1
|
Mizrahi A, Péan de Ponfilly G, Sapa D, Suau A, Mangin I, Baliarda A, Hoys S, Pilmis B, Lambert S, Brosse A, Le Monnier A. A Mouse Model of Mild Clostridioides difficile Infection for the Characterization of Natural Immune Responses. Microorganisms 2024; 12:1933. [PMID: 39458243 PMCID: PMC11509167 DOI: 10.3390/microorganisms12101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: We describe a model of primary mild-Clostridioides difficile infection (CDI) in a naïve host, including gut microbiota analysis, weight loss, mortality, length of colonization. This model was used in order to describe the kinetics of humoral (IgG, IgM) and mucosal (IgA) immune responses against toxins (TcdA/TcdB) and surface proteins (SlpA/FliC). (2) Methods: A total of 105 CFU vegetative forms of C. difficile 630Δerm were used for challenge by oral administration after dysbiosis, induced by a cocktail of antibiotics. Gut microbiota dysbiosis was confirmed and described by 16S rDNA sequencing. We sacrificed C57Bl/6 mice after different stages of infection (day 6, 2, 7, 14, 21, 28, and 56) to evaluate IgM, IgG against TcdA, TcdB, SlpA, FliC in blood samples, and IgA in the cecal contents collected. (3) Results: In our model, we observed a reproducible gut microbiota dysbiosis, allowing for C. difficile digestive colonization. CDI was objectivized by a mean weight loss of 13.1% and associated with a low mortality rate of 15.7% of mice. We observed an increase in IgM anti-toxins as early as D7 after challenge. IgG increased since D21, and IgA anti-toxins were secreted in cecal contents. Unexpectedly, neither anti-SlpA nor anti-FliC IgG or IgA were observed in our model. (4) Conclusions: In our model, we induced a gut microbiota dysbiosis, allowing a mild CDI to spontaneously resolve, with a digestive clearance observed since D14. After this primary CDI, we can study the development of specific immune responses in blood and cecal contents.
Collapse
Affiliation(s)
- Assaf Mizrahi
- Service de Microbiologie Clinique, Hôpitaux Saint-Joseph & Marie-Lannelongue, 75014 Paris, France; (G.P.d.P.); (B.P.); (A.L.M.)
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Gauthier Péan de Ponfilly
- Service de Microbiologie Clinique, Hôpitaux Saint-Joseph & Marie-Lannelongue, 75014 Paris, France; (G.P.d.P.); (B.P.); (A.L.M.)
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Diane Sapa
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Antonia Suau
- USC ANSES-Cnam Metabiot, Conservatoire National des Arts et Métiers, 75003 Paris, France; (A.S.); (I.M.)
| | - Irène Mangin
- USC ANSES-Cnam Metabiot, Conservatoire National des Arts et Métiers, 75003 Paris, France; (A.S.); (I.M.)
| | - Aurélie Baliarda
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Sandra Hoys
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Benoît Pilmis
- Service de Microbiologie Clinique, Hôpitaux Saint-Joseph & Marie-Lannelongue, 75014 Paris, France; (G.P.d.P.); (B.P.); (A.L.M.)
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Sylvie Lambert
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Anaïs Brosse
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| | - Alban Le Monnier
- Service de Microbiologie Clinique, Hôpitaux Saint-Joseph & Marie-Lannelongue, 75014 Paris, France; (G.P.d.P.); (B.P.); (A.L.M.)
- Institut Micalis UMR 1319, Université Paris-Saclay, INRAe, AgroParisTech, 91400 Orsay, France; (D.S.); (A.B.); (S.H.); (S.L.); (A.B.)
| |
Collapse
|
2
|
Denny JE, Alam MZ, Mdluli NV, Maslanka JR, Lieberman LA, Abt MC. Monoclonal antibody-mediated neutralization of Clostridioides difficile toxin does not diminish induction of the protective innate immune response to infection. Anaerobe 2024; 88:102859. [PMID: 38701911 PMCID: PMC11347114 DOI: 10.1016/j.anaerobe.2024.102859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Clostridioides difficile infection causes pathology that ranges in severity from diarrhea to pseudomembranous colitis. Toxin A and Toxin B are the two primary virulence factors secreted by C. difficile that drive disease severity. The toxins damage intestinal epithelial cells leading to a loss of barrier integrity and induction of a proinflammatory host response. Monoclonal antibodies (mAbs) that neutralize Toxin A and Toxin B, actoxumab and bezlotoxumab, respectively, significantly reduce disease severity in a murine model of C. difficile infection. However, the impact of toxin neutralization on the induction and quality of the innate immune response following infection is unknown. The goal of this study was to define the quality of the host innate immune response in the context of anti-toxin mAbs therapy. At day 2 post-infection, C. difficile-infected, mAbs-treated mice had significantly less disease compared to isotype-treated mice despite remaining colonized with C. difficile. C. difficile-infected mAbs-treated mice still exhibited marked neutrophil infiltration and induction of a subset of proinflammatory cytokines within the intestinal lamina propria following infection that is comparable to isotype-treated mice. Furthermore, both mAbs and isotype-treated mice had an increase in IL-22-producing ILCs in the intestine following infection. MAbs-treated mice exhibited increased infiltration of eosinophils in the intestinal lamina propria, which has been previously reported to promote a protective host response following C. difficile infection. These findings show that activation of host protective mechanisms remain intact in the context of monoclonal antibody-mediated toxin neutralization.
