafish were treated with tetracycline (TET, 100 mg/L) and arsenite (iAsIII) exposure for 30 days and treated with probiotic Lactobacillus rhamnosus GG (LGG, 1 × 108 cfu/g) and iAsIII exposure for 15 days, respectively. Structural equation modeling analysis revealed that the contribution rates of the intestinal microbiome to the total arsenic (tAs) and inorganic As (iAs) metabolism approached 44.0 and 18.4%, respectively. Compared with wild-type, in as3mt-/- zebrafish, microbial richness and structure were more significantly correlated with tAs and iAs, and more differential microbes and microbial metabolic pathways significantly correlated with arsenic metabolites (P < 0.05). LGG supplement influenced the microbial communities, significantly up-regulated the expressions of genes related to As biotransformation (gss and gst) in the liver, down-regulated the expressions of oxidative stress genes (sod1, sod2, and cat) in the intestine, and increased arsenobetaine concentration (P < 0.05). Therefore, gut microbiome promotes As transformation and relieves As accumulation, playing more active roles under iAs stress when the host lacks key arsenic detoxification enzymes. LGG can promote As biotransformation and relieve oxidative stress under As exposure.
Collapse
Affiliation(s)
- Xiaoting Zhong
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Guiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518000, China
| | - Jieliang Huang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Linkang Chen
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yingying Shi
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Dongbin Wang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qiuyi Zheng
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Hongtian Su
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiang Li
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chunchun Wang
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
8
|
Dalamaga M, Kounatidis D, Tsilingiris D, Vallianou NG, Karampela I, Psallida S, Papavassiliou AG. The Role of Endocrine Disruptors Bisphenols and Phthalates in Obesity: Current Evidence, Perspectives and Controversies. Int J Mol Sci 2024; 25:675. [PMID: 38203845 PMCID: PMC10779569 DOI: 10.3390/ijms25010675] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Excess body weight constitutes one of the major health challenges for societies and healthcare systems worldwide. Besides the type of diet, calorie intake and the lack of physical exercise, recent data have highlighted a possible association between endocrine-disrupting chemicals (EDCs), such as bisphenol A, phthalates and their analogs, and obesity. EDCs represent a heterogeneous group of chemicals that may influence the hormonal regulation of body mass and adipose tissue morphology. Based on the available data from mechanistic, animal and epidemiological studies including meta-analyses, the weight of evidence points towards the contribution of EDCs to the development of obesity, associated disorders and obesity-related adipose tissue dysfunction by (1) impacting adipogenesis; (2) modulating epigenetic pathways during development, enhancing susceptibility to obesity; (3) influencing neuroendocrine signals responsible for appetite and satiety; (4) promoting a proinflammatory milieu in adipose tissue and inducing a state of chronic subclinical inflammation; (5) dysregulating gut microbiome and immune homeostasis; and (6) inducing dysfunction in thermogenic adipose tissue. Critical periods of exposure to obesogenic EDCs are the prenatal, neonatal, pubertal and reproductive periods. Interestingly, EDCs even at low doses may promote epigenetic transgenerational inheritance of adult obesity in subsequent generations. The aim of this review is to summarize the available evidence on the role of obesogenic EDCs, specifically BPA and phthalate plasticizers, in the development of obesity, taking into account in vitro, animal and epidemiologic studies; discuss mechanisms linking EDCs to obesity; analyze the effects of EDCs on obesity in critical chronic periods of exposure; and present interesting perspectives, challenges and preventive measures in this research area.
Collapse
Affiliation(s)
- Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Kounatidis
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, ‘Evangelismos’ General Hospital, 10676 Athens, Greece; (D.K.); (N.G.V.)
| | - Irene Karampela
- Second Department of Critical Care, ‘Attikon’ General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Sotiria Psallida
- Department of Microbiology, ‘KAT’ General Hospital of Attica, 14561 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
9
|
Zheng Y, Fateh B, Xu G. Effects of methomyl on the intestinal microbiome and hepatic transcriptome of tilapia, and the modifying effects of mint co-culture. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106675. [PMID: 37666106 DOI: 10.1016/j.aquatox.2023.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Methomyl (MET) is an oxime carbamate insecticide that can contaminate aquatic systems resulting in toxicological effects. It can harm some fish species possibly through the anti-oxidative, phagosome pathway. Mint is one of the most widely herbal plants exhibiting antioxidant activities. In this study, we investigated the impact of MET on the antioxidant system of Oreochromis niloticus in presence of mint as a floating bed. Results revealed that the superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase, and glutathione S-transferase significantly decreased and the GSH content significantly increased in the intestine. The hepatic peroxisome proliferator-activated receptor (PPAR) signalling pathway, carbon metabolism, renal phosphoinositide 3-kinase (PI3K)-Akt, mitogen-activated protein kinase (MAPK) signalling pathway, and phagosomes were significantly affected. Upon long-term exposure, circadian rhythm and phagosomes were enriched in the liver and kidney. However, mint increased the enriched pathways of Toll-like receptor, PPAR, p53, NF-kappa B, MAPK, oestrogen, and B cell receptor signalling pathways. MET with different concentrations destroyed the balance of gut microbiota, mint decreased Verrucomicrobia and Akkermansia for the maintenance resulted from MET. Cetobacterium had a positive impact on total nitrogen (TN), chemical oxygen demand (CODMn), and glutathione reductase (GR), while Akkermansia had a positive impact on feed conversion ratio (FCR), SOD and CAT, and the abundance of both decreased due to MET exposure. High mint density removed more concentrations of nitrogen and phosphorus in the tilapia cultivation wastewater. Therefore, planting with mint can alleviate the toxicological effects produced by MET, shape the intestinal microbiota, and strengthen the connection between water quality and the metabolic parameters.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), No. 9 Shanshui east Rd., Wuxi, Jiangsu 214081, China
| | - Benkhelifa Fateh
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), No. 9 Shanshui east Rd., Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), No. 9 Shanshui east Rd., Wuxi, Jiangsu 214081, China.
