1
|
Casadei B, Conti G, Barone M, Turroni S, Guadagnuolo S, Broccoli A, Brigidi P, Argnani L, Zinzani PL. Role of gut microbiome in the outcome of lymphoma patients treated with checkpoint inhibitors-The MicroLinf Study. Hematol Oncol 2024; 42:e3301. [PMID: 39104142 DOI: 10.1002/hon.3301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/08/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Biomarkers for immune checkpoint inhibitors (ICIs) response and resistance include PD-L1 expression and other environmental factors, among which the gut microbiome (GM) is gaining increasing interest especially in lymphomas. To explore the potential role of GM in this clinical issue, feces of 30 relapsed/refractory lymphoma (Hodgkin and primary mediastinal B-cell lymphoma) patients undergoing ICIs were collected from start to end of treatment (EoT). GM was profiled through Illumina, that is, 16S rRNA sequencing, and subsequently processed through a bioinformatics pipeline. The overall response rate to ICIs was 30.5%, with no association between patients clinical characteristics and response/survival outcomes. Regarding GM, responder patients showed a peculiar significant enrichment of Lachnospira, while non-responder ones showed higher presence of Enterobacteriaceae (at baseline and maintained till EoT). Recognizing patient-related factors that may influence response to ICIs is becoming critical to optimize the treatment pathway of heavily pretreated, young patients with a potentially long-life expectancy. These preliminary results indicate potential early GM signatures of ICIs response in lymphoma, which could pave the way for future research to improve patients prognosis with new adjuvant strategies.
Collapse
Affiliation(s)
- Beatrice Casadei
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gabriele Conti
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Monica Barone
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Serafina Guadagnuolo
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessandro Broccoli
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Patrizia Brigidi
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Lisa Argnani
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Istituto di Ematologia "Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| |
Collapse
|
2
|
Bencivenni S, Roggiani S, Zannoni A, Conti G, Fabbrini M, Cotugno M, Stanzione R, Pietrangelo D, Litterio M, Forte M, Busceti CL, Fornai F, Volpe M, Turroni S, Brigidi P, Forni M, Rubattu S, D'Amico F. Early and late gut microbiota signatures of stroke in high salt-fed stroke-prone spontaneously hypertensive rats. Sci Rep 2024; 14:19575. [PMID: 39179705 PMCID: PMC11343747 DOI: 10.1038/s41598-024-69961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
The high salt-fed stroke-prone spontaneously hypertensive rat (SHRSP) is a suitable tool to study the mechanisms underlying stroke pathogenesis. Salt intake modifies the gut microbiota (GM) in rats and humans and alterations of the GM have previously been associated with increased stroke occurrence. We aimed to characterize the GM profile in SHRSPs fed a high-salt stroke-permissive diet (Japanese diet, JD), compared to the closely related stroke-resistant control (SHRSR), to identify possible changes associated with stroke occurrence. SHRSPs and SHRSRs were fed a regular diet or JD for 4 weeks (short-term, ST) or a maximum of 10 weeks (long-term, LT). Stroke occurred in SHRSPs on JD-LT, preceded by proteinuria and diarrhoea. The GM of JD-fed SHRSPs underwent early and late compositional changes compared to SHRSRs. An overrepresentation of Streptococcaceae and an underrepresentation of Lachnospiraceae were observed in SHRSPs JD-ST, while in SHRSPs JD-LT short-chain fatty acid producers, e.g. Lachnobacterium and Faecalibacterium, decreased and pathobionts such as Coriobacteriaceae and Desulfovibrio increased. Occludin gene expression behaved differently in SHRSPs and SHRSRs. Calprotectin levels were unchanged. In conclusion, the altered GM in JD-fed SHRSPs may be detrimental to gut homeostasis and contribute to stroke occurrence.