Collapse
Affiliation(s)
- Joshua E Denny
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Md Zahidul Alam
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nontokozo V Mdluli
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey R Maslanka
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michael C Abt
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Di Bella S, Sanson G, Monticelli J, Zerbato V, Principe L, Giuffrè M, Pipitone G, Luzzati R. Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clin Microbiol Rev 2024; 37:e0013523. [PMID: 38421181 PMCID: PMC11324037 DOI: 10.1128/cmr.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYClostridioides difficile infection (CDI) is one of the major issues in nosocomial infections. This bacterium is constantly evolving and poses complex challenges for clinicians, often encountered in real-life scenarios. In the face of CDI, we are increasingly equipped with new therapeutic strategies, such as monoclonal antibodies and live biotherapeutic products, which need to be thoroughly understood to fully harness their benefits. Moreover, interesting options are currently under study for the future, including bacteriophages, vaccines, and antibiotic inhibitors. Surveillance and prevention strategies continue to play a pivotal role in limiting the spread of the infection. In this review, we aim to provide the reader with a comprehensive overview of epidemiological aspects, predisposing factors, clinical manifestations, diagnostic tools, and current and future prophylactic and therapeutic options for C. difficile infection.
Collapse
Affiliation(s)
- Stefano Di Bella
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Gianfranco Sanson
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| | - Jacopo Monticelli
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Verena Zerbato
- Infectious Diseases
Unit, Trieste University Hospital
(ASUGI), Trieste,
Italy
| | - Luigi Principe
- Microbiology and
Virology Unit, Great Metropolitan Hospital
“Bianchi-Melacrino-Morelli”,
Reggio Calabria, Italy
| | - Mauro Giuffrè
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
- Department of Internal
Medicine (Digestive Diseases), Yale School of Medicine, Yale
University, New Haven,
Connecticut, USA
| | - Giuseppe Pipitone
- Infectious Diseases
Unit, ARNAS Civico-Di Cristina
Hospital, Palermo,
Italy
| | - Roberto Luzzati
- Clinical Department of
Medical, Surgical and Health Sciences, Trieste
University, Trieste,
Italy
| |
Collapse
|
4
|
Bosch TCG, Blaser MJ, Ruby E, McFall-Ngai M. A new lexicon in the age of microbiome research. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230060. [PMID: 38497258 PMCID: PMC10945402 DOI: 10.1098/rstb.2023.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/04/2023] [Indexed: 03/19/2024] Open
Abstract
At a rapid pace, biologists are learning the many ways in which resident microbes influence, and sometimes even control, their hosts to shape both health and disease. Understanding the biochemistry behind these interactions promises to reveal completely novel and targeted ways of counteracting disease processes. However, in our protocols and publications, we continue to describe these new results using a language that originated in a completely different context. This language developed when microbial interactions with hosts were perceived to be primarily pathogenic, as threats that had to be vanquished. Biomedicine had one dominating thought: winning this war against microorganisms. Today, we know that beyond their defensive roles, host tissues, especially epithelia, are vital to ensuring association with the normal microbiota, the communities of microbes that persistently live with the host. Thus, we need to adopt a language that better encompasses the newly appreciated importance of host-microbiota associations. We also need a language that frames the onset and progression of pathogenic conditions within the context of the normal microbiota. Such a reimagined lexicon should make it clear, from the very nature of its words, that microorganisms are primarily vital to our health, and only more rarely the cause of disease. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
| | - Martin J. Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Edward Ruby
- California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
5
|
Ragan SA, Doyle C, Datta N, Abdic H, Wilcox MH, Montgomery R, Crusz SA, Mahida YR, Monaghan TM. Case Series: Efficacy of Polyclonal Intravenous Immunoglobulin for Refractory Clostridioides difficile Infection. Antibodies (Basel) 2024; 13:26. [PMID: 38651406 PMCID: PMC11036217 DOI: 10.3390/antib13020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Intravenous immunoglobulin (IVIg) for Clostridioides difficile infection (CDI) no longer features in treatment guidelines. However, IVIg is still used by some clinicians for severe or recurrent CDI (rCDI) cases. The main objective of this study was to investigate the efficacy of IVIg and to identify possible predictors of disease resolution post IVIg administration for patients with CDI. METHODS This retrospective observational cohort study of patients ≥2 years old hospitalised with severe, relapsing, or rCDI treated with IVIg therapy was performed in a large UK tertiary hospital between April 2018 and March 2023. Scanned electronic notes from patient admissions and clinical reporting systems were used to collect relevant data. RESULTS In total, 20/978 patients diagnosed with CDI over the 5-year study were treated with IVIg. Twelve (60%) had hospital-onset CDI. Eleven of the twenty patients (55%) responded to treatment, with a mean of 8.6 (SD 10.7) days to disease resolution. Sixteen (80%) patients were treated for severe CDI and four (20%) for rCDI (n = 3) and relapsing CDI (n = 1). There were no statistically significant differences in possible independent predictors of disease resolution post IVIg administration between groups. There was an average of 6.2 (4.9) days to IVIg administration after diagnosis with no difference between responders and non-responders (p = 0.88) and no further significant difference in additional indicators. Four (36%) of the responders were immunosuppressed compared to just one (11%) of the non-responders (p = 0.15). Six of the responders (two with recurrent and four with severe CDI) improved rapidly within 2 days, and three of these were immunosuppressed. CONCLUSION We observed disease resolution post IVIg therapy in over 50% of patients with refractory CDI. Our data also support a potential enhanced effect of IVIg in immunosuppressed individuals. Thus, the role of IVIg for CDI treatment, particularly in the immunosuppressed, warrants future case-control studies coupled to mechanistic investigations to improve care for this ongoing significant healthcare-associated infection.
