1
|
Anthony CJ, Lock C, Pérez-Rosales G, Rouzé H, Paulino L, Raymundo LJ, Bentlage B. Symbiodiniaceae phenotypic traits as bioindicators of acclimatization after coral transplantation. MARINE POLLUTION BULLETIN 2024; 209:117250. [PMID: 39536370 DOI: 10.1016/j.marpolbul.2024.117250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Coral-dinoflagellate symbiosis underpins coral reef resilience and influences conservation success, given the relationship's role in coral bleaching. Here, we transplanted Guam's dominant staghorn coral, Acropora pulchra, across four coral gardens and monitored their endosymbiotic dinoflagellates (family Symbiodiniaceae) for ∼15 months (May 2021-August 2022). Transplantation and predation resulted in temporary symbiotic destabilization, as signaled by increased cell roughness and decreased cell density. Eventually, the Symbiodiniaceae phenotypic profile mostly converged with the wild population, although cell density and red fluorescing photopigments remained modified. In March, corals paled, which allowed us to evaluate the Symbiodiniaceae assemblage's relationship with host color. Interestingly, cell density was not the most informative when predicting host color. Instead, fluorescence from antioxidant-associated pigments were most informative. We conclude that Symbiodiniaceae phenotypic traits respond differently depending on the condition, supporting their development as acclimatization bioindicators.
Collapse
Affiliation(s)
| | - Colin Lock
- Marine Laboratory, University of Guam, Mangilao, Guam; Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Gonzalo Pérez-Rosales
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Héloïse Rouzé
- Marine Laboratory, University of Guam, Mangilao, Guam
| | | | - Laurie J Raymundo
- Marine Laboratory, University of Guam, Mangilao, Guam; James Cook University, Townsville, Australia
| | | |
Collapse
|
2
|
Girija GK, Tseng LC, Muthu P, Chen YL, Ho YN, Hwang JS. Microbiome flexibility enhances the resilience of the potentially invasive coral Tubastraea aurea to abrupt environmental changes: Insights from a shallow water hydrothermal vent transplantation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176792. [PMID: 39389143 DOI: 10.1016/j.scitotenv.2024.176792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
To comprehend the effects of potentially invasive coral Tubastraea aurea on marine ecosystems, it is crucial to understand their adaptive strategies to survive environmental changes and perturbations. Therefore, a cross-transplantation study was conducted to assess the microbiome's role in the resilience of T. aurea to sudden environmental changes.Hydrographic analyses revealed distinct ecological conditions at two sites: a hydrothermal vent (HV) site, characterized by harsh environmental conditions serving as a natural laboratory for future oceanic changes, and a regular coastal site Fulong (FU). Both sites showed significant differences in pH, temperature, and dissolved oxygen. Using Oxford Nanopore Technologies, we examined bacterial dynamics in coral tissue, mucus and ambient sediment samples following cross-transplantation experiments. We observed a rapid shift in dominant bacterial groups post-transplantation with transplanted corals acquiring microbiomes similar to native corals from their respective sites within 16 days. The bacteria Endozoicomonas euniceicola and Ruegeria profundi were dominant in both native and transplanted corals, suggesting their critical role in coral resilience. Furthermore, the enrichment of certain bacterial taxa post-transplantation suggests that opportunistic species also contribute to host acclimatization. Functional profiling data indicated that there was site-specific adaptation because corals had acquired beneficial bacterial assemblages to assist them cope with environmental stressors. More specifically, there was a switch towards sulfur and nitrogen metabolism in corals that moved to high sulfidic environments, while corals transplanted into normal coastal environments showed enriched photoautotrophic processes due to their symbionts. Our study underscored the highly flexible microbiome of T. aurea and its pivotal role in facilitating host resilience to environmental perturbations, particularly in the context of its potential invasiveness. Hence, these findings contribute to the understanding of coral-microbiome dynamics and emphasize the necessity of considering microbially-mediated resilience in managing potentially invasive coral species in marine ecosystems around the world, especially as ocean conditions continue to change.
