1
|
Ning X, Li L, Liu J, Wang F, Tan K, Li W, Zhou K, Jing S, Lin A, Bi J, Zhao S, Deng H, Zhu C, Lv S, Li J, Liang J, Zhao Q, Wang Y, Chen B, Zhu L, Shen G, Liu J, Li Z, Deng J, Zhao X, Shan M, Wang Y, Liu S, Jiang T, Chen X, Zhang Y, Cai S, Wang L, Lu X, Jiang J, Dong F, Ye L, Sun J, Yao K, Yang Y, Liu G. Invasive pneumococcal diseases in Chinese children: a multicentre hospital-based active surveillance from 2019 to 2021. Emerg Microbes Infect 2024; 13:2332670. [PMID: 38646911 PMCID: PMC11047219 DOI: 10.1080/22221751.2024.2332670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/15/2024] [Indexed: 04/23/2024]
Abstract
This study aimed to provide data for the clinical features of invasive pneumococcal disease (IPD) and the molecular characteristics of Streptococcus pneumoniae isolates from paediatric patients in China. We conducted a multi-centre prospective study for IPD in 19 hospitals across China from January 2019 to December 2021. Data of demographic characteristics, risk factors for IPD, death, and disability was collected and analysed. Serotypes, antibiotic susceptibility, and multi-locus sequence typing (MLST) of pneumococcal isolates were also detected. A total of 478 IPD cases and 355 pneumococcal isolates were enrolled. Among the patients, 260 were male, and the median age was 35 months (interquartile range, 12-46 months). Septicaemia (37.7%), meningitis (32.4%), and pneumonia (27.8%) were common disease types, and 46 (9.6%) patients died from IPD. Thirty-four serotypes were detected, 19F (24.2%), 14 (17.7%), 23F (14.9%), 6B (10.4%) and 19A (9.6%) were common serotypes. Pneumococcal isolates were highly resistant to macrolides (98.3%), tetracycline (94.1%), and trimethoprim/sulfamethoxazole (70.7%). Non-sensitive rates of penicillin were 6.2% and 83.3% in non-meningitis and meningitis isolates. 19F-ST271, 19A-ST320 and 14-ST876 showed high resistance to antibiotics. This multi-centre study reports the clinical features of IPD and demonstrates serotype distribution and antibiotic resistance of pneumococcal isolates in Chinese children. There exists the potential to reduce IPD by improved uptake of pneumococcal vaccination, and continued surveillance is warranted.
Collapse
Affiliation(s)
- Xue Ning
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Infectious Diseases, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Lianmei Li
- Department of Infectious and Digestive Diseases, Qinghai Province Women and Children's Hospital, Xining, People’s Republic of China
| | - Jing Liu
- Department of Infectious Diseases, Hunan Children’s Hospital, Changsha, People’s Republic of China
| | - Fang Wang
- Department of Infectious Diseases, Henan Children’s Hospital, (Children's Hospital Affiliated of Zhengzhou University, Zhengzhou Children's Hospital), Zhengzhou, People’s Republic of China
| | - Kun Tan
- Department of Infectious Diseases, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China
| | - Wenhui Li
- Department of Infectious and Digestive Diseases, Children’s Hospital of Hebei Province, Shijiazhuang, People’s Republic of China
| | - Kai Zhou
- Department of Infectious Diseases, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shujun Jing
- Department of Infectious Diseases, Dalian Children’s Hospital, Dalian, People’s Republic of China
| | - Aiwei Lin
- Department of Infectious Diseases, Children’s Hospital Affiliated to Shandong University, Jinan, People’s Republic of China
- Jinan Children’s Hospital, Shandong University, Jinan, People’s Republic of China
| | - Jing Bi
- Department of Infectious Diseases, Baoding Children’s Hospital, Baoding, People’s Republic of China
| | - Shiyong Zhao
- Department of Infectious Diseases, Hangzhou Children’s Hospital, Hangzhou, People’s Republic of China
| | - Huiling Deng
- Department of Infectious Diseases, Xian Children’s Hospital, Xian, People’s Republic of China
| | - Chunhui Zhu
- Department of Infectious Diseases, Children’s Hospital of Jiangxi Province, Nanchang, People’s Republic of China
| | - Shanshan Lv
- Department of Infectious Diseases, Changchun Children’s Hospital, Changchun, People’s Republic of China
| | - Juan Li
- Department of Infectious Diseases, Urumqi Children’s Hospital, Urumqi, People’s Republic of China
| | - Jun Liang
- Department of Pediatric Intensive Care Unit, People’s Hospital of Liaocheng, Liaocheng, People’s Republic of China
| | - Qing Zhao
- Department of Infectious Diseases, Children’s Hospital of Shanxi Province, Taiyuan, People’s Republic of China
| | - Yumin Wang
- Department of Infectious Diseases, Maternal and Child Health Care Hospital of the Inner Mongolia autonomous region, Huhehaote, People’s Republic of China
| | - Biquan Chen
- Department of Infectious Diseases, Anhui Provincial Children’s Hospital, Hefei, People’s Republic of China
| | - Liang Zhu
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Infectious Diseases, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Guowu Shen
- Department of clinical laboratory, Qinghai Province Women and Children's Hospital, Xining, People’s Republic of China
| | - Jianlong Liu
- Department of clinic laboratory, Hunan Children’s Hospital, Changsha, People’s Republic of China
| | - Zhi Li
- Department of Infectious Diseases, Henan Children’s Hospital, (Children's Hospital Affiliated of Zhengzhou University, Zhengzhou Children's Hospital), Zhengzhou, People’s Republic of China
| | - Jikui Deng
- Department of Infectious Diseases, Shenzhen Children’s Hospital, Shenzhen, People’s Republic of China
| | - Xin Zhao
- Department of Infectious and Digestive Diseases, Children’s Hospital of Hebei Province, Shijiazhuang, People’s Republic of China
| | - Mingfeng Shan
- Department of Infectious Diseases, Children’s Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yi Wang
- Department of Infectious Diseases, Dalian Children’s Hospital, Dalian, People’s Republic of China
| | - Shihua Liu
- Department of Infectious Diseases, Children’s Hospital Affiliated to Shandong University, Jinan, People’s Republic of China
- Jinan Children’s Hospital, Shandong University, Jinan, People’s Republic of China
| | - Tingting Jiang
- Department of Infectious Diseases, Baoding Children’s Hospital, Baoding, People’s Republic of China
| | - Xuexia Chen
- Department of Infectious Diseases, Hangzhou Children’s Hospital, Hangzhou, People’s Republic of China
| | - Yufeng Zhang
- Department of Infectious Diseases, Xian Children’s Hospital, Xian, People’s Republic of China
| | - Sha Cai