Collapse
Affiliation(s)
- Silvia Bencivenni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Sara Roggiani
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126, Bologna, Italy
| | - Gabriele Conti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marco Fabbrini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | | | - Donatella Pietrangelo
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | | | | | | | - Francesco Fornai
- IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126, Bologna, Italy
| | - Monica Forni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum-University of Bologna, 40126, Bologna, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Federica D'Amico
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| |
Collapse
|
3
|
Beteri B, Barone M, Turroni S, Brigidi P, Tzortzis G, Vulevic J, Sekulic K, Motei DE, Costabile A. Impact of Combined Prebiotic Galacto-Oligosaccharides and Bifidobacterium breve-Derived Postbiotic on Gut Microbiota and HbA1c in Prediabetic Adults: A Double-Blind, Randomized, Placebo-Controlled Study. Nutrients 2024; 16:2205. [PMID: 39064648 PMCID: PMC11280236 DOI: 10.3390/nu16142205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
The complex interactions between intestinal microbiota and metabolic disorders are well-documented, with implications for glucose metabolism, energy expenditure, and intestinal permeability. Prebiotics induce beneficial changes in gut microbiota composition in prediabetes, while postbiotics can enhance gut barrier function, complementing each other to improve glucose metabolism and insulin sensitivity. This study investigated the effects of a 12-week dietary fibre (DF) supplement on gut health, metabolic function, and diet. The supplement contained konjac glucomannan (KGM), galacto-oligosaccharides (GOSs), and exopolysaccharides (EPSs) from Bifidobacterium breve. In a randomised, double-blind, placebo-controlled, parallel-group clinical trial, 53 prediabetic volunteers were randomly assigned to either a daily DF supplement (YMETA) or a placebo (cellulose microcrystalline) for 12 weeks, followed by a 4-week follow-up. Measurements included gut microbiota composition, glycated haemoglobin (HbA1c), fasting plasma glucose (FPG), plasma lipids, anthropometry, body composition, blood pressure, and dietary intake. The intervention group showed a significant increase in alpha diversity and butyrate-producing bacteria, with reductions in HbA1c and FPG levels below prediabetes thresholds. No significant changes were observed in the placebo group. This study suggests that manipulating the human gut microbiome through dietary interventions could be a promising therapeutic approach to managing prediabetes and preventing or delaying diabetes.
Collapse
Affiliation(s)
- Beyda Beteri
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK; (B.B.); (D.-E.M.)
| | - Monica Barone
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.B.); (P.B.)
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Patrizia Brigidi
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (M.B.); (P.B.)
| | - George Tzortzis
- veMico Ltd., Amelia House, Crescent Road, Worthing BN11 1RL, UK; (G.T.); (J.V.)
| | - Jelena Vulevic
- veMico Ltd., Amelia House, Crescent Road, Worthing BN11 1RL, UK; (G.T.); (J.V.)
| | - Karol Sekulic
- Alberta Health Services, Edmonton, AB T5J 3E4, Canada;
| | - Diana-Elena Motei
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK; (B.B.); (D.-E.M.)
| | - Adele Costabile
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK; (B.B.); (D.-E.M.)
| |
Collapse
|
4
|
Zhang Z, Wu W, Wu Z, He Y, Chang X, Deng S, Zhou R, Chen Y, Zhang H. Bridging the gap: exploring the causal relationship between metformin and tumors. Front Genet 2024; 15:1397390. [PMID: 38962452 PMCID: PMC11220117 DOI: 10.3389/fgene.2024.1397390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Objective Numerous studies have reported that metformin can reduce the risk of tumor development. However, some of the results of these studies are conflicting, necessitating a more reliable evaluation. Methods We conducted a Mendelian randomization phenome-wide association study (MR-PheWAS) of tumors to explore the causal relationship between metformin and tumors. Two cohorts of patients taking metformin were obtained from the UK Biobank. Complete phenotype data of the tumors were obtained from FinnGen_R10. We elucidated the causal relationship using a two-sample Mendelian randomization (MR) analysis. More importantly, we conducted a meta-analysis to ensure relatively unbiased results. In the MR analysis, we used the inverse-variance weighted (IVW) method as the main outcome indicator. Subsequently, two cohorts were integrated for the meta-analysis. Finally, we investigated the mechanisms through mediational MR analysis. Results MR analysis revealed that metformin might have a causal relationship with 13 tumor-associated phenotypes in the training cohort. Four phenotypes were validated in the testing cohort. In the training and testing cohorts, metformin exhibited a protective effect against brain meningiomas and malignant neoplasms of the breast (HER-positive), oral cavity, tonsils, and the base of the tongue. Intriguingly, after integrating the results of the two cohorts for the meta-analysis, 12 results were statistically significant. Mediational MR analysis suggested that the effects of metformin on brain meningiomas may be weakened by the presence of the family Oxalobacteraceae. Conclusion Metformin exhibits potential preventive and therapeutic effects on four types of tumors: brain meningioma, malignant neoplasms of the breast (HER-positive), oral cavity and tonsils, and the base of the tongue. Large randomized controlled trials are required to confirm these findings.