Collapse
Affiliation(s)
- Sophie A. Ragan
- Department of Gastroenterology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK; (S.A.R.); (H.A.)
| | - Caitlin Doyle
- School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK; (C.D.); (N.D.)
| | - Neha Datta
- School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK; (C.D.); (N.D.)
| | - Heather Abdic
- Department of Gastroenterology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK; (S.A.R.); (H.A.)
| | - Mark H. Wilcox
- Healthcare Associated Infection Research Group, Leeds Institute of Medical Research, University of Leeds, Leeds LS9 7TF, UK;
- Department of Microbiology, Leeds Teaching Hospitals, Leeds LS1 3EX, UK
| | - Ros Montgomery
- Infection and Prevention Control, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK;
| | - Shanika A. Crusz
- Department of Microbiology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK;
| | - Yashwant R. Mahida
- NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK;
- Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham NG7 2UH, UK
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Tanya M. Monaghan
- NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK;
- Nottingham Digestive Diseases Centre, University of Nottingham, Nottingham NG7 2UH, UK
- Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
6
|
Warren Norris MAH, Plaskon DM, Tamayo R. Phase Variation of Flagella and Toxins in Clostridioides difficile is Mediated by Selective Rho-dependent Termination. J Mol Biol 2024; 436:168456. [PMID: 38278436 PMCID: PMC10942720 DOI: 10.1016/j.jmb.2024.168456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Clostridioides difficile is an intestinal pathogen that exhibits phase variation of flagella and toxins through inversion of the flagellar (flg) switch controlling flagellar and toxin gene expression. The transcription termination factor Rho preferentially inhibits swimming motility of bacteria with the 'flg-OFF' switch sequence. How C. difficile Rho mediates this selectivity was unknown. C. difficile Rho contains an N-terminal insertion domain (NID) which is found in a subset of Rho orthologues and confers diverse functions. Here we determined how Rho distinguishes between flg-ON and -OFF mRNAs and the roles of the NID and other domains of C. difficile Rho. Using in vitro ATPase assays, we determined that Rho specifically binds a region containing the left inverted repeat of the flg switch, but only of flg-OFF mRNA, indicating that differential termination is mediated by selective Rho binding. Using a suite of in vivo and in vitro assays in C. difficile, we determined that the NID is essential for Rho termination of flg-OFF mRNA, likely by influencing the ability to form stable hexamers, and the RNA binding domain is critical for flg-OFF specific termination. This work gives insight into the novel mechanism by which Rho interacts with flg mRNA to mediate phase variation of flagella and toxins in C. difficile and broadens our understanding of Rho-mediated termination in an organism with an AT-rich genome.
Collapse
Affiliation(s)
- Mercedes A H Warren Norris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Dylan M Plaskon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Markantonis JE, Fallon JT, Madan R, Alam MZ. Clostridioides difficile Infection: Diagnosis and Treatment Challenges. Pathogens 2024; 13:118. [PMID: 38392856 PMCID: PMC10891949 DOI: 10.3390/pathogens13020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Clostridioides difficile is the most important cause of healthcare-associated diarrhea in the United States. The high incidence and recurrence rates of C. difficile infection (CDI), associated with high morbidity and mortality, pose a public health challenge. Although antibiotics targeting C. difficile bacteria are the first treatment choice, antibiotics also disrupt the indigenous gut flora and, therefore, create an environment that is favorable for recurrent CDI. The challenge of treating CDI is further exacerbated by the rise of antibiotic-resistant strains of C. difficile, placing it among the top five most urgent antibiotic resistance threats in the USA. The evolution of antibiotic resistance in C. difficile involves the acquisition of new resistance mechanisms, which can be shared among various bacterial species and different C. difficile strains within clinical and community settings. This review provides a summary of commonly used diagnostic tests and antibiotic treatment strategies for CDI. In addition, it discusses antibiotic treatment and its resistance mechanisms. This review aims to enhance our current understanding and pinpoint knowledge gaps in antimicrobial resistance mechanisms in C. difficile, with an emphasis on CDI therapies.
Collapse
Affiliation(s)
- John E. Markantonis
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| | - John T. Fallon
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| | - Rajat Madan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| | - Md Zahidul Alam
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA; (J.E.M.); (J.T.F.)
| |
Collapse
|
8
|
Fachi JL, Vinolo MAR, Colonna M. Reviewing the Clostridioides difficile Mouse Model: Insights into Infection Mechanisms. Microorganisms 2024; 12:273. [PMID: 38399676 PMCID: PMC10891951 DOI: 10.3390/microorganisms12020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Clostridioides difficile is an anaerobic, spore-forming bacterium associated with intestinal infection, manifesting a broad spectrum of gastrointestinal symptoms, ranging from mild diarrhea to severe colitis. A primary risk factor for the development of C. difficile infection (CDI) is antibiotic exposure. Elderly and immunocompromised individuals are particularly vulnerable to CDI. A pivotal aspect for comprehending the complexities of this infection relies on the utilization of experimental models that mimic human CDI transmission, pathogenesis, and progression. These models offer invaluable insights into host-pathogen interactions and disease dynamics, and serve as essential tools for testing potential therapeutic approaches. In this review, we examine the animal model for CDI and delineate the stages of infection, with a specific focus on mice. Our objective is to offer an updated description of experimental models employed in the study of CDI, emphasizing both their strengths and limitations.