- Department of Infectious Diseases, Children’s Hospital of Jiangxi Province, Nanchang, People’s Republic of China
| | - Lixue Wang
- Department of Infectious Diseases, Changchun Children’s Hospital, Changchun, People’s Republic of China
| | - Xudong Lu
- Department of Infectious Diseases, Urumqi Children’s Hospital, Urumqi, People’s Republic of China
| | - Jinghui Jiang
- Department of Pediatric Intensive Care Unit, People’s Hospital of Liaocheng, Liaocheng, People’s Republic of China
| | - Fang Dong
- Department of Infectious Diseases, Children’s Hospital of Shanxi Province, Taiyuan, People’s Republic of China
| | - Lan Ye
- Department of Infectious Diseases, Maternal and Child Health Care Hospital of the Inner Mongolia autonomous region, Huhehaote, People’s Republic of China
| | - Jing Sun
- Department of Infectious Diseases, Anhui Provincial Children’s Hospital, Hefei, People’s Republic of China
| | - Kaihu Yao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, People’s Republic of China
| | - Yonghong Yang
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, People’s Republic of China
| | - Gang Liu
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Infectious Diseases, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Maladan Y, Retnaningrum E, Daryono BS, Salsabila K, Sarassari R, Khoeri MM, Sari RF, Balqis SA, Wahid GA, Safari D. Pneumococcal transposon profiling associated with macrolide, tetracycline, and chloramphenicol resistance from carriage isolates of serotype 19F in Indonesia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 125:105672. [PMID: 39313084 DOI: 10.1016/j.meegid.2024.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Genetic evolution of resistance due to mutations and transposon insertions is the primary cause of antimicrobial resistance in Streptococcus pneumoniae. Resistance to macrolide, tetracycline, and chloramphenicol is caused by the insertion of specific genes that carried by transposon (Tn). This study aims to analyze transposon profiling associated with macrolide, tetracycline, and chloramphenicol resistance from carriage isolates of S. pneumoniae serotype 19F in Indonesia. S. pneumoniae serotype 19F isolates were collected from nasopharyngeal swab specimens from different regions in Indonesia. Genomic DNA was extracted from sixteen isolates and whole genome sequencing was performed on Illumina platform. Raw sequence data were analyzed using de novo assembly by ASA3P and Microscope server. The presence of transposons was identified with detection of int and xis genes and visualized by pyGenomeViz. The genome size of S. pneumoniae ranges from 2,040,117 bp to 2,437,939 bp, with a GC content of around 39 %. ST1464 (4/16) and ST271 (3/16) were found as the predominant sequence type among isolates. Tn2010 was the most common transposon among S. pneumoniae serotype 19F isolates (7/16) followed by Tn2009 (4/16), and Tn5253 (3/16). We identified two deletion sites within the tetM gene (2 bp and 58 bp) that confer tetracycline susceptibility from one isolate. This study suggests that genomic analysis can be employed for the detection and surveillance of antimicrobial resistance genes among S. pneumoniae strains isolated from various regions in Indonesia.
Collapse
Affiliation(s)
- Yustinus Maladan
- Biology Doctoral Students, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia; Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
| | - Endah Retnaningrum
- Microbiology Laboratory, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Budi Setiadi Daryono
- Genetics Laboratory, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Korrie Salsabila
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
| | - Rosantia Sarassari
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
| | - Miftahuddin Majid Khoeri
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia; Doctoral program in Biomedical, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Ratna Fathma Sari
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
| | - Sarah Azhari Balqis
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
| | - Ghina Athyah Wahid
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
| | - Dodi Safari
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia.
| |
Collapse
|
3
|
Lan Y, Liu L, Hu D, Ge L, Xiang X, Peng M, Fu Y, Wang Y, Li S, Chen Y, Jiang Y, Tu Y, Vidal JE, Yu Y, Chen Z, Wu X. Limited protection of pneumococcal vaccines against emergent Streptococcus pneumoniae serotype 14/ST876 strains. Infection 2024; 52:801-811. [PMID: 37919621 PMCID: PMC11143005 DOI: 10.1007/s15010-023-02110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/08/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE Streptococcus pneumoniae (Spn) is a major cause of child death. We investigated the epidemiology of S. pneumoniae in a pediatric fever clinic and explored the genomics basis of the limited vaccine response of serotype 14 strains worldwide. METHODS Febrile disease and pneumonia were diagnosed following criteria from the WHO at the end of 2019 at a tertiary children's hospital. Spn was isolated by culture from nasopharyngeal (NP) swabs. The density was determined by lytA-base qPCR. Isolates were serotyped by Quellung and underwent antimicrobial susceptibility testing. Whole-genome sequencing was employed for molecular serotyping, MLST, antibiotic gene determination, SNP calling, recombination prediction, and phylogenetic analysis. RESULTS The presence of pneumococcus in the nasopharynx (87.5%, 7/8, p = 0.0227) and a high carriage (100%, 7/7, p = 0.0123) were significantly associated with pneumonia development. Living with siblings (73.7%, 14/19, p = 0.0125) and non-vaccination (56.0%, 28/50, p = 0.0377) contributed significantly to the Spn carriage. Serotype 14 was the most prevalent strain (16.67%, 5/30). The genome analysis of 1497 serotype 14 strains indicated S14/ST876 strains were only prevalent in China, presented limited vaccine responses with higher recombination activities within its cps locus, and unique variation patterns in the genes wzg and lrp. CONCLUSION With the lifting of the one-child policy, it will be crucial for families with multiple children to get PCV vaccinations in China. Due to the highly variant cps locus and distinctive variation patterns in capsule shedding and binding proteins genes, the prevalent S14/ST876 strains have shown poor response to current vaccines. It is necessary to continue monitoring the molecular epidemiology of this vaccine escape clone.