| |
Collapse
|
10
|
Lei Y, Xu T, Sun W, Wang X, Gao M, Lin H. Evodiamine alleviates DEHP-induced hepatocyte pyroptosis, necroptosis and immunosuppression in grass carp through ROS-regulated TLR4 / MyD88 / NF-κB pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108995. [PMID: 37573970 DOI: 10.1016/j.fsi.2023.108995] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a neuroendocrine disruptor that can cause multi-tissue organ damage by inducing oxidative stress. Evodiamine (EVO) is an indole alkaloid with anti-inflammatory, antitumor, and antioxidant pharmacological activity. In this manuscript, the effects of DEHP and EVO on the pyroptosis, necroptosis and immunology of grass carp hepatocytes (L8824) were investigated using DCFH-DA staining, PI staining, IF staining, AO/EB staining, LDH kit, qRT-PCR and protein Western blot. The results showed that DEHP exposure upregulated reactive oxygen species (ROS) levels, promoted the expression of TLR4/MyD88/NF-κB pathway, increased the expression of genes involved in cell pyroptosis pathway (LDH, NLRP3, ASC, caspase1, IL-1β, IL-18 and GSDMD) and necroptosis-related genes (RIPK1, RIPK3 and MLKL). The expression of DEHP can also affect immune function, which can be demonstrated by variationsin the activation of antimicrobial peptides (LEAP2, HEPC, and β-defensin) and inflammatory cytokines (TNF-α, IL-2, IL-6 and IL-10). EVO regulates cellular antioxidant capacity by inhibiting ROS burst, reduces DEHP-induced cell pyroptosis and necroptosis to some extent, and restores cellular immune function, after co-exposure with EVO. The TLR4 pathway was inhibited by the co-treatment of TLR4 inhibitor TLR-IN-C34 and DEHP, which attenuated the expression of cell pyroptosis, necroptosis, and immunosuppression. Thus, DEHP induced pyroptosis, necroptosis and abnormal immune function in L8824 cells by activating TLR4/MyD88/NF-κB pathway. In addition, EVO has a therapeutic effect on DEHP-induced toxic injury. This study further provides a theoretical basis for the risk assessment of plasticizer DEHP on aquatic organisms.
Collapse
Affiliation(s)
- Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaodan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Panda C, Komarnytsky S, Fleming MN, Marsh C, Barron K, Le Brun-Blashka S, Metzger B. Guided Metabolic Detoxification Program Supports Phase II Detoxification Enzymes and Antioxidant Balance in Healthy Participants. Nutrients 2023; 15:2209. [PMID: 37432335 DOI: 10.3390/nu15092209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023] Open
Abstract
Adequate antioxidant supply is essential for maintaining metabolic homeostasis and reducing oxidative stress during detoxification. The emerging evidence suggests that certain classes of phytonutrients can help support the detoxification process by stimulating the liver to produce detoxification enzymes or acting as antioxidants that neutralize the harmful effects of free radicals. This study was designed to examine the effects of a guided 28-day metabolic detoxification program in healthy adults. The participants were randomly assigned to consume a whole food, multi-ingredient supplement (n = 14, education and intervention) or control (n = 18, education and healthy meal) daily for the duration of the trial. The whole food supplement contained 37 g/serving of a proprietary, multicomponent nutritional blend in the form of a rehydratable shake. Program readiness was ensured at baseline using a validated self-perceived wellness score and a blood metabolic panel, indicating stable emotional and physical well-being in both groups. No significant changes or adverse effects were found on physical or emotional health, cellular glutathione (GSH) and the GSH:GSSG ratio, porphyrin, and hepatic detoxification biomarkers in urine. The intervention was positively associated with a 23% increase in superoxide dismutase (p = 0.06) and a 13% increase in glutathione S-transferase (p = 0.003) activities in the blood. This resulted in a 40% increase in the total cellular antioxidant capacity (p = 0.001) and a 13% decrease in reactive oxygen species (p = 0.002) in isolated PBMCs from participants in the detoxification group. Our findings indicate that consuming a whole food nutritional intervention as a part of the guided detoxification program supported phase II detoxification, in part, by promoting enhanced free radical scavenging and maintaining redox homeostasis under the body's natural glutathione recycling capacity.