Collapse
Affiliation(s)
- José L. Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Marco A. R. Vinolo
- Department of Genetics and Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil;
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
9
|
Barbero AM, Hernández Del Pino RE, Fuentes F, Barrionuevo P, Pasquinelli V. Platelets promote human macrophages-mediated macropinocytosis of Clostridioides difficile. Front Cell Infect Microbiol 2024; 13:1252509. [PMID: 38249298 PMCID: PMC10796631 DOI: 10.3389/fcimb.2023.1252509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Clostridioides difficile is the main causative agent of hospital-acquired diarrhea and the potentially lethal disease, C. difficile infection. The cornerstone of the current therapy is the use of antibiotics, which is not fully effective. The molecular mechanisms, inflammatory conditions and host-immune responses that could benefit the persistence or elimination of C. difficile remain unclear. Macrophages perform different ways of endocytosis as part of their immune surveillance functions and platelets, classically known for their coagulatory role, are also important modulators of the immune system. The aim of this study was to evaluate the endocytosis of vegetative C. difficile by human macrophages and the involvement of platelets in this process. Our results showed that both macrophages and platelets interact with live and heat-killed C. difficile. Furthermore, platelets form complexes with human monocytes in healthy donor's fresh blood and the presence of C. difficile increased these cell-cell interactions. Using flow cytometry and confocal microscopy, we show that macrophages can internalize C. difficile and that platelets improve this uptake. By using inhibitors of different endocytic pathways, we demonstrate that macropinocytosis is the route of entry of C. difficile into the cell. Taken together, our findings are the first evidence for the internalization of vegetative non-toxigenic and hypervirulent C. difficile by human macrophages and highlight the role of platelets in innate immunity during C. difficile infection. Deciphering the crosstalk of C. difficile with immune cells could provide new tools for understanding the pathogenesis of C. difficile infection and for the development of host-directed therapies.
Collapse
Affiliation(s)
- Angela María Barbero
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
- Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rodrigo Emanuel Hernández Del Pino
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
- Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Federico Fuentes
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Paula Barrionuevo
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Virginia Pasquinelli
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
- Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
Goh S, Inal J. Membrane Vesicles of Clostridioides difficile and Other Clostridial Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:315-327. [PMID: 38175481 DOI: 10.1007/978-3-031-42108-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Membrane vesicles are secreted by growing bacterial cells and are important components of the bacterial secretome, with a role in delivering effector molecules that ultimately enable bacterial survival. Membrane vesicles of Clostridioides difficile likely contribute to pathogenicity and is a new area of research on which there is currently very limited information. This chapter summarizes the current knowledge on membrane vesicle formation, content, methods of characterization and functions in Clostridia and model Gram-positive species.
Collapse
Affiliation(s)
- Shan Goh
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK.
| | - Jameel Inal
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- School of Human Sciences, London Metropolitan University, London, UK
| |
Collapse
|
11
|
Campidelli C, Bruxelle JF, Collignon A, Péchiné S. Immunization Strategies Against Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:117-150. [PMID: 38175474 DOI: 10.1007/978-3-031-42108-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is an important healthcare but also a community-associated disease. CDI is considered a public health threat and an economic burden. A major problem is the high rate of recurrences. Besides classical antibiotic treatments, new therapeutic strategies are needed to prevent infection, to treat patients, and to prevent recurrences. If fecal transplantation has been recommended to treat recurrences, another key approach is to elicit immunity against C. difficile and its virulence factors. Here, after a summary concerning the virulence factors, the host immune response against C. difficile, and its role in the outcome of disease, we review the different approaches of passive immunotherapies and vaccines developed against CDI. Passive immunization strategies are designed in function of the target antigen, the antibody-based product, and its administration route. Similarly, for active immunization strategies, vaccine antigens can target toxins or surface proteins, and immunization can be performed by parenteral or mucosal routes. For passive immunization and vaccination as well, we first present immunization assays performed in animal models and second in humans and associated clinical trials. The different studies are presented according to the mode of administration either parenteral or mucosal and the target antigens and either toxins or colonization factors.