Collapse
Affiliation(s)
- Yinle Lan
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Lin Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People;s Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dongping Hu
- Department of Infectious Disease, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Lihong Ge
- Department of Clinical Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Xi Xiang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Minfei Peng
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Ying Fu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yanfei Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuxian Li
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuexing Tu
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jorge E Vidal
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhimin Chen
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| | - Xueqing Wu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China.
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Lux J, Sánchez García L, Chaparro Fernández P, Laloli L, Licheri MF, Gallay C, Hermans PWM, Croucher NJ, Veening JW, Dijkman R, Straume D, Hathaway LJ. AmiA and AliA peptide ligands, found in Klebsiella pneumoniae, are imported into pneumococci and alter the transcriptome. Sci Rep 2024; 14:12416. [PMID: 38816440 PMCID: PMC11139975 DOI: 10.1038/s41598-024-63217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
Klebsiella pneumoniae releases the peptides AKTIKITQTR and FNEMQPIVDRQ, which bind the pneumococcal proteins AmiA and AliA respectively, two substrate-binding proteins of the ABC transporter Ami-AliA/AliB oligopeptide permease. Exposure to these peptides alters pneumococcal phenotypes such as growth. Using a mutant in which a permease domain of the transporter was disrupted, by growth analysis and epifluorescence microscopy, we confirmed peptide uptake via the Ami permease and intracellular location in the pneumococcus. By RNA-sequencing we found that the peptides modulated expression of genes involved in metabolism, as pathways affected were mostly associated with energy or synthesis and transport of amino acids. Both peptides downregulated expression of genes involved in branched-chain amino acid metabolism and the Ami permease; and upregulated fatty acid biosynthesis genes but differed in their regulation of genes involved in purine and pyrimidine biosynthesis. The transcriptomic changes are consistent with growth suppression by peptide treatment. The peptides inhibited growth of pneumococcal isolates of serotypes 3, 8, 9N, 12F and 19A, currently prevalent in Switzerland, and caused no detectable toxic effect to primary human airway epithelial cells. We conclude that pneumococci take up K. pneumoniae peptides from the environment via binding and transport through the Ami permease. This changes gene expression resulting in altered phenotypes, particularly reduced growth.
Collapse
Affiliation(s)
- Janine Lux
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lucía Sánchez García
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Patricia Chaparro Fernández
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Laura Laloli
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Manon F Licheri
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Clement Gallay
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Peter W M Hermans
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht (UMCU), Utrecht, The Netherlands
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, White City Campus, Imperial College London, Sir Michael Uren Hub, London, UK
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Ronald Dijkman
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Microscopy Imaging Centre (MIC), Theodor Kocher Institute, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | - Daniel Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Lucy J Hathaway
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland.
| |
Collapse
|
5
|
Warda K, Amari S, Boureddane M, Elkamouni Y, Arsalane L, Zouhair S, Bouskraoui M. Changes in pneumococcal serotypes distribution and penicillin resistance in healthy children five years after generalization of PCV10. Heliyon 2024; 10:e25741. [PMID: 38380016 PMCID: PMC10877248 DOI: 10.1016/j.heliyon.2024.e25741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Objective Streptococcus pneumoniae (S. pneumoniae) nasopharyngeal carriage has significantly decreased after the generalization of pneumococcal vaccination worldwide. This study sought to investigate changes in S. pneumoniae carriage rates, serotype distribution and penicillin non-susceptibility following the generalization of 10-valent pneumococcal conjugate vaccine. Methods A prospective study was conducted in Marrakesh, Morocco, between 2017 and 2018, among healthy children attending vaccination centers. We collected nasopharyngeal swabs and questionnaire data for each child. Using univariate logistic regression, we analyzed the association between S. pneumoniae carriage and various risk factors. Comparisons of serotype diversity and penicillin resistance between 2017 and 2018 and the period before introduction of vaccination (2008-2009, n = 660) were performed using Simpson index and the chi-squared test, respectively. Results During 2017-2018, 515 children aged between 6 and 36 months participated. The S. pneumoniae carriage rate was 43.3%. Looking at the distribution serotypes, the rate of PCV10 serotypes rate was only 9.6%. Among non-vaccine serotypes, an increase in serotypes 6C/6D (22; 14%), 19B/19C (17; 10.8%), and 15B/15C (11; 7%) was observed. A particular increase in serotype diversity was also observed after the generalization of PCV10 (p < 0.001). S. pneumoniae non-susceptible to penicillin decreased, reaching a rate of 26.6% in 2017-2018. Conclusion The significant change in S. pneumoniae carriage, serotype distribution, and penicillin resistance highlights the effectiveness of the pneumococcal conjugate vaccine among children in Marrakesh, Morocco.