Collapse
Affiliation(s)
- Gowri Krishna Girija
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Li-Chun Tseng
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Priyanka Muthu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yu-Ling Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Ying-Ning Ho
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan; Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 202301, Taiwan; Centre of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan.
| |
Collapse
|
3
|
Voolstra CR, Raina JB, Dörr M, Cárdenas A, Pogoreutz C, Silveira CB, Mohamed AR, Bourne DG, Luo H, Amin SA, Peixoto RS. The coral microbiome in sickness, in health and in a changing world. Nat Rev Microbiol 2024; 22:460-475. [PMID: 38438489 DOI: 10.1038/s41579-024-01015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Stony corals, the engines and engineers of reef ecosystems, face unprecedented threats from anthropogenic environmental change. Corals are holobionts that comprise the cnidarian animal host and a diverse community of bacteria, archaea, viruses and eukaryotic microorganisms. Recent research shows that the bacterial microbiome has a pivotal role in coral biology. A healthy bacterial assemblage contributes to nutrient cycling and stress resilience, but pollution, overfishing and climate change can break down these symbiotic relationships, which results in disease, bleaching and, ultimately, coral death. Although progress has been made in characterizing the spatial-temporal diversity of bacteria, we are only beginning to appreciate their functional contribution. In this Review, we summarize the ecological and metabolic interactions between bacteria and other holobiont members, highlight the biotic and abiotic factors influencing the structure of bacterial communities and discuss the impact of climate change on these communities and their coral hosts. We emphasize how microbiome-based interventions can help to decipher key mechanisms underpinning coral health and promote reef resilience. Finally, we explore how recent technological developments may be harnessed to address some of the most pressing challenges in coral microbiology, providing a road map for future research in this field.
Collapse
Affiliation(s)
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia.
| | - Melanie Dörr
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anny Cárdenas
- Department of Biology, American University, Washington, DC, USA
| | - Claudia Pogoreutz
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | | | - Amin R Mohamed
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Haiwei Luo
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, State Key Laboratory of Agrobiotechnology and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shady A Amin
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Raquel S Peixoto
- Red Sea Research Center (RSRC) and Computational Biology Research Center (CBRC), Biological, Environmental Sciences, and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
4
|
Xiao Z, Feng C, Gao B, Huang Y, Long L, Yang F. Marine macroalgae and their associated bacterial communities affect larval settlement and survivorship of the coral Pocillopora damicornis. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106597. [PMID: 38875898 DOI: 10.1016/j.marenvres.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 05/05/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024]
Abstract
Macroalgae play crucial roles as major habitat-forming organisms in marine ecosystems, having significant impacts on coral recruitment and reef recovery. However, the interactions between marine macroalgae and coral larvae remain poorly understood. Furthermore, little is known whether differences in bacterial assemblages associated with macroalgae may play roles in this process. Here, we comprehensively investigated the impacts of different macroalgae and their associated microbiomes on larval settlement and survival of coral Pocillopora damicornis. The results revealed significant variations in larval settlement and survival rates when exposed to different macroalgal species. The highest settlement rate, reaching 90%, was observed in the presence of the red alga Hypnea pannosa, followed by green algae Caulerpa serrulata, C. racemosa, and brown algae Turbinaria gracilis, Sargassum polycystum. Correspondingly, similarities in bacterial compositions were observed between H. pannosa and C. racemosa, as well as between T. gracilis and S. polycystum, implying associated bacterial may be related with the algal functions. Furthermore, macroalgae that facilitate larval settlement exhibited higher abundances of amplicon sequence variants (ASVs) associated with the metabolism of dimethylsulfoniopropionate or the antagonism of known coral pathogens. However, the brown alga Padina boryana failed to induce larval settlement with survival rate of zero after 120 h. The algal species harbored more abundances of ASVs related to Rhizobiaceae. These findings highlight the significant impact of macroalgae and their associated microbiomes on coral recruitment, as they influence both larval settlement and survival rates.
Collapse
Affiliation(s)
- Zhiliang Xiao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Cheng Feng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Bohai Gao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, 515041, PR China.
| | - Fangfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
5
|
Chan YF, Chen YH, Yu SP, Chen HJ, Nozawa Y, Tang SL. Reciprocal transplant experiment reveals multiple factors influencing changes in coral microbial communities across climate zones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167929. [PMID: 37863230 DOI: 10.1016/j.scitotenv.2023.167929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Previous studies have demonstrated the influence of external factors (environmental factors and the coral host factors) on the community structure of coral-associated bacteria. However, the internal factors, e.g. the interaction within the bacterial community or bacteria itself, have often been overlooked in studies of the coral microbiome. Hence, we performed a reciprocal transplant of corals between two different climate zones to examine the resultant alterations in coral-associated bacterial communities. The findings highlight the significance of environmental factors, host selection, and highly resilient bacteria in shaping the coral microbial composition. The results support that coral species consistently harbor specific predominant bacterial groups influenced by host selection, while locations display unique bacterial taxa due to environmental variations. The transplantation of corals into new environments leads to a gradual shift in the bacterial community, from initially resembling that of the native location to eventually resembling that of the transplanted location, emphasizing the crucial role of bacterial community composition for coral survival under changing ambient conditions. Furthermore, highly resilient bacteria that persisted throughout the reciprocal transplant experiment demonstrated their adaptability to environmental and host changes, suggesting the presence of robust adaptation or resistance mechanisms in bacterial communities. Genetic adaptations within the prevalent bacterial group, Endozoicomonas, were also observed, suggesting variations in resilience and adaptation capabilities among different phylotypes. This study highlights the need to conduct further investigations into the coral-associated bacteria themselves, as they may hold some key insights into understanding the dynamics of coral-associated microbial communities. These data also highlight some key species of coral-associated bacteria which could benefit coral in response to alterations in ambient environment.