Collapse
Affiliation(s)
- Zexin Zhang
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenfeng Wu
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zexia Wu
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yihan He
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuesong Chang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shenyuan Deng
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Zhou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yadong Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haibo Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Aljarrah D, Chalour N, Zorgani A, Nissan T, Pranjol MZI. Exploring the gut microbiota and its potential as a biomarker in gliomas. Biomed Pharmacother 2024; 173:116420. [PMID: 38471271 DOI: 10.1016/j.biopha.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
Gut microbiome alterations are associated with various cancers including brain tumours such as glioma and glioblastoma. The gut communicates with the brain via a bidirectional pathway known as the gut-brain axis (GBA) which is essential for maintaining homeostasis. The gut microbiota produces many metabolites including short chain fatty acids (SCFAs) and essential amino acids such as glutamate, glutamine, arginine and tryptophan. Through the modulation of these metabolites the gut microbiome is able to regulate several functions of brain cells, immune cells and tumour cells including DNA methylation, mitochondrial function, the aryl hydrocarbon receptor (AhR), T-cell proliferation, autophagy and even apoptosis. Here, we summarise current findings on gut microbiome with respect to brain cancers, an area of research that is widely overlooked. Several studies investigated the relationship between gut microbiota and brain tumours. However, it remains unclear whether the gut microbiome variation is a cause or product of cancer. Subsequently, a biomarker panel was constructed for use as a predictive, prognostic and diagnostic tool with respect to multiple cancers including glioma and glioblastoma multiforme (GBM). This review further presents the intratumoural microbiome, a fascinating microenvironment within the tumour as a possible treatment target that can be manipulated to maximise effectiveness of treatment via personalised therapy. Studies utilising the microbiome as a biomarker and therapeutic strategy are necessary to accurately assess the effectiveness of the gut microbiome as a clinical tool with respect to brain cancers.
Collapse
Affiliation(s)
- Dana Aljarrah
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK.
| | - Naima Chalour
- Cognitive and Behavioural Neuroscience laboratory, Houari Boumediene University of Science and Technology, Bab Ezzouar, Algiers, Algeria; Faculty of Biological Sciences, Houari Boumediene University of Science and Technology, Bab Ezzouar, Algiers, Algeria.
| | - Amine Zorgani
- The Microbiome Mavericks, 60 rue Christian Lacouture, Bron 69500, France.
| | - Tracy Nissan
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Md Zahidul I Pranjol
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
6
|
Zhang H, Ma L, Peng W, Wang B, Sun Y. Association between gut microbiota and onset of type 2 diabetes mellitus: a two-sample Mendelian randomization study. Front Cell Infect Microbiol 2024; 14:1327032. [PMID: 38596649 PMCID: PMC11002178 DOI: 10.3389/fcimb.2024.1327032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/07/2024] [Indexed: 04/11/2024] Open
Abstract
Aim Mendelian randomization (MR) analysis has been used in the exploration of the role of gut microbiota (GM) in type 2 diabetes mellitus (T2DM); however, it was limited to the genus level. This study herein aims to investigate the relationship of GM, especially at the species level, with T2DM in order to provide some evidence for further exploration of more specific GM taxa and pathway abundance in T2DM. Methods This two-sample MR study was based on the summary statistics of GM from the available genome-wide association study (GWAS) meta-analysis conducted by the MiBioGen consortium as well as the Dutch Microbiome Project (DMP), whereas the summary statistics of T2DM were obtained from the FinnGen consortium released data. Inverse variance weighted (IVW), MR-Egger, strength test (F), and weighted median methods were used to examine the causal association between GM and the onset of T2DM. Cochran's Q statistics was employed to quantify the heterogeneity of instrumental variables. Bonferroni's correction was conducted to correct the bias of multiple testing. We also performed reverse causality analysis. Results The corrected IVW estimates suggested the increased relative abundance of family Oxalobacteraceae (OR = 1.0704) and genus Oxalobacter (OR = 1.0874), respectively, were associated with higher odds of T2DM, while that of species faecis (OR = 0.9460) had a negative relationship with T2DM. The relationships of class Betaproteobacteria, family Lactobacillaceae, species finegoldii, and species longum with T2DM were also significant according to the IVW results (all P < 0.05). Conclusions GM had a potential causal association with T2DM, especially species faecis, finegoldii, and longum. Further studies are still needed to clarify certain results that are contradictory with previous findings.
