1
|
Anurag Anand A, Amod A, Anwar S, Sahoo AK, Sethi G, Samanta SK. A comprehensive guide on screening and selection of a suitable AMP against biofilm-forming bacteria. Crit Rev Microbiol 2024; 50:859-878. [PMID: 38102871 DOI: 10.1080/1040841x.2023.2293019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Lately, antimicrobial resistance (AMR) is increasing at an exponential rate making it important to search alternatives to antibiotics in order to combat multi-drug resistant (MDR) bacterial infections. Out of the several antibacterial and antibiofilm strategies being tested, antimicrobial peptides (AMPs) have shown to give better hopes in terms of a long-lasting solution to the problem. To select a desired AMP, it is important to make right use of available tools and databases that aid in identification, classification, and analysis of the physiochemical properties of AMPs. To identify the targets of these AMPs, it becomes crucial to understand their mode-of-action. AMPs can also be used in combination with other antibacterial and antibiofilm agents so as to achieve enhanced efficacy against bacteria and their biofilms. Due to concerns regarding toxicity, stability, and bioavailability, strategizing drug formulation at an early-stage becomes crucial. Although there are few concerns regarding development of bacterial resistance to AMPs, the evolution of resistance to AMPs occurs extremely slowly. This comprehensive review gives a deep insight into the selection of the right AMP, deciding the right target and combination strategy along with the type of formulation needed, and the possible resistance that bacteria can develop to these AMPs.
Collapse
Affiliation(s)
- Ananya Anurag Anand
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Ayush Amod
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Sarfraz Anwar
- Department of Bioinformatics, University of Allahabad, Prayagraj, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| |
Collapse
|
2
|
Jantaruk P, Teerapo K, Charoenwutthikun S, Roytrakul S, Kunthalert D. Anti-Biofilm and Anti-Inflammatory Properties of the Truncated Analogs of the Scorpion Venom-Derived Peptide IsCT against Pseudomonas aeruginosa. Antibiotics (Basel) 2024; 13:775. [PMID: 39200075 PMCID: PMC11352108 DOI: 10.3390/antibiotics13080775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen in humans and a frequent cause of severe nosocomial infections and fatal infections in immunocompromised individuals. Its ability to form biofilms has been the main driving force behind its resistance to almost all conventional antibiotics, thereby limiting treatment efficacy. In an effort to discover novel therapeutic agents to fight P. aeruginosa-associated biofilm infections, the truncated analogs of scorpion venom-derived peptide IsCT were synthesized and their anti-biofilm properties were examined. Among the investigated peptides, the IsCT-Δ6-8 peptide evidently showed the most potential anti-P. aeruginosa biofilm activity and the effect was not due to bacterial growth inhibition. The IsCT-Δ6-8 peptide also exhibited inhibitory activity against the production of pyocyanin, an important virulence factor of P. aeruginosa. Furthermore, the IsCT-Δ6-8 peptide significantly suppressed the production of inflammatory mediators nitric oxide and interleukin-6 in P. aeruginosa LPS-induced macrophages. Due to its low cytotoxicity to mammalian cells, the IsCT-Δ6-8 peptide emerges as a promising candidate with significant anti-biofilm and anti-inflammatory properties. These findings highlight its potential application in treating P. aeruginosa-related biofilm infections.
Collapse
Affiliation(s)
- Pornpimon Jantaruk
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (P.J.); (K.T.); (S.C.)
| | - Kittitat Teerapo
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (P.J.); (K.T.); (S.C.)
| | - Supattra Charoenwutthikun
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (P.J.); (K.T.); (S.C.)
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand;
| | - Duangkamol Kunthalert
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (P.J.); (K.T.); (S.C.)
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
3
|
Yang L, Luo M, Liu Z, Li Y, Lin Z, Geng S, Wang Y. BamA-targeted antimicrobial peptide design for enhanced efficacy and reduced toxicity. Amino Acids 2023; 55:1317-1331. [PMID: 37670010 DOI: 10.1007/s00726-023-03307-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/18/2023] [Indexed: 09/07/2023]
Abstract
The emergence of drug-resistant superbugs has necessitated a pressing need for innovative antibiotics. Antimicrobial peptides (AMPs) have demonstrated broad-spectrum antibacterial activity, reduced susceptibility to resistance, and immunomodulatory effects, rendering them promising for combating drug-resistant microorganisms. This study employed computational simulation methods to screen and design AMPs specifically targeting ESKAPE pathogens. Particularly, AMPs were rationally designed to target the BamA and obtain novel antimicrobial peptide sequences. The designed AMPs were assessed for their antibacterial activities, mechanisms, and stability. Molecular docking and dynamics simulations demonstrated the interaction of both designed AMPs, 11pep and D-11pep, with the β1, β9, β15, and β16 chains of BamA, resulting in misfolding of outer membrane proteins and antibacterial effects. Subsequent antibacterial investigations confirmed the broad-spectrum activity of both 11pep and D-11pep, with D-11pep demonstrating higher potency against resistant Gram-negative bacteria. D-11pep exhibited MICs of 16, 8, and 32 μg/mL against carbapenem-resistant Escherichia coli, carbapenem-resistant Pseudomonas aeruginosa, and multi-drug-resistant Acinetobacter baumannii, respectively, with a concomitant lower resistance induction. Mechanism of action studies confirmed that peptides could disrupt the bacterial outer membrane, aligning with the findings of molecular dynamics simulations. Additionally, D-11pep demonstrated superior stability and reduced toxicity in comparison to 11pep. The findings of this study underscore the efficacy of rational AMP design that targets BamA, along with the utilization of D-amino acid replacements as a strategy for developing AMPs against drug-resistant bacteria.