Collapse
Affiliation(s)
- Chinmayee Panda
- Nutrition Innovation Center, Standard Process Inc., 150 N Research Campus Dr, Kannapolis, NC 28081, USA
| | - Slavko Komarnytsky
- Plants for Human Health Institute, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| | - Michelle Norton Fleming
- College of Chiropractic, Northwestern Health Sciences University, 2501 W 84th Street, Bloomington, MN 55431, USA
| | - Carissa Marsh
- College of Chiropractic, Northwestern Health Sciences University, 2501 W 84th Street, Bloomington, MN 55431, USA
| | - Keri Barron
- Nutrition Innovation Center, Standard Process Inc., 150 N Research Campus Dr, Kannapolis, NC 28081, USA
| | - Sara Le Brun-Blashka
- Nutrition Innovation Center, Standard Process Inc., 150 N Research Campus Dr, Kannapolis, NC 28081, USA
| | - Brandon Metzger
- Nutrition Innovation Center, Standard Process Inc., 150 N Research Campus Dr, Kannapolis, NC 28081, USA
| |
Collapse
|
12
|
Jia PP, Yang YF, Junaid M, Jia HJ, Li WG, Pei DS. Bacteriophage-based techniques for elucidating the function of zebrafish gut microbiota. Appl Microbiol Biotechnol 2023; 107:2039-2059. [PMID: 36847856 DOI: 10.1007/s00253-023-12439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
Bacteriophages (or phages) are unique viruses that can specifically infect bacteria. Since their discovery by Twort and d'Herelle, phages with bacterial specificity have played important roles in microbial regulation. The intestinal microbiota and host health are intimately linked with nutrient, metabolism, development, and immunity aspects. However, the mechanism of interactions between the composition of the microbiota and their functions in maintaining host health still needs to be further explored. To address the lack of methodology and functions of intestinal microbiota in the host, we first proposed that, with the regulations of special intestinal microbiota and applications of germ-free (GF) zebrafish model, phages would be used to infect and reduce/eliminate the defined gut bacteria in the conventionally raised (CR) zebrafish and compared with the GF zebrafish colonized with defined bacterial strains. Thus, this review highlighted the background and roles of phages and their functional characteristics, and we also summarized the phage-specific infection of target microorganisms, methods to improve the phage specificity, and their regulation within the zebrafish model and gut microbial functional study. Moreover, the primary protocol of phage therapy to control the intestinal microbiota in zebrafish models from larvae to adults was recommended including phage screening from natural sources, identification of host ranges, and experimental design in the animal. A well understanding of the interaction and mechanism between phages and gut bacteria in the host can potentially provide powerful strategies or techniques for preventing bacteria-related human diseases by precisely regulating in vitro and in vivo, which will provide novel insights for phages' application and combined research in the future. KEY POINTS: • Zebrafish models for clarifying the microbial and phages' functions were discussed • Phages infect host bacteria with exquisite specificity and efficacy • Phages can reduce/eliminate the defined gut bacteria to clarify their function.
Collapse
Affiliation(s)
- Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Yi-Fan Yang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region On Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Huang-Jie Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
13
|
Elfidasari D, Rijal MS, Shalsabilla SE, Rahma Fadila DS, Cici A, Pikoli MR, Tetriana D, Sugoro I. Intestinal bacteria diversity of suckermouth catfish (Pterygoplichthys pardalis) in the Cd, Hg, and Pb contaminated Ciliwung River, Indonesia. Heliyon 2023; 9:e14842. [PMID: 37025814 PMCID: PMC10070546 DOI: 10.1016/j.heliyon.2023.e14842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
The contamination of aquatic environments with heavy metals poses a serious threat to fish, potentially leading to diseases or even death. Therefore, there is an urgent need for studies to investigate the adaptability of fish in heavy metal-contaminated environments. Several studies have explored the adaptability of suckermouth catfish (P. pardalis) to survive in the contaminated Ciliwung River. The findings obtained showed that the presence of intestinal bacteria helped these fish overcome the heavy metals in their intestines, thereby enabling the fish to survive. Analysis using the Next Generation Sequencing (NGS) technology has succeeded in identifying diversity of these bacteria in P. pardalis living in the Ciliwung River, which contaminated with Cd (0.3-1.6 ppm in the water & 0.9-1.6 ppm in the sediment), Hg (0.6-2 ppm in the water & 0.6-1.8 ppm in the sediment), and Pb (59.9-73.8 ppm in the water & 26.1-58.6 ppm in the sediment). Diversity index of intestinal bacteria in P. pardalis was relatively high, but it had a negative correlation with the presence of these contaminants. Actinobacteria, Firmicutes, and Proteobacteria were abundant in the intestines of P. pardalis from the upstream to downstream of the river, with an overall abundance range of 15-48%. Furthermore, Mycobacterium along with 6 other genera were identified as core intestinal bacteria. The presence of these bacterial communities in all the samples affected their survival in heavy metals-contaminated rivers. The fish's adaptability to live in this harsh environment indicated that it has the potential to be utilized as a bioremediator of heavy metals in river sediments.