Collapse
Affiliation(s)
- Karima Warda
- Laboratory of Microbiology and Virology, Cadi Ayad University, Marrakesh, Morocco
| | - Sara Amari
- Laboratory of Microbiology and Virology, Cadi Ayad University, Marrakesh, Morocco
| | - Majda Boureddane
- Laboratory of Microbiology and Virology, Cadi Ayad University, Marrakesh, Morocco
| | - Youssef Elkamouni
- Laboratory of Microbiology and Virology, Cadi Ayad University, Marrakesh, Morocco
- Laboratory of Microbiology-Virology and Molecular Biology, Avicenna Military Hospital, Marrakesh, Morocco
| | - Lamiae Arsalane
- Laboratory of Microbiology and Virology, Cadi Ayad University, Marrakesh, Morocco
- Laboratory of Microbiology-Virology and Molecular Biology, Avicenna Military Hospital, Marrakesh, Morocco
| | - Said Zouhair
- Laboratory of Microbiology and Virology, Cadi Ayad University, Marrakesh, Morocco
- Laboratory of Microbiology-Virology and Molecular Biology, Avicenna Military Hospital, Marrakesh, Morocco
| | - Mohammed Bouskraoui
- Laboratory of Microbiology and Virology, Cadi Ayad University, Marrakesh, Morocco
- Department of Pediatrics, Mohamed VI University Hospital Center, Marrakesh, Morocco
| |
Collapse
|
6
|
Mokaddas E, Asadzadeh M, Syed S, Albert MJ. High Prevalence of Novel Sequence Types in Streptococcus pneumoniae That Caused Invasive Diseases in Kuwait in 2018. Microorganisms 2024; 12:225. [PMID: 38276209 PMCID: PMC10819824 DOI: 10.3390/microorganisms12010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Multilocus sequence typing (MLST) is used to gain insight into the population genetics of bacteria in the form of sequence type (ST). MLST has been used to study the evolution and spread of virulent clones of Streptococcus pneumoniae in many parts of the world. Such data for S. pneumoniae are lacking for the countries of the Arabian Peninsula, including Kuwait. METHODS We determined the STs of all 31 strains of S. pneumoniae from invasive diseases received at a reference laboratory from various health centers in Kuwait during 2018 by MLST. The relationship among the isolates was determined by phylogenetic analysis. We also determined the serotypes by Quellung reaction, and antimicrobial susceptibility by Etest, against 15 antibiotics belonging to 10 classes. RESULTS There were 28 STs among the 31 isolates, of which 14 were new STs (45.2%) and 5 were rare STs (16.1%). Phylogenetic analysis revealed that 26 isolates (83.9%) were unrelated singletons, and the Kuwaiti isolates were related to those from neighboring countries whose information was gleaned from unpublished data available at the PubMLST website. Many of our isolates were resistant to penicillin, erythromycin, and azithromycin, and some were multidrug-resistant. Virulent serotype 8-ST53, and serotype 19A with new STs, were detected. CONCLUSIONS Our study detected an unusually large number of novel STs, which may indicate that Kuwait provides a milieu for the evolution of novel STs. Novel STs may arise due to recombination and can result in capsular switching. This can impact the effect of vaccination programs on the burden of invasive pneumococcal disease. This first report from the Arabian Peninsula justifies the continuous monitoring of S. pneumoniae STs for the possible evolution of new virulent clones and capsular switching.
Collapse
Affiliation(s)
| | | | | | - M. John Albert
- Department of Microbiology, College of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait; (E.M.); (M.A.); (S.S.)
| |
Collapse
|
7
|
Dai G, Wang T, He Y, Jiang W, Sun H, Chen Z, Zhang T, Yan Y. Antimicrobial susceptibility and serotype distribution of Streptococcus pneumoniae isolates among children in Suzhou, China. Transl Pediatr 2023; 12:2203-2212. [PMID: 38197098 PMCID: PMC10772826 DOI: 10.21037/tp-23-547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
Background Streptococcus pneumoniae (SP) is responsible for pneumococcal diseases with severe morbidity and mortality. High rates of drug resistance constitute serious public health concerns. Vaccination has proven to be an effective means of reducing disease burden. Epidemiological information of antibiotic susceptibilities and serotype distribution will be of great help to the management of pneumococcal infections. This study reported the serotype distribution and antibiotic resistance pattern of SP in hospitalized children in Suzhou during the years 2017-2018. The aim is to reduce pneumococcal resistance and guide vaccination. Methods The clinical data of hospitalized children with SP were collected and analyzed. A total of 2,446 strains of SP were isolated from these patients. Serotypes were determined using the Quellung reaction. Antibiotic resistance was tested using the E-test diffusion method. Results The non-susceptible rates of the isolates to penicillin, amoxicillin, and cefotaxime were 9.5%, 27.7%, and 27.2%, respectively. And 97.6% of SP isolates showed multidrug-resistant (MDR). The most common resistance pattern of non-invasive isolates was macrolides + sulfamethoxazole + clindamycin + tetracycline. The major serotypes of this resistance pattern were 6A, 23F, 6B, 19F, 15B. The most extensive resistance pattern of invasive isolates was macrolides + β-lactams + sulfamethoxazole + clindamycin + tetracycline. The most common serotypes of the pattern were 19F, 19A, 6B, 23F, 6A. The most common serotypes were 19F (28.6%), 6B (11.9), 23F (11.2%), 6A (10.6%), and 19A (9.1%). In the isolates with MDR, the first five most common serotypes were 19F, non-vaccine serotype (NVT), 6B, 6A and 23F. Strains belonging to different serotypes exhibited distinct antimicrobial resistance patterns and were found to be associated with different diseases. The coverage rates of pneumococcal conjugate vaccine (PCV)7 and PCV13 in all isolates reached 60.4% (310/513) and 80.9% (415/513), respectively. Conclusions The main serotypes of SP in Suzhou were 19F, 6B, 23F, 6A, and 19A. The use of PCV13 is beneficial to children in Suzhou.