Collapse
Affiliation(s)
- Camille Campidelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Jean-François Bruxelle
- CIRI-Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1111, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Anne Collignon
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Severine Péchiné
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
12
|
Azimirad M, Noori M, Amirkamali S, Nasiri G, Asadzadeh Aghdaei H, Yadegar A, Klionsky DJ, Zali MR. Clostridioides difficile PCR ribotypes 001 and 084 can trigger autophagy process in human intestinal Caco-2 cells. Microb Pathog 2023; 185:106450. [PMID: 37979713 DOI: 10.1016/j.micpath.2023.106450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Autophagy is a homeostatic process that can promote cell survival or death. However, the exact role of autophagy in Clostridioides difficile infection (CDI) is still not precisely elucidated. Here, we investigate the role of distinct C. difficile ribotypes (RTs) in autophagy induction using Caco-2 cells. The expression analysis of autophagy-associated genes and related miRNAs were examined following treatment of Caco-2 cells with C. difficile after 4 and 8 h using RT-qPCR. Toxin production was assessed using enzyme-linked immunosorbent assay (ELISA). Immunofluorescence analysis was performed to detect MAP1LC3B/LC3B, followed by an autophagic flux analysis. C. difficile significantly reduced the viability of Caco-2 cells in comparison with untreated cells. Elevated levels of LC3-II and SQSTM1/p62 by C. difficile RT001 and RT084 in the presence of E64d/leupeptin confirmed the induction of autophagy activity. Similarly, the immunofluorescence analysis demonstrated that C. difficile RT001 and RT084 significantly increased the amount of LC3-positive structures in Caco-2 cells. The induction of autophagy was further demonstrated by increased levels of LC3B, ULK1, ATG12, PIK3C3/VPS34, BECN1 (beclin 1), ATG5, and ATG16L1 transcripts and reduced levels of AKT and MTOR gene expression. The expression levels of MIR21 and MIR30B, microRNAs that suppress autophagy, were differentially affected by C. difficile. In conclusion, the present work revealed that C. difficile bacteria can induce autophagy through both toxin-dependent and -independent mechanisms. Also, our results suggest the potential role of other C. difficile virulence factors in autophagy modulation using intestinal cells in vitro.
Collapse
Affiliation(s)
- Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Amirkamali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gelareh Nasiri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Tubau-Juni N, Bassaganya-Riera J, Leber AJ, Alva SS, Baker R, Hontecillas R. Modulation of colonic immunometabolic responses during Clostridioides difficile infection ameliorates disease severity and inflammation. Sci Rep 2023; 13:14708. [PMID: 37679643 PMCID: PMC10485029 DOI: 10.1038/s41598-023-41847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of antibiotic-associated diarrhea, and its clinical symptoms can span from asymptomatic colonization to pseudomembranous colitis and even death. The current standard of care for CDI is antibiotic treatment to achieve bacterial clearance; however, 15 to 35% of patients experience recurrence after initial response to antibiotics. We have conducted a comprehensive, global colonic transcriptomics analysis of a 10-day study in mice to provide new insights on the local host response during CDI and identify novel host metabolic mechanisms with therapeutic potential. The analysis indicates major alterations of colonic gene expression kinetics at the acute infection stage, that are restored during the recovery phase. At the metabolic level, we observe a biphasic response pattern characterized by upregulated glycolytic metabolism during the peak of inflammation, while mitochondrial metabolism predominates during the recovery/healing stage. Inhibition of glycolysis via 2-Deoxy-D-glucose (2-DG) administration during CDI decreases disease severity, protects from mortality, and ameliorates colitis in vivo. Additionally, 2-DG also protects intestinal epithelial cells from C. difficile toxin damage, preventing loss of barrier integrity and secretion of proinflammatory mediators. These data postulate the pharmacological targeting of host immunometabolic pathways as novel treatment modalities for CDI.
Collapse
Affiliation(s)
| | | | | | | | - Ryan Baker
- NIMML Institute, Blacksburg, VA, 24060, USA
| | | |
Collapse
|
14
|
Koblitz J. Metabolism from the magic angle. Nat Chem Biol 2023; 19:538-539. [PMID: 37117920 DOI: 10.1038/s41589-023-01317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Julia Koblitz
- Department of Bioinformatics and Databases, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany.
| |
Collapse
|
15
|
Aktories K. From signal transduction to protein toxins-a narrative review about milestones on the research route of C. difficile toxins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:173-190. [PMID: 36203094 PMCID: PMC9831965 DOI: 10.1007/s00210-022-02300-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023]
Abstract
Selected findings about Clostridioides difficile (formerly Clostridium difficile) toxins are presented in a narrative review. Starting with a personal view on research about G proteins, adenylyl cyclase, and ADP-ribosylating toxins in the laboratory of Günter Schultz in Heidelberg, milestones of C. difficile toxin research are presented with the focus on toxin B (TcdB), covering toxin structure, receptor binding, toxin up-take and refolding, the intracellular actions of TcdB, and the treatment of C. difficile infection.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| |
Collapse
|
16
|
Lemiech-Mirowska E, Michałkiewicz M, Sierocka A, Gaszyńska E, Marczak M. The Hospital Environment as a Potential Source for Clostridioides difficile Transmission Based on Spore Detection Surveys Conducted at Paediatric Oncology and Gastroenterology Units. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1590. [PMID: 36674344 PMCID: PMC9866502 DOI: 10.3390/ijerph20021590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Clostridioides difficile is an anaerobic, Gram-positive bacterium widely present in the hospital environment due to its ability to generate spores. The transfer of spores to patients through the hands of medical personnel is one of the most frequent paths of C. difficile transmission. In paediatric patients burdened with a serious primary illness requiring long-term hospitalisation and antibiotic therapy, C. difficile may be a significant risk factor for antibiotic-associated diarrhoea. The goal of the study was to assess the state of hospital environments as a potential source of C. difficile spores and to establish the share of hyperepidemic strains at the two paediatric units. The survey for C. difficile was conducted with a C. diff Banana BrothTM medium, used to detect spores and to recover vegetative forms of the bacteria. Environmental samples (n = 86) and swabs from the clothing of medical personnel (n = 14) were collected at two units of a paediatric hospital, where the cases of antibiotic-associated diarrhoea with a C. difficile aetiology constitute a significant clinical problem. In 17 samples, a change in the broth's colour was observed, indicating the presence of spores. Out of seven samples, C. difficile strains were cultured. The pathogenic isolates of C. difficile were obtained from swabs collected from elements of beds, a toilet, a door handle and a doctor's uniform. In our study, we indicated points of increased risk of pathogen transmission, which could constitute a source of infection. The clothing of medical personnel may be a dangerous carrier of pathogenic spores. Periodical surveys of hospital environments with the use of specialist microbiological mediums successfully indicate the direction of corrective actions to be undertaken by the medical facility in order to increase patient safety.
