1
|
Quan Q, Liu J, Xia X, Zhang S, Ke Z, Wang M, Tan Y. Cold seep nitrogen fixation and its potential relationship with sulfur cycling. Microbiol Spectr 2024; 12:e0053624. [PMID: 39171911 PMCID: PMC11448218 DOI: 10.1128/spectrum.00536-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 08/23/2024] Open
Abstract
Dinitrogen (N2) fixation is a crucial source of bioavailable nitrogen in carbon-dominated cold seep systems. Previous studies have shown that diazotrophy is not necessarily dependent on sulfate-dependent anaerobic oxidation of methane for energy, and diverse catabolism can fuel the high-energy-demanding process in sediments. However, it remains unclear whether diazotroph can obtain energy by sulfur oxidation in sulfur-rich cold seep water column. Here, field investigations and in situ experiments were conducted in Haima cold seep to examine the effects of diverse sources of dissolved organic matter (DOM) on N2 fixation, specifically containing sulfur, carbon, nitrogen, and phosphorus. We found that active N2 fixation occurred in the water column above the Haima cold seep, with the Dechloromonas genus dominating the diazotroph community as revealed by nifH gene using high-throughput sequencing. In situ experiments showed an increased rate of N2 fixation (1.15- to 12.70-fold compared to that in control group) and a greater relative abundance of the Dechloromonas genus following enrichment with sulfur-containing organic matter. Furthermore, metagenomic assembly and binning revealed that Dechloromonas sp. carried genes related to N2 fixation (nifDHK) and sulfur compound oxidation (fccAB and soxABCXYZ), implying that the genus potentially serves as a multifunctional mediator for N2 fixation and sulfur cycling. Our results provide new insights regarding potential coupling mechanism associated with sulfur-driven N2 fixation in methane- and sulfide-rich environments. IMPORTANCE N2 fixation is an important source of biologically available in carbon-dominated cold seep systems as little nitrogen is released by hydrocarbon seepage, thereby promoting biological productivity and the degradation of non-nitrogenous organic matter. Cold seeps are rich in diverse sources of dissolved organic matter (DOM) derived from the sinking of photosynthetic products in euphotic layer and the release of chemosynthesis products on the seafloor. However, it remains unclear whether N2 fixation is coupled to the metabolic processes of DOM, as determined by e.g., carbon, nitrogen, phosphorus, and sulfur content, for energy acquisition in sulfur-rich cold seeps. In this study, diazotroph community structure and its response to DOM compositions were revealed. Moreover, the metagenomics analysis suggested that Dechloromonas genus plays a dominant role in potential coupling N2 fixation and sulfur oxidation. Our study highlighted that sulfur oxidation in deep-sea cold seeps may serve as an energy source to drive N2 fixation.
Collapse
Affiliation(s)
- Qiumei Quan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxing Liu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaomin Xia
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Si Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhixin Ke
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Minxiao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yehui Tan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Xia D, Shi X, Chen K, Hao A, Iseri Y. Understanding the mechanisms behind the antibacterial activity of magnesium hydroxide nanoparticles against sulfate-reducing bacteria in sediments. Sci Rep 2024; 14:21831. [PMID: 39294256 PMCID: PMC11411076 DOI: 10.1038/s41598-024-72516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Nanomaterials, with their small size, surface characteristics, and antibacterial properties, are extensively employed across environmental, energy, biomedical, agricultural, and other industries. This study examined the antibacterial efficacy of magnesium hydroxide (Mg(OH)2) nanoparticles (NPs) against sulfate-reducing bacteria (SRB) within sediments. The inhibitory effects of two types of Mg(OH)2 NPs with distinct particle sizes (20.3 and 29.6 nm) and concentrations (0-10.0 mg/mL) were examined under optimal treatment conditions. The antibacterial mechanisms of Mg(OH)2 NPs through direct contact and dissolution effects were determined. The results revealed a correlation between the concentration, particle size, and inhibitory activity, with the smallest NPs (20.3 nm) at the highest concentration (10.0 mg/mL) substantially reducing SRB counts from 8.77 ± 0.18 to 6.48 ± 0.13 log10 colony forming units/mL after 6 h treatment. Treatment with high concentrations of Mg(OH)2 NPs induced cellular damage, reduced intracellular lactate dehydrogenase activity, and elevated intracellular catalase activity and H2O2 content, suggesting that the contact effect of NPs stimulated SRB. This leads to oxidative stress response and structural damage to the cell membrane, which has emerged as the primary driver of the antibacterial action of Mg(OH)2 NPs. This study presents a novel nanomaterial that can inhibit and control SRB in natural sedimentary environments.
