1
|
Wang Z, Fan N, Li X, Yue L, Wang X, Liao H, Xiao Z. Trophic Transfer of Metal Oxide Nanoparticles in the Tomato- Helicoverpa armigera Food Chain: Effects on Phyllosphere Microbiota, Insect Oxidative Stress, and Gut Microbiome. ACS NANO 2024; 18:26631-26642. [PMID: 39297401 DOI: 10.1021/acsnano.4c05063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Understanding the trophic transfer and ecological cascade effects of nanofertilizers and nanopesticides in terrestrial food chains is crucial for assessing their nanotoxicity and environmental risks. Herein, the trophic transfer of La2O3 (nLa2O3) and CuO (nCuO) nanoparticles from tomato leaves to Helicoverpa armigera (Lepidoptera: Noctuidae) caterpillars and their subsequent effects on caterpillar growth and intestinal health were investigated. We found that 50 mg/L foliar nLa2O3 and nCuO were transferred from tomato leaves to H. armigera, with particulate trophic transfer factors of 1.47 and 0.99, respectively. While nCuO exposure reduced larval weight gain more (34.7%) than nLa2O3 (11.3%), owing to higher oxidative stress (e.g., MDA and H2O2) and more serious intestinal pathological damage (i.e., crumpled columnar cell and disintegrated goblet cell) by nCuO. Moreover, nCuO exposure led to a more compact antagonism between the phyllosphere and gut microbiomes compared to nLa2O3. Specifically, nCuO exposure resulted in a greater increase in pathogenic bacteria (e.g., Mycobacterium, Bacillus, and Ralstonia) and a more significant decrease in probiotics (e.g., Streptomyces and Arthrobacter) than nLa2O3, ultimately destroying larval intestinal immunity. Altogether, our findings systematically revealed the cascade effect of metal oxide nanomaterials on higher trophic consumers through alteration in the phyllosphere and insect gut microbiome interaction, thus providing insights into nanotoxicity and environmental risk assessment of nanomaterials applied in agroecosystems.
Collapse
Affiliation(s)
- Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Ningke Fan
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xie Wang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Huimin Liao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Kang P, Pan Y, Yang P, Hu J, Zhao T, Zhang Y, Ding X, Yan X. A comparison of microbial composition under three tree ecosystems using the stochastic process and network complexity approaches. Front Microbiol 2022; 13:1018077. [PMID: 36299726 PMCID: PMC9589112 DOI: 10.3389/fmicb.2022.1018077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/22/2022] [Indexed: 10/26/2023] Open
Abstract
Soil microbes act as "players" in regulating biogeochemical cycles, whereas environmental heterogeneity drives microbial community assembly patterns and is influenced by stochastic and deterministic ecological processes. Currently, the limited understanding of soil microbial community assembly patterns and interactions under temperate forest stand differences pose a challenge in studying the soil microbial involvement during the succession from coniferous to broad-leaved forests. This study investigated the changes in soil bacterial and fungal community diversity and community structure at the regional scale and identified the pathways influencing soil microbial assembly patterns and their interactions. The results showed that broad-leaved forest cover in temperate forests significantly increased soil pH, and effectively increased soil water content, total carbon (TC), total nitrogen (TN), and total phosphorus (TP) contents. Both soil bacterial and fungal alpha diversity indices were correlated with soil physicochemical properties, especially in broad-leaved forest. The bacterial and fungal community composition of coniferous forest was dominated by deterministic process (bacteria: 69.4%; fungi: 88.9%), while the bacterial community composition of broad-leaved forest was dominated by stochastic process (77.8%) and the fungal community composition was dominated by deterministic process (52.8%). Proteobacteria, Acidobacteriota, Actinobacteriota, and Verrucomicrobiota were the dominant phyla of soil bacterial communities in temperate forests. Whereas Ascomycota, Mortierellomycota, Basidiomycota, and Rozellomycota were the dominant phyla of soil fungal communities in temperate forests. Most members of dominant phylum were regulated by soil physical and chemical properties. In addition, the succession from temperate coniferous forest to broad-leaved forest was conducive to maintaining the complex network of soil bacteria and fungi, and the top 20 degree of the major taxa in the network reflected the positive response of microbial interactions to the changes of soil nutrients during forest succession. This study not only shows the mechanism by which species differences in temperate forests of northern China affect soil microbial community assembly processes, but also further emphasizes the importance of the soil microbiome as a key ecosystem factor through co-occurrence network analysis.
Collapse
Affiliation(s)
- Peng Kang
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People’s Republic of China, Yinchuan, Ningxia, China
- Innovation Team for Genetic Improvement of Economic Forests, North Minzu University, Yinchuan, Ningxia, China
| | - Yaqing Pan
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Pan Yang
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Jinpeng Hu
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Tongli Zhao
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Yaqi Zhang
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Xiaodong Ding
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People’s Republic of China, Yinchuan, Ningxia, China
| | - Xingfu Yan
- School of Biological Science and Engineering, North Minzu University, Yinchuan, Ningxia, China
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People’s Republic of China, Yinchuan, Ningxia, China
| |
Collapse
|
3
|
Microbial Community Structure and Ecological Networks during Simulation of Diatom Sinking. Microorganisms 2022; 10:microorganisms10030639. [PMID: 35336213 PMCID: PMC8949005 DOI: 10.3390/microorganisms10030639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Microbial-mediated utilization of particulate organic matter (POM) during its downward transport from the surface to the deep ocean constitutes a critical component of the global ocean carbon cycle. However, it remains unclear as to how high hydrostatic pressure (HHP) and low temperature (LT) with the sinking particles affects community structure and network interactions of the particle-attached microorganisms (PAM) and those free-living microorganisms (FLM) in the surrounding water. In this study, we investigated microbial succession and network interactions in experiments simulating POM sinking in the ocean. Diatom-derived 13C- and 12C-labeled POM were used to incubate surface water microbial communities from the East China Sea (ECS) under pressure (temperature) of 0.1 (25 °C), 20 (4 °C), and 40 (4 °C) MPa (megapascal). Our results show that the diversity and species richness of the PAM and FLM communities decreased significantly with HHP and LT. Microbial community analysis indicated an increase in the relative abundance of Bacteroidetes at high pressure (40 MPa), mostly at the expense of Gammaproteobacteria, Alphaproteobacteria, and Gracilibacteria at atmospheric pressure. Hydrostatic pressure and temperature affected lifestyle preferences between particle-attached (PA) and free-living (FL) microbes. Ecological network analysis showed that HHP and LT enhanced microbial network interactions and resulted in higher vulnerability to networks of the PAM communities and more resilience of those of the FLM communities. Most interestingly, the PAM communities occupied most of the module hubs of the networks, whereas the FLM communities mainly served as connectors of the modules, suggesting their different ecological roles of the two groups of microbes. These results provided novel insights into how HHP and LT affected microbial community dynamics, ecological networks during POM sinking, and the implications for carbon cycling in the ocean.
Collapse
|