Collapse
Affiliation(s)
- Dewi Elfidasari
- Department of Biology, Faculty of Science and Technology, Al Azhar University Indonesia, Jakarta 12110, Indonesia
| | - Mohammad Syamsul Rijal
- Department of Biology, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Banten 15412, Indonesia
| | - Syalwa Ersadiwi Shalsabilla
- Department of Biology, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Banten 15412, Indonesia
| | - Diannisa Syahwa Rahma Fadila
- Department of Biology, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Banten 15412, Indonesia
| | - Ade Cici
- Department of Biology, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Banten 15412, Indonesia
| | - Megga Ratnasari Pikoli
- Department of Biology, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Banten 15412, Indonesia
| | - Devita Tetriana
- National Research and Innovation Agency (BRIN), Jakarta 12440, Indonesia
| | - Irawan Sugoro
- National Research and Innovation Agency (BRIN), Jakarta 12440, Indonesia
- Corresponding author.
| |
Collapse
|
14
|
Urade R, Chou CK, Chou HL, Chen BH, Wang TN, Tsai EM, Hung CT, Wu SJ, Chiu CC. Phthalate derivative DEHP disturbs the antiproliferative effect of camptothecin in human lung cancer cells by attenuating DNA damage and activating Akt/NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:332-342. [PMID: 36394428 DOI: 10.1002/tox.23686] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Plasticizers/phthalates play a facilitating role in the development of cancer and help the tumor to grow and metastasize. Camptothecin (CPT) and its derivatives are known to have anticancer properties of inhibiting cell growth, promoting cell apoptosis, and increasing autophagy. Therefore, in this study, we investigated whether the presence of di(2-ethylhexyl) phthalate (DEHP) could hinder apoptosis and autophagy caused by CPT in non-small cell lung cancer (NSCLC) cells. We found that DEHP interferes with CPT-induced apoptosis and autophagy and increases the prosurvival pathway by reducing the DNA damage marker γ-H2AX and activating the Akt and NF-κB pathways. Furthermore, we also confirmed that combining DEHP with 3-MA has additive effects in inhibiting autophagy and apoptosis in NSCLC cells. Taken together, our findings show that DEHP could affect CPT-induced anticancer treatment and provide evidence to show that DEHP induces chemoresistance in CPT-based chemotherapy.
Collapse
Affiliation(s)
- Ritesh Urade
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chon-Kit Chou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, People's Republic of China
| | - Han-Lin Chou
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsu-Nai Wang
- Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- The Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Tzu Hung
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyh-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Chih Chiu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Guha S, Sesili S, Mir IH, Thirunavukkarasu C. Epigenetics and mitochondrial dysfunction insights into the impact of the progression of non-alcoholic fatty liver disease. Cell Biochem Funct 2023; 41:4-19. [PMID: 36330539 DOI: 10.1002/cbf.3763] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
A metabolic problem occurs when regular functions of the body are disrupted due to an undesirable imbalance. Nonalcoholic fatty liver disease (NAFLD) is considered as one of the most common in this category. NAFLD is subclassified and progresses from lipid accumulation to cirrhosis before advancing to hepatocellular cancer. In spite of being a critical concern, the standard treatment is inadequate. Metformin, silymarin, and other nonspecific medications are used in the management of NAFLD. Aside from this available medicine, maintaining a healthy lifestyle has been emphasized as a means of combating this. Epigenetics, which has been attributed to NAFLD, is another essential feature of this disease that has emerged as a result of several sorts of research. The mechanisms by which DNA methylation, noncoding RNA, and histone modification promote NAFLD have been extensively researched. Another organelle, mitochondria, which play a pivotal role in biological processes, contributes to the global threat. Individuals with NAFLD have been documented to have a multitude of alterations and malfunctioning. Mitochondria are mainly concerned with the process of energy production and regulation of the signaling pathway on which the fate of a cell relies. Modulation of mitochondria leads to elevated lipid deposition in the liver. Further, changes in oxidation states result in an impaired balance between the antioxidant system and reactive oxygen species directly linked to mitochondria. Hence mitochondria have a definite role in potentiating NAFLD. In this regard, it is essential to consider the role of epigenetics as well as mitochondrial contribution while developing a medication or therapy with the desired accuracy.