Collapse
Affiliation(s)
- Ya-Fan Chan
- Department of Microbiology, Soochow University, Taipei 111, Taiwan
| | - Yu-Hsiang Chen
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Sheng-Ping Yu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsing-Ju Chen
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yoko Nozawa
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan; Taiwan's Ocean Genome Center, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
6
|
Matthews JL, Khalil A, Siboni N, Bougoure J, Guagliardo P, Kuzhiumparambil U, DeMaere M, Le Reun NM, Seymour JR, Suggett DJ, Raina JB. Coral endosymbiont growth is enhanced by metabolic interactions with bacteria. Nat Commun 2023; 14:6864. [PMID: 37891154 PMCID: PMC10611727 DOI: 10.1038/s41467-023-42663-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteria are key contributors to microalgae resource acquisition, competitive performance, and functional diversity, but their potential metabolic interactions with coral microalgal endosymbionts (Symbiodiniaceae) have been largely overlooked. Here, we show that altering the bacterial composition of two widespread Symbiodiniaceae species, during their free-living stage, results in a significant shift in their cellular metabolism. Indeed, the abundance of monosaccharides and the key phytohormone indole-3-acetic acid (IAA) were correlated with the presence of specific bacteria, including members of the Labrenzia (Roseibium) and Marinobacter genera. Single-cell stable isotope tracking revealed that these two bacterial genera are involved in reciprocal exchanges of carbon and nitrogen with Symbiodiniaceae. We identified the provision of IAA by Labrenzia and Marinobacter, and this metabolite caused a significant growth enhancement of Symbiodiniaceae. By unravelling these interkingdom interactions, our work demonstrates how specific bacterial associates fundamentally govern Symbiodiniaceae fitness.
Collapse
Affiliation(s)
- Jennifer L Matthews
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Abeeha Khalil
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jeremy Bougoure
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA, 6009, Australia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, WA, 6009, Australia
| | | | - Matthew DeMaere
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nine M Le Reun
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
7
|
Chuang PS, Yamada Y, Liu PY, Tang SL, Mitarai S. Bacterial Community Shifts during Polyp Bail-Out Induction in Pocillopora Corals. Microbiol Spectr 2023; 11:e0025723. [PMID: 37378544 PMCID: PMC10433994 DOI: 10.1128/spectrum.00257-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Polyp bail-out constitutes both a stress response and an asexual reproductive strategy that potentially facilitates dispersal of some scleractinian corals, including several dominant reef-building taxa in the family Pocilloporidae. Recent studies have proposed that microorganisms may be involved in onset and progression of polyp bail-out. However, changes in the coral microbiome during polyp bail-out have not been investigated. In this study, we induced polyp bail-out in Pocillopora corals using hypersaline and hyperthermal methods. Bacterial community dynamics during bail-out induction were examined using the V5-V6 region of the 16S-rRNA gene. From 70 16S-rRNA gene libraries constructed from coral tissues, 1,980 OTUs were identified. Gammaproteobacteria and Alphaproteobacteria consistently constituted the dominant bacterial taxa in all coral tissue samples. Onset of polyp bail-out was characterized by increased relative abundance of Alphaproteobacteria and decreased abundance of Gammaproteobacteria in both induction experiments, with the shift being more prominent in response to elevated temperature than to elevated salinity. Four OTUs, affiliated with Thalassospira, Marisediminitalea, Rhodobacteraceae, and Myxococcales, showed concurrent abundance increases at the onset of polyp bail-out in both experiments, suggesting potential microbial causes of this coral stress response. IMPORTANCE Polyp bail-out represents both a stress response and an asexual reproductive strategy with significant implications for reshaping tropical coral reefs in response to global climate change. Although earlier studies have suggested that coral-associated microbiomes likely contribute to initiation of polyp bail-out in scleractinian corals, there have been no studies of coral microbiome shifts during polyp bail-out. In this study, we present the first investigation of changes in bacterial symbionts during two experiments in which polyp bail-out was induced by different environmental stressors. These results provide a background of coral microbiome dynamics during polyp bail-out development. Increases in abundance of Thalassospira, Marisediminitalea, Rhodobacteraceae, and Myxococcales that occurred in both experiments suggest that these bacteria are potential microbial causes of polyp bail-out, shedding light on the proximal triggering mechanism of this coral stress response.