Collapse
Affiliation(s)
- Li Yang
- Pharmacy and Bioengineering of Technology, Chongqing University of Technology, Chongqing, 400054, China
| | - Minghe Luo
- Pharmacy and Bioengineering of Technology, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Municipal Key Laboratory of Institutions of Higher Education of Target Based Drug Screening and Activity Evaluation, Chongqing, 400054, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing, 400054, China
| | - Zhou Liu
- Pharmacy and Bioengineering of Technology, Chongqing University of Technology, Chongqing, 400054, China
| | - Yuepeng Li
- Pharmacy and Bioengineering of Technology, Chongqing University of Technology, Chongqing, 400054, China
| | - Zhihua Lin
- Pharmacy and Bioengineering of Technology, Chongqing University of Technology, Chongqing, 400054, China
- Chongqing Municipal Key Laboratory of Institutions of Higher Education of Target Based Drug Screening and Activity Evaluation, Chongqing, 400054, China
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing, 400054, China
| | - Shan Geng
- The People's Hospital of Dazu, Chongqing, 402360, China
| | - Yuanqiang Wang
- Pharmacy and Bioengineering of Technology, Chongqing University of Technology, Chongqing, 400054, China.
- Chongqing Municipal Key Laboratory of Institutions of Higher Education of Target Based Drug Screening and Activity Evaluation, Chongqing, 400054, China.
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing, 400054, China.
| |
Collapse
|
4
|
Guryanova SV, Balandin SV, Belogurova-Ovchinnikova OY, Ovchinnikova TV. Marine Invertebrate Antimicrobial Peptides and Their Potential as Novel Peptide Antibiotics. Mar Drugs 2023; 21:503. [PMID: 37888438 PMCID: PMC10608444 DOI: 10.3390/md21100503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Marine invertebrates constantly interact with a wide range of microorganisms in their aquatic environment and possess an effective defense system that has enabled their existence for millions of years. Their lack of acquired immunity sets marine invertebrates apart from other marine animals. Invertebrates could rely on their innate immunity, providing the first line of defense, survival, and thriving. The innate immune system of marine invertebrates includes various biologically active compounds, and specifically, antimicrobial peptides. Nowadays, there is a revive of interest in these peptides due to the urgent need to discover novel drugs against antibiotic-resistant bacterial strains, a pressing global concern in modern healthcare. Modern technologies offer extensive possibilities for the development of innovative drugs based on these compounds, which can act against bacteria, fungi, protozoa, and viruses. This review focuses on structural peculiarities, biological functions, gene expression, biosynthesis, mechanisms of antimicrobial action, regulatory activities, and prospects for the therapeutic use of antimicrobial peptides derived from marine invertebrates.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
- Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Sergey V. Balandin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
| | | | - Tatiana V. Ovchinnikova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (S.V.G.); (S.V.B.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia;
- Department of Biotechnology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
5
|
Ismail MM, El-Fakharany EM, Hegazy GE. Purification and fractionation of phycobiliproteins from Arthrospira platensis and Corallina officinalis with evaluating their biological activities. Sci Rep 2023; 13:14270. [PMID: 37652963 PMCID: PMC10471603 DOI: 10.1038/s41598-023-41001-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023] Open
Abstract
Phycobiliproteins (PBPs) are a class of water-soluble pigments with a variety of biological functions that are present in red macroalgae and cyanobacterial species. The crude forms of phycocyanin (C-PC) from the blue green alga Arthrospira platensis and allophycocyanin (APC) from the red macroalga Corallina officinalis were extracted and purified by ammonium sulphate precipitation, anion exchange chromatography, and size exclusion chromatography methods, respectively. The obtained C-PC and APC from A. platensis and C. officinalis were 0.31 mg/mL and 0.08 mg/mL, respectively, with molecular masses of "17.0 KDa and 19.0 KDa" and "15.0 KDa and 17.0 KDa" corresponding to α and β subunits, respectively. FT-IR was used to characterize the purified APC and C-PC in order to look into their structures. Highly purified extracts (A620/A280 > 4.0) were obtained from subtractions' PC3 and PC4 that were tested for their biological activities. APC and C-PC crude extracts plus their fractions exhibited potent anti-oxidant in different ratios by using three techniques. PC1 showed high anti-inflammatory (75.99 and 74.55%) and anti-arthritic (78.89 and 76.92%) activities for C. officinalis and A. platensis, respectively compared with standard drugs (72.02 and 71.5%). The methanolic and water extracts of both species showed greater antibacterial efficacy against Gram +ve than Gram -ve marine bacteria. Our study shed light on the potential medical uses of C-PC and APC extracted from the tested species as natural substances in a variety of foods and drugs. Further investigations are required to explore the diverse chemical natures of distinct PBPs from different cyanobacteria and red algae because their amino acid sequences vary among different algal species.
Collapse
Affiliation(s)
- Mona M Ismail
- National Institute of Oceanography & Fisheries, NIOF, Cairo, Egypt.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research & Technological Applications, Alexandria, Egypt
| | - Ghada E Hegazy
- National Institute of Oceanography & Fisheries, NIOF, Cairo, Egypt.
- Bioprocess Development Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), City of Scientific Research & Technological Applications, Alexandria, Egypt.
| |
Collapse
|