Collapse
Affiliation(s)
- Shreyoshi Guha
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Selvam Sesili
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Ishfaq Hassan Mir
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | |
Collapse
|
16
|
Torres-Sánchez A, Ruiz-Rodríguez A, Ortiz P, Moreno MA, Ampatzoglou A, Gruszecka-Kosowska A, Monteoliva-Sánchez M, Aguilera M. Exploring Next Generation Probiotics for Metabolic and Microbiota Dysbiosis Linked to Xenobiotic Exposure: Holistic Approach. Int J Mol Sci 2022; 23:12917. [PMID: 36361709 PMCID: PMC9655105 DOI: 10.3390/ijms232112917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Variation of gut microbiota in metabolic diseases seems to be related to dysbiosis induced by exposure to multiple substances called Microbiota Disrupting Chemicals (MDCs), which are present as environmental and dietary contaminants. Some recent studies have focused on elucidating the alterations of gut microbiota taxa and their metabolites as a consequence of xenobiotic exposures to find possible key targets involved in the severity of the host disease triggered. Compilation of data supporting the triad of xenobiotic-microbiota-metabolic diseases would subsequently allow such health misbalances to be prevented or treated by identifying beneficial microbe taxa that could be Next Generation Probiotics (NGPs) with metabolic enzymes for MDC neutralisation and mitigation strategies. In this review, we aim to compile the available information and reports focused on variations of the main gut microbiota taxa in metabolic diseases associated with xenobiotic exposure and related microbial metabolite profiles impacting the host health status. We performed an extensive literature search using SCOPUS, Web of Science, and PubMed databases. The data retrieval and thorough analyses highlight the need for more combined metagenomic and metabolomic studies revealing signatures for xenobiotics and triggered metabolic diseases. Moreover, metabolome and microbiome compositional taxa analyses allow further exploration of how to target beneficial NGP candidates according to their alleged variability abundance and potential therapeutic significance. Furthermore, this holistic approach has identified limitations and the need of future directions to expand and integrate key knowledge to design appropriate clinical and interventional studies with NGPs. Apart from human health, the beneficial microbes and metabolites identified could also be proposed for various applications under One Health, such as probiotics for animals, plants and environmental bioremediation.
Collapse
Affiliation(s)
- Alfonso Torres-Sánchez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Alicia Ruiz-Rodríguez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Pilar Ortiz
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - María Alejandra Moreno
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Antonis Ampatzoglou
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Agnieszka Gruszecka-Kosowska
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- Department of Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Mercedes Monteoliva-Sánchez
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix” (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, 18012 Granada, Spain
| |
Collapse
|
17
|
Yu Z, Xia Y, Cheng S, Mao L, Luo S, Tang S, Sun W, Jiang X, Zou Z, Chen C, Qiu J, Zhou L. Polystyrene nanoparticles aggravate the adverse effects of di-(2-ethylhexyl) phthalate on different segments of intestine in mice. CHEMOSPHERE 2022; 305:135324. [PMID: 35697104 DOI: 10.1016/j.chemosphere.2022.135324] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/26/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Emerging evidence indicates that nanoplastics (NPs) can transport organic pollutants such as di-(2-ethylhexyl) phthalate (DEHP) into organisms and induce adverse health effects. Nevertheless, the toxic effects of NPs combined with DEHP on mammalian intestine are still unclear. In this study, the C57BL6J mice were exposed to polystyrene nanoparticles (PSNPs), DEHP or them both for 30 days to determine their effects on different segments of intestine and the gut microbiota. As a result, DEHP alone or co-exposure to DEHP and PSNPs induced histological damages in all intestinal parts, mainly manifested as the decreased villus lengths, increased crypt depths in the duodenum, jejunum and ileum and decreased villus counts accompanied with decreased epithelial area in the colon. Moreover, decreased mucus coverage, down-regulated Muc2 expression levels as well as the broken tight junctions were observed in intestinal epithelium of mice, particularly obvious in the co-treatment groups. In general, as manifested by greater alterations in most of the parameters mentioned above, simultaneously exposed to PSNPs and DEHP seemed to induce enhanced toxic effects on intestine of mouse when compared with DEHP alone. Furthermore, the altered community composition of gut microbiota might at least partially contribute to these abnormalities. Overall, our results highlight the aggravated toxicity on different segments of intestine in mammalians due to co-exposure of PSNPs and DEHP, and these findings will provide valuable insights into the health risk of NPs and plastic additives.