Collapse
Affiliation(s)
- Po-Shun Chuang
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yosuke Yamada
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Po-Yu Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan (ROC)
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan (ROC)
| | - Satoshi Mitarai
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
8
|
Scucchia F, Zaslansky P, Boote C, Doheny A, Mass T, Camp EF. The role and risks of selective adaptation in extreme coral habitats. Nat Commun 2023; 14:4475. [PMID: 37507378 PMCID: PMC10382478 DOI: 10.1038/s41467-023-39651-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The alarming rate of climate change demands new management strategies to protect coral reefs. Environments such as mangrove lagoons, characterized by extreme variations in multiple abiotic factors, are viewed as potential sources of stress-tolerant corals for strategies such as assisted evolution and coral propagation. However, biological trade-offs for adaptation to such extremes are poorly known. Here, we investigate the reef-building coral Porites lutea thriving in both mangrove and reef sites and show that stress-tolerance comes with compromises in genetic and energetic mechanisms and skeletal characteristics. We observe reduced genetic diversity and gene expression variability in mangrove corals, a disadvantage under future harsher selective pressure. We find reduced density, thickness and higher porosity in coral skeletons from mangroves, symptoms of metabolic energy redirection to stress response functions. These findings demonstrate the need for caution when utilizing stress-tolerant corals in human interventions, as current survival in extremes may compromise future competitive fitness.
Collapse
Affiliation(s)
- Federica Scucchia
- Department of Marine Biology, Leon H, Charney school of Marine Sciences, University of Haifa, Haifa, Israel.
| | - Paul Zaslansky
- Department for Operative, Preventive and Pediatric Dentistry, Charité-Universitätsmedizin, Berlin, Germany
| | - Chloë Boote
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Annabelle Doheny
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Tali Mass
- Department of Marine Biology, Leon H, Charney school of Marine Sciences, University of Haifa, Haifa, Israel
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
9
|
Maire J, Tandon K, Collingro A, van de Meene A, Damjanovic K, Gotze CR, Stephenson S, Philip GK, Horn M, Cantin NE, Blackall LL, van Oppen MJH. Colocalization and potential interactions of Endozoicomonas and chlamydiae in microbial aggregates of the coral Pocillopora acuta. SCIENCE ADVANCES 2023; 9:eadg0773. [PMID: 37196086 DOI: 10.1126/sciadv.adg0773] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
Corals are associated with a variety of bacteria, which occur in the surface mucus layer, gastrovascular cavity, skeleton, and tissues. Some tissue-associated bacteria form clusters, termed cell-associated microbial aggregates (CAMAs), which are poorly studied. Here, we provide a comprehensive characterization of CAMAs in the coral Pocillopora acuta. Combining imaging techniques, laser capture microdissection, and amplicon and metagenome sequencing, we show that (i) CAMAs are located in the tentacle tips and may be intracellular; (ii) CAMAs contain Endozoicomonas (Gammaproteobacteria) and Simkania (Chlamydiota) bacteria; (iii) Endozoicomonas may provide vitamins to its host and use secretion systems and/or pili for colonization and aggregation; (iv) Endozoicomonas and Simkania occur in distinct, but adjacent, CAMAs; and (v) Simkania may receive acetate and heme from neighboring Endozoicomonas. Our study provides detailed insight into coral endosymbionts, thereby improving our understanding of coral physiology and health and providing important knowledge for coral reef conservation in the climate change era.