Collapse
Affiliation(s)
- Hongyan Zhang
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shaanxi Key Laboratory of Research on Traditional Chinese Medicine Physical Constitution and Diseases Prevention and Treatment, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Li Ma
- Department of Endocrinology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Wenbo Peng
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Wang
- Department of Traditional Chinese Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongning Sun
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Walsh LH, Walsh AM, Garcia-Perez I, Crispie F, Costabile A, Ellis R, Finlayson J, Finnegan LA, Claesson MJ, Holmes E, Cotter PD. Comparison of the relative impacts of acute consumption of an inulin-enriched diet, milk kefir or a commercial probiotic product on the human gut microbiome and metabolome. NPJ Sci Food 2023; 7:41. [PMID: 37587110 PMCID: PMC10432396 DOI: 10.1038/s41538-023-00216-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023] Open
Abstract
It has been established that the human gut microbiota is central to health, and, consequently, there has been a growing desire to positively modulate its composition and/or function through, for example, the use of fermented foods, prebiotics or probiotics. Here, we compare the relative impact of the daily consumption of an inulin-enriched diet (n = 10), a commercial probiotic-containing fermented milk product (FMP) (n = 10), or a traditional kefir FMP (n = 9), over a 28-day period on the gut microbiome and urine metabolome of healthy human adults. None of the treatments resulted in significant changes to clinical parameters or biomarkers tested. However, shotgun metagenomic analysis revealed that kefir consumption resulted in a significant change in taxonomy, in the form of an increased abundance of the sub-dominant FMP-associated species Lactococcus raffinolactis, which further corresponded to shifts in the urine metabolome. Overall, our results indicated that daily consumption of a single portion of kefir alone resulted in detectable changes to the gut microbiota and metabolome of consumers.
Collapse
Affiliation(s)
- Liam H Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co, Cork, Ireland
- School of Microbiology Department, University College Cork, Co, Cork, Ireland
| | - Aaron M Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co, Cork, Ireland
- School of Microbiology Department, University College Cork, Co, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co, Cork, Ireland
| | - Isabel Garcia-Perez
- Section of Biomolecular Medicine, Division of Computational Systems Medicine, Imperial College London, London, UK
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co, Cork, Ireland
| | - Adele Costabile
- School of Life and Health Sciences, University of Roehampton London, London, UK
| | - Richard Ellis
- Surveillance and Laboratory Services Department, APHA, Addlestone, UK
| | - Jim Finlayson
- NHS Highland, Highland Clinical Research Facility, University of the Highlands & Islands, Centre for Health Science, Inverness, UK
| | - Laura A Finnegan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co, Cork, Ireland
| | - Marcus J Claesson
- School of Microbiology Department, University College Cork, Co, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co, Cork, Ireland
| | - Elaine Holmes
- Section of Biomolecular Medicine, Division of Computational Systems Medicine, Imperial College London, London, UK
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co, Cork, Ireland.
- School of Microbiology Department, University College Cork, Co, Cork, Ireland.