Collapse
Affiliation(s)
- Ziying Yu
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shiyue Luo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shixin Tang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wei Sun
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuejun Jiang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Lixiao Zhou
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
18
|
Wu YY, Cheng CX, Yang L, Ye QQ, Li WH, Jiang JY. Characterization of Gut Microbiome in the Mud Snail Cipangopaludina cathayensis in Response to High-Temperature Stress. Animals (Basel) 2022; 12:ani12182361. [PMID: 36139220 PMCID: PMC9494996 DOI: 10.3390/ani12182361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary This study investigated the effects of high-temperature stress on the intestinal microbiome of Cipangopaludina cathayensis. High-temperature exposure significantly changed the intestinal microbiota structure of C. cathayensis. The relative abundance of putatively beneficial bacteria decreased, whereas the relative abundance of putatively pathogenic bacteria increased after thermal stress. Consistent with the trends of change in the intestinal microbiota, the high-temperature treatment inhibited some carbohydrate metabolism pathways and induced certain disease-related pathways. Thermal stress disrupts the homeostasis of gut microbiota, which may lead to disease outbreak in C. cathayensis. Abstract The mud snail Cipangopaludina cathayensis is a widely distributed species in China. Particularly in Guangxi province, mud snail farming contributes significantly to the economic development. However, global warming in recent decades poses a serious threat to global aquaculture production. The rising water temperature is harmful to aquatic animals. The present study explored the effects of high temperature on the intestinal microbiota of C. cathayensis. Snail intestinal samples were collected from the control and high-temperature groups on days 3 and 7 to determine the gut microbiota composition and diversity. Gut bacterial community composition was investigated using high-throughput sequencing of the V3–V4 region of bacterial 16S rRNA genes. Our results suggested that thermal stress altered the gut microbiome structure of C. cathayensis. At the phylum level, Proteobacteria, Bacteroidetes, and Firmicutes were dominant in C. cathayensis gut microbiota. The T2 treatment (32 ± 1 °C, day 7) significantly decreased the relative abundance of Firmicutes, Actinobacteria, and Deinococcus-Thermus. In T2, the abundance of several genera of putatively beneficial bacteria (Pseudomonas, Aeromonas, Rhodobacter, and Bacteroides) decreased, whereas the abundance of Halomonas—a pathogenic bacterial genus—increased. The functional prediction results indicated that T2 treatment inhibited some carbohydrate metabolism pathways and induced certain disease-related pathways (e.g., those related to systemic lupus erythematosus, Vibrio cholerae infection, hypertrophic cardiomyopathy, and shigellosis). Thus, high temperature profoundly affected the community structure and function of C. cathayensis gut microbiota. The results provide insights into the mechanisms associated with response of C. cathayensis intestinal microbiota to global warming.
Collapse
Affiliation(s)
- Yang-Yang Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
| | - Chun-Xing Cheng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
| | - Liu Yang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
| | - Quan-Qing Ye
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
| | - Wen-Hong Li
- College of Animal Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China
- Correspondence: (W.-H.L.); (J.-Y.J.); Tel.: +86-159-9447-9761 (W.-H.L.); +86-183-7830-1237 (J.-Y.J.)
| | - Jiao-Yun Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin 541004, China
- Correspondence: (W.-H.L.); (J.-Y.J.); Tel.: +86-159-9447-9761 (W.-H.L.); +86-183-7830-1237 (J.-Y.J.)
| |
Collapse
|
19
|
Zhao F, Guo M, Zhang M, Duan M, Zheng J, Liu Y, Qiu L. Sub-lethal concentration of metamifop exposure impair gut health of zebrafish (Danio rerio). CHEMOSPHERE 2022; 303:135081. [PMID: 35636611 DOI: 10.1016/j.chemosphere.2022.135081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/25/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Previous studies have demonstrated that sublethal metamifop exposures induce hepatic lipid metabolism disorder in zebrafish. Whether metamifop will cause adverse effects in zebrafish gut is unknown. In the present study, effects of metamifop on gut heath of zebrafish were investigated after sublethal concentration (0.025, 0.10 and 0.40 mg/L) exposure. Histopathology analysis showed that metamifop induced inflammation and reduction of goblet cells in the gut, indicating that gut health may be impaired. Metamifop exposure could reduce activities of digestive enzymes (lipase and alkaline phosphatase), indicating the capacity of lipid absorption were impaired. Meanwhile, the content of fatty acid-binding protein 2 (FABP2) and mRNA levels of related genes (apoa-1a, apoe-b, fatp4, lpl and fabp2) were reduced in zebrafish gut after exposure to metamifop, suggesting the lipid transportation were decreased. The transcripts of genes associated with inflammation (il-17c, tnf-α and nf-kb) were significantly increased in 0.40 mg/L metamifop treatment group, which were 1.90-, 1.53- and 2.77-fold of the control group, respectively, confirming that metamifop induced inflammatory response in zebrafish gut. Moreover, reduction of mRNA levels of cldn-15 and elevation of lipopolysaccharides (LPS) content were observed in metamifop-treated groups, which suggested that metamifop exposure increased the intestinal permeability. Furthermore, metamifop exposure decreased the relative abundance of beneficial bacteria (Psychrobacter and Aeromonas) and elevated the abundance of pathogenic bacteria (Rhodobacter and Ralstonia) in zebrafish intestine. These results indicated that metamifop exposure at sublethal concentrations would impair zebrafish gut health, via reduction of lipids absorption, inflammatory response, elevation of permeability and microbiota disorder.