Collapse
Affiliation(s)
- Dong Xia
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Xiaoyu Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Kai Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Aimin Hao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Yasushi Iseri
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| |
Collapse
|
3
|
Mondal S, Biswas B, Chowdhury R, Sengupta R, Mandal A, Kotal HN, Giri CK, Ghosh A, Saha S, Begam MM, Mukherjee C, Das I, Basak SK, Mitra Ghosh M, Ray K. Estuarine mangrove niches select cultivable heterotrophic diazotrophs with diverse metabolic potentials-a prospective cross-dialog for functional diazotrophy. Front Microbiol 2024; 15:1324188. [PMID: 38873137 PMCID: PMC11174608 DOI: 10.3389/fmicb.2024.1324188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Biological nitrogen fixation (BNF), an unparalleled metabolic novelty among living microorganisms on earth, globally contributes ~88-101 Tg N year-1 to natural ecosystems, ~56% sourced from symbiotic BNF while ~22-45% derived from free-living nitrogen fixers (FLNF). The success of symbiotic BNF is largely dependent on its interaction with host-plant, however ubiquitous environmental heterotrophic FLNFs face many limitations in their immediate ecological niches to sustain unhindered BNF. The autotrophic FLNFs like cyanobacteria and oceanic heterotrophic diazotrophs have been well studied about their contrivances acclimated/adapted by these organisms to outwit the environmental constraints for functional diazotrophy. However, FLNF heterotrophs face more adversity in executing BNF under stressful estuarine/marine/aquatic habitats. Methods In this study a large-scale cultivation-dependent investigation was accomplished with 190 NCBI accessioned and 45 non-accessioned heterotrophic FLNF cultivable bacterial isolates (total 235) from halophilic estuarine intertidal mangrove niches of Indian Sundarbans, a Ramsar site and UNESCO proclaimed World Heritage Site. Assuming ~1% culturability of the microbial community, the respective niches were also studied for representing actual bacterial diversity via cultivation-independent next-generation sequencing of V3-V4 rRNA regions. Results Both the studies revealed a higher abundance of culturable Gammaproteobacteria followed by Firmicutes, the majority of 235 FLNFs studied belonging to these two classes. The FLNFs displayed comparable selection potential in media for free nitrogen fixers and iron-oxidizing bacteria, linking diazotrophy with iron oxidation, siderophore production, phosphorus solubilization, phosphorus uptake and accumulation as well as denitrification. Discussion This observation validated the hypothesis that under extreme estuarine mangrove niches, diazotrophs are naturally selected as a specialized multidimensional entity, to expedite BNF and survive. Earlier metagenome data from mangrove niches demonstrated a microbial metabolic coupling among C, N, P, S, and Fe cycling in mangrove sediments, as an adaptive trait, evident with the co-abundant respective functional genes, which corroborates our findings in cultivation mode for multiple interrelated metabolic potential facilitating BNF in a challenging intertidal mangrove environment.
Collapse
Affiliation(s)
- Sumana Mondal
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Biswajit Biswas
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
- Department of Microbiology, St. Xavier’s College (Autonomous), Kolkata, India
| | - Rajojit Chowdhury
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
- Department of Botany, Sree Chaitanya College, Habra, India
| | - Rudranil Sengupta
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Anup Mandal
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Hemendra Nath Kotal
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Chayan Kumar Giri
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Anjali Ghosh
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Subhajit Saha
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | - Mst Momtaj Begam
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
- Department of Botany, Kalimpong College, Darjeeling, India
| | - Chandan Mukherjee
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
- School of Biological and Life Sciences, Galgotias University, Greater Noida, India
| | - Ipsita Das
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| | | | | | - Krishna Ray
- Environmental Biotechnology Group, Department of Botany, West Bengal State University, Kolkata, India
| |
Collapse
|
4
|
Mwanake RM, Imhof HK, Kiese R. Divergent drivers of the spatial variation in greenhouse gas concentrations and fluxes along the Rhine River and the Mittelland Canal in Germany. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32183-32199. [PMID: 38649602 PMCID: PMC11512915 DOI: 10.1007/s11356-024-33394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Lotic ecosystems are sources of greenhouse gases (GHGs) to the atmosphere, but their emissions are uncertain due to longitudinal GHG heterogeneities associated with point source pollution from anthropogenic activities. In this study, we quantified summer concentrations and fluxes of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and dinitrogen (N2), as well as several water quality parameters along the Rhine River and the Mittelland Canal, two critical inland waterways in Germany. Our main objectives were to compare GHG concentrations and fluxes along the two ecosystems and to determine the main driving factors responsible for their longitudinal GHG heterogeneities. The results indicated that the two ecosystems were sources of GHG fluxes to the atmosphere, with the Mittelland Canal being a hotspot for CH4 and N2O fluxes. We also found significant longitudinal GHG flux discontinuities along the mainstems of both ecosystems, which were mainly driven by divergent drivers. Along the Mittelland Canal, peak CO2 and CH4 fluxes coincided with point pollution sources such as a joining river tributary or the presence of harbors, while harbors and in-situ biogeochemical processes such as methanogenesis and respiration mainly explained CH4 and CO2 hotspots along the Rhine River. In contrast to CO2 and CH4 fluxes, N2O longitudinal trends along the two lotic ecosystems were better predicted by in-situ parameters such as chlorophyll-a concentrations and N2 fluxes. Based on a positive relationship with N2 fluxes, we hypothesized that in-situ denitrification was driving N2O hotspots in the Canal, while a negative relationship with N2 in the Rhine River suggested that coupled biological N2 fixation and nitrification accounted for N2O hotspots. These findings stress the need to include N2 flux estimates in GHG studies, as it can potentially improve our understanding of whether nitrogen is fixed through N2 fixation or lost through denitrification.