Collapse
Affiliation(s)
- Justin Maire
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kshitij Tandon
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Astrid Collingro
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Allison van de Meene
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Katarina Damjanovic
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| | - Cecilie Ravn Gotze
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| | - Sophie Stephenson
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| | - Gayle K Philip
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Neal E Cantin
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, PMB No 3, Townsville, QLD 4810, Australia
| |
Collapse
|
10
|
Tanvet C, Camp EF, Sutton J, Houlbrèque F, Thouzeau G, Rodolfo‐Metalpa R. Corals adapted to extreme and fluctuating seawater pH increase calcification rates and have unique symbiont communities. Ecol Evol 2023; 13:e10099. [PMID: 37261315 PMCID: PMC10227177 DOI: 10.1002/ece3.10099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Ocean acidification (OA) is a severe threat to coral reefs mainly by reducing their calcification rate. Identifying the resilience factors of corals to decreasing seawater pH is of paramount importance to predict the survivability of coral reefs in the future. This study compared corals adapted to variable pHT (i.e., 7.23-8.06) from the semi-enclosed lagoon of Bouraké, New Caledonia, to corals adapted to more stable seawater pHT (i.e., 7.90-8.18). In a 100-day aquarium experiment, we examined the physiological response and genetic diversity of Symbiodiniaceae from three coral species (Acropora tenuis, Montipora digitata, and Porites sp.) from both sites under three stable pHNBS conditions (8.11, 7.76, 7.54) and one fluctuating pHNBS regime (between 7.56 and 8.07). Bouraké corals consistently exhibited higher growth rates than corals from the stable pH environment. Interestingly, A. tenuis from Bouraké showed the highest growth rate under the 7.76 pHNBS condition, whereas for M. digitata, and Porites sp. from Bouraké, growth was highest under the fluctuating regime and the 8.11 pHNBS conditions, respectively. While OA generally decreased coral calcification by ca. 16%, Bouraké corals showed higher growth rates than corals from the stable pH environment (21% increase for A. tenuis to 93% for M. digitata, with all pH conditions pooled). This superior performance coincided with divergent symbiont communities that were more homogenous for Bouraké corals. Corals adapted to variable pH conditions appear to have a better capacity to calcify under reduced pH compared to corals native to more stable pH condition. This response was not gained by corals from the more stable environment exposed to variable pH during the 100-day experiment, suggesting that long-term exposure to pH fluctuations and/or differences in symbiont communities benefit calcification under OA.
Collapse
Affiliation(s)
- Clément Tanvet
- Centre IRD NouméaUMR ENTROPIE (IRD, Université de la Réunion, Université de la Nouvelle‐Calédonie, Ifremer)NouméaNew Caledonia
- Univ Brest, CNRS, IRD, Ifremer, LEMARPlouzanéFrance
- Labex ICONA, International CO2 Natural Analogues NetworkShimodaJapan
| | - Emma F. Camp
- Climate Change ClusterUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Jill Sutton
- Univ Brest, CNRS, IRD, Ifremer, LEMARPlouzanéFrance
| | - Fanny Houlbrèque
- Centre IRD NouméaUMR ENTROPIE (IRD, Université de la Réunion, Université de la Nouvelle‐Calédonie, Ifremer)NouméaNew Caledonia
- Labex ICONA, International CO2 Natural Analogues NetworkShimodaJapan
| | | | - Riccardo Rodolfo‐Metalpa
- Centre IRD NouméaUMR ENTROPIE (IRD, Université de la Réunion, Université de la Nouvelle‐Calédonie, Ifremer)NouméaNew Caledonia
- Labex ICONA, International CO2 Natural Analogues NetworkShimodaJapan
| |
Collapse
|
11
|
Haydon TD, Matthews JL, Seymour JR, Raina JB, Seymour JE, Chartrand K, Camp EF, Suggett DJ. Metabolomic signatures of corals thriving across extreme reef habitats reveal strategies of heat stress tolerance. Proc Biol Sci 2023; 290:20221877. [PMID: 36750192 PMCID: PMC9904954 DOI: 10.1098/rspb.2022.1877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Anthropogenic stressors continue to escalate worldwide, driving unprecedented declines in reef environmental conditions and coral health. One approach to better understand how corals can function in the future is to examine coral populations that thrive within present day naturally extreme habitats. We applied untargeted metabolomics (gas chromatography-mass spectrometry (GC-MS)) to contrast metabolite profiles of Pocillopora acuta colonies from hot, acidic and deoxygenated mangrove environments versus those from adjacent reefs. Under ambient temperatures, P. acuta predominantly associated with endosymbionts of the genera Cladocopium (reef) or Durusdinium (mangrove), exhibiting elevated metabolism in mangrove through energy-generating and biosynthesis pathways compared to reef populations. Under transient heat stress, P. acuta endosymbiont associations were unchanged. Reef corals bleached and exhibited extensive shifts in symbiont metabolic profiles (whereas host metabolite profiles were unchanged). By contrast, mangrove populations did not bleach and solely the host metabolite profiles were altered, including cellular responses in inter-partner signalling, antioxidant capacity and energy storage. Thus mangrove P. acuta populations resist periodically high-temperature exposure via association with thermally tolerant endosymbionts coupled with host metabolic plasticity. Our findings highlight specific metabolites that may be biomarkers of heat tolerance, providing novel insight into adaptive coral resilience to elevated temperatures.