Collapse
Affiliation(s)
- Ge Dai
- Respiratory Department, Children’s Hospital of Soochow University, Suzhou, China
| | - Ting Wang
- Respiratory Department, Children’s Hospital of Soochow University, Suzhou, China
| | - Yuting He
- Respiratory Department, Children’s Hospital of Soochow University, Suzhou, China
| | - Wujun Jiang
- Respiratory Department, Children’s Hospital of Soochow University, Suzhou, China
| | - Huiming Sun
- Respiratory Department, Children’s Hospital of Soochow University, Suzhou, China
| | - Zhengrong Chen
- Respiratory Department, Children’s Hospital of Soochow University, Suzhou, China
| | - Tao Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Yongdong Yan
- Respiratory Department, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Henares D, Lo SW, Perez-Argüello A, Redin A, Ciruela P, Garcia-Garcia JJ, Brotons P, Yuste J, Sá-Leão R, Muñoz-Almagro C. Comparison of next generation technologies and bioinformatics pipelines for capsular typing of Streptococcus pneumoniae. J Clin Microbiol 2023; 61:e0074123. [PMID: 38092657 PMCID: PMC10729682 DOI: 10.1128/jcm.00741-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/01/2023] [Indexed: 12/20/2023] Open
Abstract
Whole genome sequencing (WGS)-based approaches for pneumococcal capsular typing have become an alternative to serological methods. In silico serotyping from WGS has not yet been applied to long-read sequences produced by third-generation technologies. The objective of the study was to determine the capsular types of pneumococci causing invasive disease in Catalonia (Spain) using serological typing and WGS and to compare the performance of different bioinformatics pipelines using short- and long-read data from WGS. All invasive pneumococcal pediatric isolates collected in Hospital Sant Joan de Déu (Barcelona) from 2013 to 2019 were included. Isolates were assigned a capsular type by serological testing based on anticapsular antisera and by different WGS-based pipelines: Illumina sequencing followed by serotyping with PneumoCaT, SeroBA, and Pathogenwatch vs MinION-ONT sequencing coupled with serotyping by Pathogenwatch from pneumococcal assembled genomes. A total of 119 out of 121 pneumococcal isolates were available for sequencing. Twenty-nine different serotypes were identified by serological typing, with 24F (n = 17; 14.3%), 14 (n = 10; 8.4%), and 15B/C (n = 8; 6.7%) being the most common serotypes. WGS-based pipelines showed initial concordance with serological typing (>91% of accuracy). The main discrepant results were found at the serotype level within a serogroup: 6A/B, 6C/D, 9A/V, 11A/D, and 18B/C. Only one discrepancy at the serogroup level was observed: serotype 29 by serological testing and serotype 35B/D by all WGS-based pipelines. Thus, bioinformatics WGS-based pipelines, including those using third-generation sequencing, are useful for pneumococcal capsular assignment. Possible discrepancies between serological typing and WGS-based approaches should be considered in pneumococcal capsular-type surveillance studies.
Collapse
Affiliation(s)
- Desiree Henares
- Department of RDI Microbiology, Hospital Sant Joan de Déu, Barcelona, Spain
- Infectious Diseases and Microbiome, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- CIBER Center for Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Stephanie W. Lo
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Milner Center for Evolution, Life Sciences Department, University of Bath, Bath, United Kingdom
| | - Amaresh Perez-Argüello
- Department of RDI Microbiology, Hospital Sant Joan de Déu, Barcelona, Spain
- Infectious Diseases and Microbiome, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alba Redin
- Department of RDI Microbiology, Hospital Sant Joan de Déu, Barcelona, Spain
- Infectious Diseases and Microbiome, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Pilar Ciruela
- CIBER Center for Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Surveillance and Public Health Emergency Response, Public Health Agency of Catalonia (ASPCAT), Barcelona, Spain
| | - Juan Jose Garcia-Garcia
- CIBER Center for Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Pediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Medical-Surgical Specialties, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Pedro Brotons
- Department of RDI Microbiology, Hospital Sant Joan de Déu, Barcelona, Spain
- Infectious Diseases and Microbiome, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- CIBER Center for Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Jose Yuste
- Spanish Pneumococcal Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), Instituto de salud Carlos III, Madrid, Spain
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Carmen Muñoz-Almagro
- Department of RDI Microbiology, Hospital Sant Joan de Déu, Barcelona, Spain
- Infectious Diseases and Microbiome, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- CIBER Center for Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
9
|
Huang X, Tan H, Lu F, Guo G, Han M, Cai T, Zhang H. Molecular characterization of invasive Streptococcus pneumoniae clinical isolates from a tertiary children's hospital in eastern China. Microbiol Spectr 2023; 11:e0091323. [PMID: 37754545 PMCID: PMC10580832 DOI: 10.1128/spectrum.00913-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/07/2023] [Indexed: 09/28/2023] Open
Abstract
Streptococcus pneumoniae is a common opportunistic pathogen that causes invasive pneumococcal disease (IPD), especially in children. This study aimed to determine the prevalence and molecular characteristics of S. pneumoniae isolated from children with IPD. A total of 78 S. pneumoniae isolates from aseptic body fluids of 70 IPD patients were collected at the Children's Hospital of Nanjing Medical University (Jiangsu Province, China) during 2017-2021. Whole-genome sequencing technology was used to analyze the serotype, sequence type (ST), virulence, and antibiotic resistance of the 78 invasive S. pneumoniae clinical isolates. Our results showed that the pneumococcal infection rate declined after the COVID-19 outbreak in 2019. Serotypes 19F, 14, 6A, 23F, 19A, and 6B were the most common strains. The pneumococcal conjugate vaccine (PCV) 13 serotype coverage rate was 87.1%. All isolates were classified by multi-locus sequence typing (MLST) analysis into 27 different STs, including 3 novel STs (ST17941, ST17942, and ST17944) and 1 novel allele [recP (558)]. The most predominant ST was ST271, followed by ST320 and ST876. All isolates carried the following virulence genes: cbpG, lytB, lytC, pce (cbpE), pavA, slrA, plr (gapA), hysA, nanA, eno, piuA, psaA, cppA, iga, htrA (degP), tig (ropA), zmpB, and ply. All isolates were multidrug resistant and had high levels of resistance to macrolides, tetracyclines, and sulfonamides. Taken together, this study revealed extensive genetic diversity among S. pneumoniae isolates from a single Chinese hospital. Wearing masks, universal infant vaccination with PCV13, and the launch of recombinant protein vaccine development programs could reduce the burden of IPD in children. IMPORTANCE Invasive pneumococcal disease (IPD) caused by Streptococcus pneumoniae in children remains a global burden and should be given more attention due to the fact that the pneumococcal vaccine is not fully covered globally. The molecular epidemiological characteristics of S. pneumoniae are not so clear, especially in these years of COVID-19. In this study, we collected S. pneumoniae isolates from the aseptic body fluid of children with IPD from 2017 to 2021 in a tertiary children's hospital in China and revealed the extensive genetic diversity of these isolates. Most importantly, we first found that the rate of pneumococcal infection has declined since the COVID-19 outbreak in 2019, which means that wearing masks could reduce the transmission of S. pneumoniae. In addition, it was shown that universal infant vaccination with PCV13 seems essential for reducing the burden of IPD in children.