Collapse
Affiliation(s)
- Ewelina Lemiech-Mirowska
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland
| | - Michał Michałkiewicz
- Institute of Environmental Engineering and Building Installations, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland
| | - Aleksandra Sierocka
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland
| | - Ewelina Gaszyńska
- Department of Nutrition and Epidemiology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Michał Marczak
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
17
|
Zhou J, Horton JR, Menna M, Fiorentino F, Ren R, Yu D, Hajian T, Vedadi M, Mazzoccanti G, Ciogli A, Weinhold E, Hüben M, Blumenthal RM, Zhang X, Mai A, Rotili D, Cheng X. Systematic Design of Adenosine Analogs as Inhibitors of a Clostridioides difficile-Specific DNA Adenine Methyltransferase Required for Normal Sporulation and Persistence. J Med Chem 2023; 66:934-950. [PMID: 36581322 PMCID: PMC9841527 DOI: 10.1021/acs.jmedchem.2c01789] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 12/31/2022]
Abstract
Antivirulence agents targeting endospore-transmitted Clostridioides difficile infections are urgently needed. C. difficile-specific DNA adenine methyltransferase (CamA) is required for efficient sporulation and affects persistence in the colon. The active site of CamA is conserved and closely resembles those of hundreds of related S-adenosyl-l-methionine (SAM)-dependent methyltransferases, which makes the design of selective inhibitors more challenging. We explored the solvent-exposed edge of the SAM adenosine moiety and systematically designed 42 analogs of adenosine carrying substituents at the C6-amino group (N6) of adenosine. We compare the inhibitory properties and binding affinity of these diverse compounds and present the crystal structures of CamA in complex with 14 of them in the presence of substrate DNA. The most potent of these inhibitors, compound 39 (IC50 ∼ 0.4 μM and KD ∼ 0.2 μM), is selective for CamA against closely related bacterial and mammalian DNA and RNA adenine methyltransferases, protein lysine and arginine methyltransferases, and human adenosine receptors.
Collapse
Affiliation(s)
- Jujun Zhou
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - John R. Horton
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Martina Menna
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesco Fiorentino
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Ren Ren
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Dan Yu
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Taraneh Hajian
- Structural
Genomics Consortium, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Masoud Vedadi
- Structural
Genomics Consortium, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, ON M5S 1A8, Canada
| | - Giulia Mazzoccanti
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessia Ciogli
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Elmar Weinhold
- Institute
of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Michael Hüben
- Institute
of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Robert M. Blumenthal
- Department
of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life
Sciences, Toledo, Ohio 43614, United States
| | - Xing Zhang
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Pasteur
Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Xiaodong Cheng
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
18
|
Heils L, Schneemann M, Gerhard R, Schulzke JD, Bücker R. CDT of Clostridioides difficile Induces MLC-Dependent Intestinal Barrier Dysfunction in HT-29/B6 Epithelial Cell Monolayers. Toxins (Basel) 2023; 15:54. [PMID: 36668874 PMCID: PMC9866553 DOI: 10.3390/toxins15010054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Background: Clostridioides difficile binary toxin (CDT) defines the hypervirulence of strains in nosocomial antibiotic-induced colitis with the highest mortality. The objective of our study was to investigate the impact of CDT on the intestinal epithelial barrier and to enlighten the underlying molecular mechanisms. Methods: Functional measurements of epithelial barrier function by macromolecular permeability and electrophysiology were performed in human intestinal HT-29/B6 cell monolayers. Molecular analysis of the spatial distribution of tight junction protein and cytoskeleton was performed by super-resolution STED microscopy. Results: Sublethal concentrations of CDT-induced barrier dysfunction with decreased TER and increased permeability for 332 Da fluorescein and 4 kDa FITC-dextran. The molecular correlate to the functional barrier defect by CDT was found to be a tight junction protein subcellular redistribution with tricellulin, occludin, and claudin-4 off the tight junction domain. This redistribution was shown to be MLCK-dependent. Conclusions: CDT compromised epithelial barrier function in a human intestinal colonic cell model, even in sublethal concentrations, pointing to barrier dysfunction in the intestine and leak flux induction as a diarrheal mechanism. However, this cannot be attributed to the appearance of apoptosis and necrosis, but rather to an opening of the paracellular leak pathway as the result of epithelial tight junction alterations.