Collapse
Affiliation(s)
- Feng Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Mengyu Guo
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Mengna Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Manman Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Yinchi Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
20
|
Lai CC, Liu FL, Tsai CY, Wang SL, Chang DM. Di-(2-ethylhexyl) phthalate exposure links to inflammation and low bone mass in premenopausal and postmenopausal females: Evidence from ovariectomized mice and humans. Int J Rheum Dis 2022; 25:926-936. [PMID: 35855679 DOI: 10.1111/1756-185x.14386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Phthalates induce inflammation and are ubiquitously used in daily life. We aim to study the impact of di-(2-ethylhexyl) phthalate (DEHP) exposure on inflammation and osteoporosis in premenopausal and postmenopausal females. METHODS Female 8-week-old C57BL/6JNarl mice received an ovariectomy (OVX) or a sham operation and were fed with DEHP or vehicle by oral gavage for 4 or 8 weeks. Their femurs were isolated for micro-computed tomography, and their serum was collected for inflammatory cytokine assays. Correlations between urinary phthalate metabolites and the lumbar spine bone mineral density (BMD) in premenopausal and postmenopausal volunteers were performed. RESULTS Among the OVX mice treated for 4 weeks, significant lower bone volume, bone volume/tissue volume, and trabecular number but significant higher trabecular bone pattern factor and structure model index were identified in the mice treated with DEHP than with vehicle. The OVX mice treated with DEHP for 4 weeks had significantly higher serum interleukin (IL)-1β, IL-10, IL-17A, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and Dickkopf-1 levels than those treated with vehicle. The sham mice treated with DEHP for 8 weeks showed an impaired femur trabecular microstructure and had significantly higher serum IL-1β, IL-6, IL-10, IL-17A, IFN-γ, and TNF-α than those treated with vehicle. DEHP metabolites were inversely correlated with the BMD of premenopausal women and the T-score of postmenopausal women. CONCLUSION DEHP treatment in OVX and sham mice results in osteoporosis and impairs the microstructure of the femur trabecula through inflammation. Phthalate exposure negatively affects the bone mass in both premenopausal and postmenopausal women. Thus, long-term avoidance is suggested.
Collapse
Affiliation(s)
- Chien-Chih Lai
- Division of Allergy, Immunology, and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fei-Lan Liu
- Biobank Management Center of the Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Youh Tsai
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Immunology and Rheumatology, Fu Jen Catholic University Hospital, New Taipei, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Deh-Ming Chang
- Division of Allergy, Immunology, and Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
21
|
Liao H, Liu S, Junaid M, Gao D, Ai W, Chen G, Wang J. Di-(2-ethylhexyl) phthalate exacerbated the toxicity of polystyrene nanoplastics through histological damage and intestinal microbiota dysbiosis in freshwater Micropterus salmoides. WATER RESEARCH 2022; 219:118608. [PMID: 35605397 DOI: 10.1016/j.watres.2022.118608] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 05/20/2023]
Abstract
Organic pollutants such as di-(2-ethylhexyl) phthalate (DEHP) interact with nanoplastics (NPs) and change their bioavailability and toxicity to aquatic organisms. This study aims to assess the ecotoxicological impacts of NPs in the presence and absence of DEHP on juvenile largemouth bass (LMB) Micropterus salmoides. Therefore, LMB was fed with diets containing various concentrations (0, 2, 10, and 40 mg/g) of polystyrene nanoplastics (PSNPs) by the weight of diets. After a 21-day of PSNPs dietary exposure, LMB was treated with DEHP at 450 μg/L through waterborne exposure for three days. Our results showed that PSNPs were accumulated in the intestinal tissues, which significantly decreased the feeding and growth rates in LMB. The histopathological analysis showed the intestine and liver of LMB were subjected to various degrees of structural damage caused by PSNPs, and DEHP-PSNP co-exposure enhanced those histopathological damages in both tissues. Additionally, the co-exposure induced oxidative stress in terms of increased activities of glutathione S-transferase, catalase, and superoxide dismutase enzymes in the liver, intestine, spleen, and serum. Furthermore, the co-exposure significantly changed the intestinal microbial composition, i.e., the decrease in the abundance of probiotics (Bacteroidetes and Proteobacteria) and the increase in pathogenic bacteria (Firmicutes) posed a great threat to fish metabolism and health. Therefore, this study highlights that the presence of DEHP enhances the toxicity of NPs on LMB in freshwater and suggests the regulated use of plastic and its additives for improving the health status of aquaculture fish for food safety in humans.