- VistaMilk SFI Research Centre, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland.
| |
Collapse
|
8
|
Grond K, Buck CL, Duddleston KN. Microbial gene expression during hibernation in arctic ground squirrels: greater differences across gut sections than in response to pre-hibernation dietary protein content. Front Genet 2023; 14:1210143. [PMID: 37636260 PMCID: PMC10450147 DOI: 10.3389/fgene.2023.1210143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/27/2023] [Indexed: 08/29/2023] Open
Abstract
Obligate seasonal hibernators fast for 5-9 months depending on species yet resist muscle atrophy and emerge with little lean mass loss. The role of the gut microbiome in host nitrogen metabolism during hibernation is therefore of considerable interest, and recent studies support a role for urea nitrogen salvage (UNS) in host-protein conservation. We were interested in the effect of pre-hibernation diet on UNS and the microbial provision of essential amino acids (EAAs) during hibernation; therefore, we conducted a study whereby we fed arctic ground squirrels (Urocitellus parryii) pre-hibernation diets containing 9% vs. 18% protein and compared the expression of gut bacterial urease and amino acid (AA) metabolism genes in 4 gut sections (cecum mucosa, cecum lumen, small intestine [SI] mucosa, and SI lumen) during hibernation. We found that pre-hibernation dietary protein content did not affect expression of complete bacterial AA pathway genes during hibernation; however, several individual genes within EAA pathways were differentially expressed in squirrels fed 18% pre-hibernation dietary protein. Expression of genes associated with AA pathways was highest in the SI and lowest in the cecum mucosa. Additionally, the SI was the dominant expression site of AA and urease genes and was distinct from other sections in its overall microbial functional and taxonomic composition. Urease expression in the gut microbiome of hibernating squirrels significantly differed by gut section, but not by pre-hibernation dietary protein content. We identified two individual genes that are part of the urea cycle and involved in arginine biosynthesis, which were significantly more highly expressed in the cecum lumen and SI mucosa of squirrels fed a pre-hibernation diet containing 18% protein. Six bacterial genera were responsible for 99% of urease gene expression: Cupriavidus, Burkholderia, Laribacter, Bradhyrizobium, Helicobacter, and Yersinia. Although we did not find a strong effect of pre-hibernation dietary protein content on urease or AA metabolism gene expression during hibernation, our data do suggest the potential for pre-hibernation diet to modulate gut microbiota function during hibernation, and further investigations are warranted.
Collapse
Affiliation(s)
- Kirsten Grond
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, United States
| | - C. Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| | - Khrystyne N. Duddleston
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK, United States
| |
Collapse
|
9
|
Munteanu C, Mihai M, Dulf F, Ona A, Muntean L, Ranga F, Urdă C, Pop D, Mihaiescu T, Mârza SM, Papuc I. Biochemical Changes Induced by the Administration of Cannabis sativa Seeds in Diabetic Wistar Rats. Nutrients 2023; 15:2944. [PMID: 37447270 DOI: 10.3390/nu15132944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The present pilot study investigates the blood biochemical changes induced by hemp seeds in rats with diabetes. The composition of industrial hemp seeds, antioxidant activity, identification and quantification of phenols and fatty acids from hemp oil were determined. The Wistar adult rats used in the experiment were divided into three groups (n = 6) and kept under standard conditions. Group one, the control group (individuals without diabetes), and group two (diabetic individuals) received water and normal food ad libitum, while the third group, also including diabetic individuals, received specific food (hemp seeds) and water ad libitum. Subsequent blood biochemical parameters were determined. Hemp seeds had higher phenol (14 compounds), flavonoids and PUFA contents compared to other plants seeds. In addition, the antioxidant activity in Cannabis sativa was also increased. Moreover, the ratio between n-6 and n-3 was 4.41, ideal for different diseases. Additionally, all biochemical parameters showed significant changes following the treatment. It was shown that high doses of hemp seeds decreased diabetes-induced biochemical damage in rats most probably due to the high content of active compounds. In order to use these seeds in humans, it is essential to find out which hemp compounds are particularly responsible for these effects. Moreover, for the objective investigation of their effects, longer-term studies are needed.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Mihaela Mihai
- Department of Transversal Competencies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Francisc Dulf
- Department of Environmental and Plant Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Andreea Ona
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Leon Muntean
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Floricuța Ranga
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Camelia Urdă
- Agricultural Research Development Station Turda, 27 Agriculturii Street, 401100 Turda, Romania
| | - Daria Pop
- Clinic of Obstetrics and Gynecology II "Dominic Stanca", University of Medicine and Pharmacy "Iuliu Hațieganu" Cluj-Napoca, Victor Babeș 8, 400347 Cluj-Napoca, Romania
| | - Tania Mihaiescu
- Department of Environmental and Plant Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Sorin Marian Mârza
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Ionel Papuc
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|