Collapse
Affiliation(s)
- Xu Huang
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Tan
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Lu
- School of Mechanical Engineering, Tongji University, Shanghai, China
| | - Genglin Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingxiao Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tongbo Cai
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Manzanal A, Vicente D, Alonso M, Azkue N, Ercibengoa M, Marimón JM. Impact of the progressive uptake of pneumococcal conjugate vaccines on the epidemiology and antimicrobial resistance of invasive pneumococcal disease in Gipuzkoa, northern Spain, 1998-2022. Front Public Health 2023; 11:1238502. [PMID: 37719737 PMCID: PMC10501722 DOI: 10.3389/fpubh.2023.1238502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Objectives To analyze the impact of pneumococcal conjugate vaccines (PCVs) on the incidence of invasive pneumococcal diseases (IPDs) and pneumococcal antibiotic resistance in Gipuzkoa, northern Spain for a 25 years period. Methods All cases of IPD confirmed by culture between 1998 and 2022 in a population of around 427,416 people were included. Pneumococci were serotyped and antimicrobial susceptibility was assessed by the EUCAST guidelines. Results Overall, 1,516 S. pneumoniae isolates were collected. Annual IPD incidence rates (per 100,000 people) declined from 19.9 in 1998-2001 to 11.5 in 2017-19 (42.2% reduction), especially in vaccinated children (from 46.7 to 24.9) and non-vaccinated older adult individuals (from 48.0 to 23.6). After PCV13 introduction, the decrease in the incidence of infections caused by PCV13 serotypes was balanced by the increase in the incidence of non-PCV13 serotypes. In the pandemic year of 2020, IPD incidence was the lowest: 2.81. The annual incidence rates of penicillin-resistant isolates also decreased, from 4.91 in 1998-2001 to 1.49 in 2017-19 and 0.70 in 2020. Since 2017, serotypes 14, 19A, and 11A have been the most common penicillin-resistant types. The incidence of erythromycin-resistant strains declined, from 3.65 to 1.73 and 0.70 in the same years. Conclusion PCV use was associated with declines in the incidence of IPD and the spread of non-vaccine serotypes, that balanced the beneficial effect off PCV13, some of them showing high rates of antibiotic resistance.
Collapse
Affiliation(s)
- Ayla Manzanal
- Microbiology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organization, San Sebastián, Spain
- Department of Preventive Medicine, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Diego Vicente
- Microbiology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organization, San Sebastián, Spain
- Department of Preventive Medicine, University of the Basque Country (UPV/EHU), San Sebastián, Spain
- Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Marta Alonso
- Microbiology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organization, San Sebastián, Spain
- Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Nekane Azkue
- Microbiology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organization, San Sebastián, Spain
| | - Maria Ercibengoa
- Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group, Biodonostia Health Research Institute, San Sebastián, Spain
| | - José María Marimón
- Microbiology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organization, San Sebastián, Spain
- Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group, Biodonostia Health Research Institute, San Sebastián, Spain
| |
Collapse
|
11
|
Afshari E, Ahangari Cohan R, Shams Nosrati MS, Mousavi SF. Development of a bivalent protein-based vaccine candidate against invasive pneumococcal diseases based on novel pneumococcal surface protein A in combination with pneumococcal histidine triad protein D. Front Immunol 2023; 14:1187773. [PMID: 37680628 PMCID: PMC10480505 DOI: 10.3389/fimmu.2023.1187773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/01/2023] [Indexed: 09/09/2023] Open
Abstract
Extensive efforts have been made toward improving effective strategies for pneumococcal vaccination, focusing on evaluating the potential of multivalent protein-based vaccines and overcoming the limitations of pneumococcal polysaccharide-based vaccines. In this study, we investigated the protective potential of mice co-immunization with the pneumococcal PhtD and novel rPspA proteins against pneumococcal sepsis infection. The formulations of each antigen alone or in combination were administered intraperitoneally with alum adjuvant into BALB/c mice three times at 14-day intervals. The production of antigen-specific IgG, IgG1 and IgG2a subclasses, and IL-4 and IFN-γ cytokines, were analyzed. Two in vitro complement- and opsonophagocytic-mediated killing activities of raised antibodies on day 42 were also assessed. Finally, the protection against an intraperitoneal challenge with 106 CFU/mouse of multi-drug resistance of Streptococcus pneumoniae ATCC49619 was investigated. Our findings showed a significant increase in the anti-PhtD and anti-rPspA sera IgG levels in the immunized group with the PhtD+rPspA formulation compared to each alone. Moreover, the results demonstrated a synergistic effect with a 6.7- and 1.3- fold increase in anti-PhtD and anti-rPspA IgG1, as well as a 5.59- and 1.08- fold increase in anti-PhtD and anti-rPspA IgG2a, respectively. Co-administration of rPspA+PhtD elicited a mixture of Th-2 and Th-1 immune responses, more towards Th-2. In addition, the highest complement-mediated killing activity was observed in the sera of the immunized group with PhtD+rPspA at 1/16 dilution, and the opsonophagocytic activity was increased from 74% to 86.3%. Finally, the survival rates showed that mice receiving the rPspA+PhtD formulation survived significantly longer (100%) than those receiving protein alone or PBS and exhibited the strongest clearance with a 2 log10 decrease in bacterial load in the blood 24h after challenge compared to the control group. In conclusion, the rPspA+PhtD formulation can be considered a promising bivalent serotype-independent vaccine candidate for protection against invasive pneumococcal infection in the future.