Collapse
Affiliation(s)
- Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wenjie Ai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guanglong Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 528478, China.
| |
Collapse
|
22
|
Liu X, Zhang Y, Sun X, Zhang W, Shi X, Xu S. Di-(2-ethyl hexyl) phthalate induced oxidative stress promotes microplastics mediated apoptosis and necroptosis in mice skeletal muscle by inhibiting PI3K/AKT/mTOR pathway. Toxicology 2022; 474:153226. [PMID: 35659966 DOI: 10.1016/j.tox.2022.153226] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/22/2022] [Accepted: 05/29/2022] [Indexed: 01/18/2023]
Abstract
The plastic decomposition product microplastics (MPs) and the plastic additive Di (2-ethylhexyl) phthalate (DEHP) in the environment can damage various organs of the organism by inducing oxidative stress. The PI3K/AKT/mTOR signaling pathway participate in toxin-induced apoptosis and necroptosis. However, the effects of DEHP/MPs alone and combined exposure on skeletal muscle cell injury in mice and the role of PI3K/AKT/mTOR axis remain unclear. To investigate the effect of DEHP or/and MPs on skeletal muscle in mice and its possible toxicological mechanism, 60 mice were randomly divided into control group, DEHP group (DEHP 200 mg/kg dissolved in 50 mL corn oil mixed with 2.5 kg diet), MPs group (10 mg/L MPs in drinking water) and combined exposure group. In vitro, C2C12 cells were exposed to DEHP 600 μM/MPs 800 μM alone or in combination for 24 h. The results showed that DEHP/MPs exposure alone or in combination increased MDA content, decreased activities of CAT, T-AOC, SOD and GSH-Px, increased mRNA and protein expressions of Caspase-3, BAX, RIPK1, RIPK3 and MLKL, and decreased BCL-2 expression. The expression of PI3K/AKT/mTOR signaling pathway was significantly down-regulated. All the above results showed that the combined exposure group was more toxic, and similar experimental results were obtained by DEHP/MPs exposure test of C2C12 cells in vitro. It is suggested that DEHP/MPs can induce apoptosis and necroptosis by activating oxidative stress and down-regulating PI3K/AKT/mTOR pathway. This study provides new evidence for clarifying the possible mechanism of toxicity of DEHP and MPs to skeletal muscle of mice.
Collapse
Affiliation(s)
- Xiaojing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinyue Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
23
|
Gruber ES, Stadlbauer V, Pichler V, Resch-Fauster K, Todorovic A, Meisel TC, Trawoeger S, Hollóczki O, Turner SD, Wadsak W, Vethaak AD, Kenner L. To Waste or Not to Waste: Questioning Potential Health Risks of Micro- and Nanoplastics with a Focus on Their Ingestion and Potential Carcinogenicity. EXPOSURE AND HEALTH 2022; 15:33-51. [PMID: 36873245 PMCID: PMC9971145 DOI: 10.1007/s12403-022-00470-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/30/2021] [Accepted: 02/11/2022] [Indexed: 05/27/2023]
Abstract
Micro- and nanoplastics (MNPs) are recognized as emerging contaminants, especially in food, with unknown health significance. MNPs passing through the gastrointestinal tract have been brought in context with disruption of the gut microbiome. Several molecular mechanisms have been described to facilitate tissue uptake of MNPs, which then are involved in local inflammatory and immune responses. Furthermore, MNPs can act as potential transporters ("vectors") of contaminants and as chemosensitizers for toxic substances ("Trojan Horse effect"). In this review, we summarize current multidisciplinary knowledge of ingested MNPs and their potential adverse health effects. We discuss new insights into analytical and molecular modeling tools to help us better understand the local deposition and uptake of MNPs that might drive carcinogenic signaling. We present bioethical insights to basically re-consider the "culture of consumerism." Finally, we map out prominent research questions in accordance with the Sustainable Development Goals of the United Nations.
Collapse
Affiliation(s)
- Elisabeth S. Gruber
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | | | - Andrea Todorovic
- Materials Science and Testing of Polymers, Montanuniversitaet Leoben, Styria, Austria
| | - Thomas C. Meisel
- General and Analytical Chemistry, Montanuniversitaet Leoben, Styria, Austria
| | - Sibylle Trawoeger
- Division of Systematic Theology and its Didactics, Faculty of Catholic Theology, University of Wuerzburg, Wuerzburg, Germany
| | - Oldamur Hollóczki
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Suzanne D. Turner
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP UK
- Central European Institute of Technology, Masaryk University, 602 00 Brno, Czech Republic
| | - Wolfgang Wadsak
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - A. Dick Vethaak
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Unit of Marine and Coastal Systems, Deltares, P.O. Box 177, 2600 MH Delft, Netherlands
| | - Lukas Kenner
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
- Division of Experimental and Laboratory Animal Pathology, Department of Pathology Medical, University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|