Collapse
Affiliation(s)
- Trent D. Haydon
- Center for Genomics and Systems Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Jennifer L. Matthews
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Justin R. Seymour
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Jean-Baptiste Raina
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Jamie E. Seymour
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4811, Australia
| | - Kathryn Chartrand
- Centre for tropical Water and Aquatic Ecosystem Research, James Cook University, Cairns, QLD 4811, Australia
| | - Emma F. Camp
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - David J. Suggett
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
12
|
Cowen LJ, Putnam HM. Bioinformatics of Corals: Investigating Heterogeneous Omics Data from Coral Holobionts for Insight into Reef Health and Resilience. Annu Rev Biomed Data Sci 2022; 5:205-231. [PMID: 35537462 DOI: 10.1146/annurev-biodatasci-122120-030732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coral reefs are home to over two million species and provide habitat for roughly 25% of all marine animals, but they are being severely threatened by pollution and climate change. A large amount of genomic, transcriptomic, and other omics data is becoming increasingly available from different species of reef-building corals, the unicellular dinoflagellates, and the coral microbiome (bacteria, archaea, viruses, fungi, etc.). Such new data present an opportunity for bioinformatics researchers and computational biologists to contribute to a timely, compelling, and urgent investigation of critical factors that influence reef health and resilience. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lenore J Cowen
- Department of Computer Science, Tufts University, Medford, Massachusetts, USA;
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA;
| |
Collapse
|
13
|
Contingency planning for coral reefs in the Anthropocene; The potential of reef safe havens. Emerg Top Life Sci 2022; 6:107-124. [PMID: 35225326 DOI: 10.1042/etls20210232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/07/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
Abstract
Reducing the global reliance on fossil fuels is essential to ensure the long-term survival of coral reefs, but until this happens, alternative tools are required to safeguard their future. One emerging tool is to locate areas where corals are surviving well despite the changing climate. Such locations include refuges, refugia, hotspots of resilience, bright spots, contemporary near-pristine reefs, and hope spots that are collectively named reef 'safe havens' in this mini-review. Safe havens have intrinsic value for reefs through services such as environmental buffering, maintaining near-pristine reef conditions, or housing corals naturally adapted to future environmental conditions. Spatial and temporal variance in physicochemical conditions and exposure to stress however preclude certainty over the ubiquitous long-term capacity of reef safe havens to maintain protective service provision. To effectively integrate reef safe havens into proactive reef management and contingency planning for climate change scenarios, thus requires an understanding of their differences, potential values, and predispositions to stress. To this purpose, I provide a high-level review on the defining characteristics of different coral reef safe havens, how they are being utilised in proactive reef management and what risk and susceptibilities they inherently have. The mini-review concludes with an outline of the potential for reef safe haven habitats to support contingency planning of coral reefs under an uncertain future from intensifying climate change.
Collapse
|
14
|
Horizon scan of rapidly advancing coral restoration approaches for 21st century reef management. Emerg Top Life Sci 2022; 6:125-136. [PMID: 35119476 PMCID: PMC9023016 DOI: 10.1042/etls20210240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Coral reef restoration activity is accelerating worldwide in efforts to offset the rate of reef health declines. Many advances have already been made in restoration practices centred on coral biology (coral restoration), and particularly those that look to employ the high adaptive state and capacity of corals in order to ensure that efforts rebuilding coral biomass also equip reefs with enhanced resilience to future stress. We horizon scan the state-of-play for the many coral restoration innovations already underway across the complex life cycle for corals that spans both asexual and sexual reproduction — assisted evolution (manipulations targeted to the coral host and host-associated microbes), biobanking, as well as scalable coral propagation and planting — and how these innovations are in different stages of maturity to support new 21st century reef management frameworks. Realising the potential for coral restoration tools as management aids undoubtedly rests on validating different approaches as their application continues to scale. Whilst the ecosystem service responses to increased scaling still largely remain to be seen, coral restoration has already delivered immense new understanding of coral and coral-associated microbial biology that has long lagged behind advances in other reef sciences.
Collapse
|