Collapse
Affiliation(s)
- Elnaz Afshari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
12
|
Li T, Huang J, Yang S, Chen J, Yao Z, Zhong M, Zhong X, Ye X. Pan-Genome-Wide Association Study of Serotype 19A Pneumococci Identifies Disease-Associated Genes. Microbiol Spectr 2023; 11:e0407322. [PMID: 37358412 PMCID: PMC10433855 DOI: 10.1128/spectrum.04073-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 06/04/2023] [Indexed: 06/27/2023] Open
Abstract
Despite the widespread implementation of pneumococcal vaccines, hypervirulent Streptococcus pneumoniae serotype 19A is endemic worldwide. It is still unclear whether specific genetic elements contribute to complex pathogenicity of serotype 19A isolates. We performed a large-scale pan-genome-wide association study (pan-GWAS) of 1,292 serotype 19A isolates sampled from patients with invasive disease and asymptomatic carriers. To address the underlying disease-associated genotypes, a comprehensive analysis using three methods (Scoary, a linear mixed model, and random forest) was performed to compare disease and carriage isolates to identify genes consistently associated with disease phenotype. By using three pan-GWAS methods, we found consensus on statistically significant associations between genotypes and disease phenotypes (disease or carriage), with a subset of 30 consistently significant disease-associated genes. The results of functional annotation revealed that these disease-associated genes had diverse predicted functions, including those that participated in mobile genetic elements, antibiotic resistance, virulence, and cellular metabolism. Our findings suggest the multifactorial pathogenicity nature of this hypervirulent serotype and provide important evidence for the design of novel protein-based vaccines to prevent and control pneumococcal disease. IMPORTANCE It is important to understand the genetic and pathogenic characteristics of S. pneumoniae serotype 19A, which may provide important information for the prevention and treatment of pneumococcal disease. This global large-sample pan-GWAS study has identified a subset of 30 consistently significant disease-associated genes that are involved in mobile genetic elements, antibiotic resistance, virulence, and cellular metabolism. These findings suggest the multifactorial pathogenicity nature of hypervirulent S. pneumoniae serotype 19A isolates and provide implications for the design of novel protein-based vaccines.
Collapse
Affiliation(s)
- Ting Li
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiayin Huang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shimin Yang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianyu Chen
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenjiang Yao
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minghao Zhong
- Department of Prevention and Health Care, The Sixth People’s Hospital of Dongguan City, Guangdong, China
| | - Xinguang Zhong
- Department of Prevention and Health Care, The Sixth People’s Hospital of Dongguan City, Guangdong, China
| | - Xiaohua Ye
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
13
|
Li J, Liu L, Zhang H, Guo J, Wei X, Xue M, Ma X. Severe problem of macrolides resistance to common pathogens in China. Front Cell Infect Microbiol 2023; 13:1181633. [PMID: 37637457 PMCID: PMC10448830 DOI: 10.3389/fcimb.2023.1181633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
With the widespread use of macrolide antibiotics in China, common pathogens causing children's infections, such as Streptococcus pneumoniae, Streptococcus (including Group A streptococcus, Group B streptococcus), Staphylococcus aureus, Bordetella pertussis, and Mycoplasma pneumoniae, have shown varying degrees of drug resistance. In order to provide such problem and related evidence for rational use of antibiotics in clinic, we reviewed the drug resistance of common bacteria to macrolides in children recent 20 years.
Collapse
Affiliation(s)
- Jialin Li
- Department of Respiratory Disease, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Jinan Key Laboratory of Pediatric Respiratory Diseases, Jinan Children’s Hospital, Jinan, China
| | - Lesen Liu
- Surgical Department, Huaiyin People’s Hospital, Jinan, China
| | - Hua Zhang
- Department of Respiratory Disease, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Jinan Key Laboratory of Pediatric Respiratory Diseases, Jinan Children’s Hospital, Jinan, China
| | - Jing Guo
- Department of Respiratory Disease, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Jinan Key Laboratory of Pediatric Respiratory Diseases, Jinan Children’s Hospital, Jinan, China
| | - Xiaoling Wei
- Department of Respiratory Disease, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Jinan Key Laboratory of Pediatric Respiratory Diseases, Jinan Children’s Hospital, Jinan, China
| | - Min Xue
- Department of Respiratory Disease, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Jinan Key Laboratory of Pediatric Respiratory Diseases, Jinan Children’s Hospital, Jinan, China
| | - Xiang Ma
- Department of Respiratory Disease, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
- Jinan Key Laboratory of Pediatric Respiratory Diseases, Jinan Children’s Hospital, Jinan, China
| |
Collapse
|
14
|
Genomic Epidemiology of Streptococcus pneumoniae Isolated in a Tertiary Hospital in Beijing, China, from 2018 to 2022. Pathogens 2023; 12:pathogens12020284. [PMID: 36839557 PMCID: PMC9965199 DOI: 10.3390/pathogens12020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Streptococcus pneumoniae is one of the most common bacterial pathogens of a wide range of community-acquired infections. It has been more and more recognized that this bacterium could also play a role as a cause of nosocomial infections. In this study, by retrospective analysis of the phenotypic resistance characteristics and genomic characteristics of 52 S. pneumoniae isolates in a hospital in Beijing, China, from 2018 to 2022, we explored the carriage of resistance genes and mutations in penicillin-binding proteins corresponding to the resistances, and identified the population diversity based on the prediction of serotypes and identification of sequence types (STs). The isolates displayed resistances to erythromycin (98%), tetracycline (96%), sulfonamide (72%) and penicillin G (42%). Among the 52 isolates, 41 displayed multiple-drug resistance. In total, 37 STs and 21 serotypes were identified, and the clonal complex 271 serogroup 19 was the most prevalent subtype. Only 24 isolates (46.2%) of 7 serotypes were covered by the 13-valent pneumococcal conjugate vaccination. The isolates showed high carriages of resistance genes, including tet(M) (100%) and erm(B) (98.1%); additionally, 32 isolates (61.5%) had mutations in penicillin-binding proteins. We also observed 11 healthcare-associated infections and 3 cases infected by different subtypes of isolates. We did not find nosocomial transmissions between the patients, and these cases might be associated with the asymptomatic colonization of S. pneumoniae in the human population. Our results called for further active surveillance of these subtypes, as well as the continuous optimization of the treatment protocols.