Collapse
Affiliation(s)
- Lucas Heils
- Clinical Physiology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Martina Schneemann
- Clinical Physiology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany
| | - Jörg-Dieter Schulzke
- Clinical Physiology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Roland Bücker
- Clinical Physiology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany
| |
Collapse
|
19
|
Zhang T, Ren Y, Yang C, Gebeyew K, Gao M, He Z, Tan Z. An integrated transcriptome and microbial community analysis reveals potential mechanisms for increased immune responses when replacing silybum marianum meal with soybean meal in growing lambs. Front Microbiol 2023; 14:1093129. [PMID: 36937266 PMCID: PMC10018209 DOI: 10.3389/fmicb.2023.1093129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Silybum marianum meal is a by-product that remains silymarin complex and is perceived as a potential-protein source. The potential and its mechanism of silybum marianum meal as a protein supplement in ruminants were evaluated by testing the growth performance, biochemical parameters, cytokine levels, gut transcriptome and microbial community profiles. Forty-two male Hulunbeier growing lambs (aged about 3-month-old; averaged body weight of 21.55 kg) were randomly divided into the CON (with 10% soybean meal) and SIL groups (with 10% silybum marianum meal). There was no significant difference in growth performance, feed intakes, or serum biochemical parameters between CON and SIL. The serum levels of IL-1β, TNF-α, TGF-β, HGF, and VEGF were all increased (p < 0.05) in the SIL group as compared with the CON group. Transcriptome gene set enrichment analysis (GSEA) revealed that the core genes in the rumen from SIL group were enriched with fructose and mannose metabolism, while the core genes in the ileum were enriched for three biological process, including digestive tract development, positive regulation of MAPK cascade, and regulation of I-kappaB kinase/NF-kappaB signaling. The 16S rDNA results showed that the relative abundance of Bacteroidetes, Firmicutes, Synergistetes, and Verrucomicrobia in the rumen from SIL group was significantly higher than that in CON group (p < 0.05), whereas Proteobacteria was significantly lower than that in CON group (p < 0.05). The LEfSe analysis showed that the genera Pyramidobacter, Saccharofermentans, Anaerovibrio, Oscillibacter and Barnesiella were enriched in the rumen from SIL group, whereas Sharpea was enriched in the CON group (LDA > 2). In the ileum, there were no significant differences in the phylum-level classification of microbes observed. At the genus level, the relative abundances of Bifidobacterium and Ruminococcus in the ileum from SIL group were significantly higher than that in the CON group (p < 0.05), whereas the relative abundance of Clostridium_XI was lower (p < 0.05). Correlation analysis showed that Clostridium_XI was negatively correlated with VEGF, TGF-β, TNF-α and HGF (p < 0.05). Core genes BMP4 and CD4 were negatively correlated with Clostridium_XI (p < 0.05). Our results indicated that supplementing silybum marianum meal as a replacement for soybean meal resulted in increased cytokines production without affecting growth performance in growing lambs, and the enrichment of immune-related genes and altered microbial community in the ileum were contributed to the increased immune responses.
Collapse
Affiliation(s)
- Tianxi Zhang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Science, Beijing, China
| | - Yanbo Ren
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- School of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Science, Beijing, China
| | - Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Science, Beijing, China
| | - Min Gao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Science, Beijing, China
- *Correspondence: Zhixiong He,
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Science, Beijing, China
| |
Collapse
|
20
|
Azimirad M, Noori M, Azimirad F, Gholami F, Naseri K, Yadegar A, Asadzadeh Aghdaei H, Zali MR. Curcumin and capsaicin regulate apoptosis and alleviate intestinal inflammation induced by Clostridioides difficile in vitro. Ann Clin Microbiol Antimicrob 2022; 21:41. [PMID: 36155114 PMCID: PMC9511736 DOI: 10.1186/s12941-022-00533-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Background The dramatic upsurge of Clostridioides difficile infection (CDI) by hypervirulent isolates along with the paucity of effective conventional treatment call for the development of new alternative medicines against CDI. The inhibitory effects of curcumin (CCM) and capsaicin (CAP) were investigated on the activity of toxigenic cell-free supernatants (Tox-S) of C. difficile RT 001, RT 126 and RT 084, and culture-filtrate of C. difficile ATCC 700057. Methods Cell viability of HT-29 cells exposed to varying concentrations of CCM, CAP, C. difficile Tox-S and culture-filtrate was assessed by MTT assay. Anti-inflammatory and anti-apoptotic effects of CCM and CAP were examined by treatment of HT-29 cells with C. difficile Tox-S and culture-filtrate. Expression of BCL-2, SMAD3, NF-κB, TGF-β and TNF-α genes in stimulated HT-29 cells was measured using RT-qPCR. Results C. difficile Tox-S significantly (P < 0.05) reduced the cell viability of HT-29 cells in comparison with untreated cells. Both CAP and CCM significantly (P < 0.05) downregulated the gene expression level of BCL-2, SMAD3, NF-κB and TNF-α in Tox-S treated HT-29 cells. Moreover, the gene expression of TGF-β decreased in Tox-S stimulated HT-29 cells by both CAP and CCM, although these reductions were not significantly different (P > 0.05). Conclusion The results of the present study highlighted that CCM and CAP can modulate the inflammatory response and apoptotic effects induced by Tox-S from different clinical C. difficile strains in vitro. Further studies are required to accurately explore the anti-toxin activity of natural components, and their probable adverse risks in clinical practice.