Collapse
|
15
|
Guo MY, Shi XH, Gao W, Tian JL, Yuan L, Yang J, Wumaier D, Cao J, Abulimiti R, Zhang WL, Yao KH. The dynamic change of serotype distribution and antimicrobial resistance of pneumococcal isolates since PCV13 administration and COVID-19 control in Urumqi, China. Front Cell Infect Microbiol 2023; 13:1110652. [PMID: 36844410 PMCID: PMC9951612 DOI: 10.3389/fcimb.2023.1110652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023] Open
Abstract
Objective This study aims to analyze the serotype distribution and drug resistance of Streptococcus pneumoniae isolated from children aged 8 days to 7 years in Urumqi, China, between 2014 to 2021, during which PCV13 was introduced in the private sector's immunization program and COVID-19 control was administrated in the last 2 years. Methods Serotypes of S. pneumoniae isolates were determined by Quellung reaction, and their susceptibility against 14 antimicrobials were tested. According to the start year of PCV13 administration (2017) and COVID-19 control (2020), the study period was divided into three stages: 2014-2015, 2018-2019, and 2020-2021. Results A total of 317 isolates were involved in this study. The most common serotypes were type 19F (34.4%), followed by 19A (15.8%), 23F (11.7%), 6B (11.4%), and 6A(5.0%). The coverage rate of both PCV13 and PCV15 was 83.0%. The coverage of PCV20 was a little higher at 85.2%. The resistance rate against penicillin was 28.6% according to the breakpoints of oral penicillin, which would reach up to 91.8% based on the breakpoints of parenteral penicillin for meningitis. The resistance rates to erythromycin, clindamycin, tetracycline, and sulfamethoxazole-trimethoprim were 95.9%, 90.2%, 88.9%, and 78.8%, respectively. The PCV13 isolate was more resistant to penicillin than the non-PCV13 ones. There was not any significant change found in the serotype distribution since the PCV13 introduction and the COVID-19 control. The resistance rate against oral penicillin slightly elevated to 34.5% in 2018-2019 from 30.7% in 2014-2015 and then decreased significantly to 18.1% in 2020-2021 (χ 2 = 7.716, P < 0.05), while the resistance rate to ceftriaxone (non-meningitis) continuously declined from 16.0% in 2014-2015 to 1.4% in 2018-2019 and 0% in 2020-2021 (Fisher = 24.463, P < 0.01). Conclusion The common serotypes of S. pneumoniae isolated from children in Urumqi were types 19F, 19A, 23F, 6B, and 6A, which we found to have no marked change since the PCV13 introduction and the COVID-19 control However, the resistance rate to oral penicillin and ceftriaxone significantly declined in the COVID-19 control stage.
Collapse
Affiliation(s)
- Meng-Yang Guo
- Ministry of Education (MOE) Key Laboratory of Major Diseases in Children, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xing-Hai Shi
- Medical Laboratory, Urumqi Children’s Hospital, Beijing, China
| | - Wei Gao
- Ministry of Education (MOE) Key Laboratory of Major Diseases in Children, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Ju-Ling Tian
- Medical Laboratory, Urumqi Children’s Hospital, Beijing, China
| | - Lin Yuan
- Ministry of Education (MOE) Key Laboratory of Major Diseases in Children, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Juan Yang
- Medical Laboratory, Urumqi Children’s Hospital, Beijing, China
| | | | - Jiang Cao
- Medical Laboratory, Urumqi Children’s Hospital, Beijing, China
| | | | - Wen-Li Zhang
- Medical Laboratory, Urumqi Children’s Hospital, Beijing, China,*Correspondence: Wen-Li Zhang, ; Kai-Hu Yao,
| | - Kai-Hu Yao
- Ministry of Education (MOE) Key Laboratory of Major Diseases in Children, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China,*Correspondence: Wen-Li Zhang, ; Kai-Hu Yao,
| |
Collapse
|
16
|
Huh HJ, Sung H. Recent Trends in Invasive Pneumococcal Disease in Korea in the Post-pneumococcal Vaccine Era. Ann Lab Med 2023; 43:1-2. [PMID: 36045050 PMCID: PMC9467838 DOI: 10.3343/alm.2023.43.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea,Corresponding author: Heungsup Sung, M.D., Ph.D. Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea Tel: +82-2-3010-4499, Fax: +82-2-478-0884, E-mail:
| |
Collapse
|
17
|
Huang LD, Yang MJ, Huang YY, Jiang KY, Yan J, Sun AH. Molecular Characterization of Predominant Serotypes, Drug Resistance, and Virulence Genes of Streptococcus pneumoniae Isolates From East China. Front Microbiol 2022; 13:892364. [PMID: 35722327 PMCID: PMC9198556 DOI: 10.3389/fmicb.2022.892364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is a common diplococcus pathogen found worldwide. The characterization of predominant serotypes, drug resistance, and virulence genes of S. pneumoniae isolates prevailing in different areas and countries is clinically important for choice of antibiotics and improvement of vaccines. In this study, pneumonia (78.7%) and meningitis (37.0%) were the predominant diseases observed in the 282 (children) and 27 (adults) S. pneumoniae-infected patients (p < 0.05) from seven hospitals in different areas of East China. Of the 309 pneumococcal isolates, 90.3% were classified by PCR into 15 serotypes, with serotypes 19F (27.2%) and the 6A/B (19.1%) being most predominant (p < 0.05). Importantly, serotypes 15A and 15B/C combined for a total of 10.4% of the isolates, but these serotypes are not included in the 13-valent pneumococcal capsule conjugate vaccine used in China. Antimicrobial susceptibility analysis by the E-test showed that >95% of the 309 pneumococcal isolates were susceptible to moxifloxacin and levofloxacin, as well as 18.4, 85.8, and 81.6% of the isolates displayed susceptibility to penicillin, cefotaxime, and imipenem, respectively. A significant correlation between the prevalence of predominant serotypes and their penicillin resistance was observed (p < 0.05). In particular, >95% of all the pneumococcal isolates showed resistance to erythromycin and azithromycin. Of the nine detected virulence genes, the lytA, ply, hysA, and nanA were the most common with 95–100% positive rates in the 309 pneumococcal isolates, while the pavA and psaA genes displayed a significant correlation with pneumococcal bacteremia and meningitis (p < 0.05). Overall, our data suggested that the predominant serotypes, drug resistance, and virulence genes of the S. pneumoniae isolates prevailing in East China are distinct from those observed in other areas of China and adjacent countries.
Collapse
Affiliation(s)
- Li-Dan Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Mei-Juan Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yan-Ying Huang
- Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke-Yi Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ai-Hua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|