Collapse
Affiliation(s)
- Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Gholami
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Naseri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Soveral LF, Korczaguin GG, Schmidt PS, Nunes IS, Fernandes C, Zárate-Bladés CR. Immunological mechanisms of fecal microbiota transplantation in recurrent Clostridioides difficile infection. World J Gastroenterol 2022; 28:4762-4772. [PMID: 36156924 PMCID: PMC9476857 DOI: 10.3748/wjg.v28.i33.4762] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/06/2022] [Accepted: 08/16/2022] [Indexed: 02/06/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is a successful method for treating recurrent Clostridioides difficile (C. difficile) infection (rCDI) with around 90% efficacy. Due to the relative simplicity of this approach, it is being widely used and currently, thousands of patients have been treated with FMT worldwide. Nonetheless, the mechanisms underlying its effects are just beginning to be understood. Data indicate that FMT effectiveness is due to a combination of microbiological direct mechanisms against C. difficile, but also through indirect mechanisms including the production of microbiota-derived metabolites as secondary bile acids and short chain fatty acids. Moreover, the modulation of the strong inflammatory response triggered by C. difficile after FMT seems to rely on a pivotal role of regulatory T cells, which would be responsible for the reduction of several cells and soluble inflammatory mediators, ensuing normalization of the intestinal mucosal immune system. In this minireview, we analyze recent advances in these immunological aspects associated with the efficacy of FMT.
Collapse
Affiliation(s)
- Lucas F Soveral
- Laboratory of Immunoregulation, Department of Microbiology, Immunology, and Parasitology, Center for Dysbiosis Control, Federal University of Santa Catarina, Florianopolis 88037-000, Brazil
| | - Gabriela G Korczaguin
- Laboratory of Immunoregulation, Department of Microbiology, Immunology, and Parasitology, Center for Dysbiosis Control, Federal University of Santa Catarina, Florianopolis 88037-000, Brazil
| | - Pedro S Schmidt
- Laboratory of Immunoregulation, Department of Microbiology, Immunology, and Parasitology, Center for Dysbiosis Control, Federal University of Santa Catarina, Florianopolis 88037-000, Brazil
| | - Isabel S Nunes
- Laboratory of Immunoregulation, Department of Microbiology, Immunology, and Parasitology, Center for Dysbiosis Control, Federal University of Santa Catarina, Florianopolis 88037-000, Brazil
| | - Camilo Fernandes
- Laboratory of Immunoregulation, Department of Microbiology, Immunology, and Parasitology, Center for Dysbiosis Control, Federal University of Santa Catarina, Florianopolis 88037-000, Brazil
- Division of Infectious Diseases, Hospital Nereu Ramos, Florianopolis 88025-301, Brazil
| | - Carlos R Zárate-Bladés
- Laboratory of Immunoregulation, Department of Microbiology, Immunology, and Parasitology, Center for Dysbiosis Control, Federal University of Santa Catarina, Florianopolis 88037-000, Brazil
| |
Collapse
|
22
|
Martínez-Meléndez A, Cruz-López F, Morfin-Otero R, Maldonado-Garza HJ, Garza-González E. An Update on Clostridioides difficile Binary Toxin. Toxins (Basel) 2022; 14:toxins14050305. [PMID: 35622552 PMCID: PMC9146464 DOI: 10.3390/toxins14050305] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/01/2023] Open
Abstract
Infection with Clostridioides difficile (CDI), a common healthcare-associated infection, includes symptoms ranging from mild diarrhea to severe cases of pseudomembranous colitis. Toxin A (TcdA) and toxin B (TcdB) cause cytotoxicity and cellular detachment from intestinal epithelium and are responsible for CDI symptomatology. Approximately 20% of C. difficile strains produce a binary toxin (CDT) encoded by the tcdA and tcdB genes, which is thought to enhance TcdA and TcdB toxicity; however, the role of CDT in CDI remains controversial. Here, we focused on describing the main features of CDT and its impact on the host, clinical relevance, epidemiology, and potential therapeutic approaches.
Collapse
Affiliation(s)
- Adrián Martínez-Meléndez
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Pedro de Alba S/N, Cd Universitaria, San Nicolás de los Garza 66450, Nuevo Leon, Mexico; (A.M.-M.); (F.C.-L.)
| | - Flora Cruz-López
- Subdirección Académica de Químico Farmacéutico Biólogo, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Pedro de Alba S/N, Cd Universitaria, San Nicolás de los Garza 66450, Nuevo Leon, Mexico; (A.M.-M.); (F.C.-L.)
| | - Rayo Morfin-Otero
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Calle Hospital 308, Colonia el Retiro, Guadalajara 44280, Jalisco, Mexico;
| | - Héctor J. Maldonado-Garza
- Servicio de Gastroenterología, Facultad de Medicina/Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero Pte. S/N y Av. José E. González, Col. Mitras Centro, Monterrey 64460, Nuevo Leon, Mexico;
| | - Elvira Garza-González
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina y Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Av. Francisco I. Madero Pte. S/N y Av. José E. González, Col. Mitras Centro, Monterrey 64460, Nuevo Leon, Mexico
- Correspondence:
| |
Collapse
|