Collapse
Affiliation(s)
- Ricky Mwangada Mwanake
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany.
| | - Hannes Klaus Imhof
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany
| | - Ralf Kiese
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, 82467, Garmisch-Partenkirchen, Germany
| |
Collapse
|
5
|
Fernández-Juárez V, Hallstrøm S, Pacherres CO, Wang J, Coll-Garcia G, Kühl M, Riemann L. Biofilm formation and cell plasticity drive diazotrophy in an anoxygenic phototrophic bacterium. Appl Environ Microbiol 2023; 89:e0102723. [PMID: 37882569 PMCID: PMC10686084 DOI: 10.1128/aem.01027-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/14/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The contribution of non-cyanobacterial diazotrophs (NCDs) to total N2 fixation in the marine water column is unknown, but their importance is likely constrained by the limited availability of dissolved organic matter and low O2 conditions. Light could support N2 fixation and growth by NCDs, yet no examples from bacterioplankton exist. In this study, we show that the phototrophic NCD, Rhodopseudomonas sp. BAL398, which is a member of the diazotrophic community in the surface waters of the Baltic Sea, can utilize light. Our study highlights the significance of biofilm formation for utilizing light and fixing N2 under oxic conditions and the role of cell plasticity in regulating these processes. Our findings have implications for the general understanding of the ecology and importance of NCDs in marine waters.
Collapse
Affiliation(s)
- Víctor Fernández-Juárez
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Hallstrøm
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Cesar O. Pacherres
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jiaqi Wang
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Guillem Coll-Garcia
- Microbiology, Biology Department, University of the Balearic Islands, Palma de Mallorca, Spain
- Environmental Microbiology Group, Mediterranean Institute for Advanced Studies (CSIC-UIB), Esporles, Spain
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Liu X, Li P, Wang H, Han LL, Yang K, Wang Y, Jiang Z, Cui L, Kao SJ. Nitrogen fixation and diazotroph diversity in groundwater systems. THE ISME JOURNAL 2023; 17:2023-2034. [PMID: 37715043 PMCID: PMC10579273 DOI: 10.1038/s41396-023-01513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Biological nitrogen fixation (BNF), the conversion of N2 into bioavailable nitrogen (N), is the main process for replenishing N loss in the biosphere. However, BNF in groundwater systems remains poorly understood. In this study, we examined the activity, abundance, and community composition of diazotrophs in groundwater in the Hetao Plain of Inner Mongolia using 15N tracing methods, reverse transcription qPCR (RT-qPCR), and metagenomic/metatranscriptomic analyses. 15N2 tracing incubation of near in situ groundwater (9.5-585.4 nmol N L-1 h-1) and N2-fixer enrichment and isolates (13.2-1728.4 nmol N g-1 h-1, as directly verified by single-cell resonance Raman spectroscopy), suggested that BNF is a non-negligible source of N in groundwater in this region. The expression of nifH genes ranged from 3.4 × 103 to 1.2 × 106 copies L-1 and was tightly correlated with dissolved oxygen (DO), Fe(II), and NH4+. Diazotrophs in groundwater were chiefly aerobes or facultative anaerobes, dominated by Stutzerimonas, Pseudomonas, Paraburkholderia, Klebsiella, Rhodopseudomonas, Azoarcus, and additional uncultured populations. Active diazotrophs, which prefer reducing conditions, were more metabolically diverse and potentially associated with nitrification, sulfur/arsenic mobilization, Fe(II) transport, and CH4 oxidation. Our results highlight the importance of diazotrophs in subsurface geochemical cycles.
Collapse
Affiliation(s)
- Xiaohan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China.
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| | - Helin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Li-Li Han
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China
| | - Kai Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Zhou Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, PR China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China
| |
Collapse
|
7
|
Jabir T, Jain A, Vipindas PV, Krishnan KP. Stochastic Processes Dominate in the Water Mass-Based Segregation of Diazotrophs in a High Arctic Fjord (Svalbard). MICROBIAL ECOLOGY 2023; 86:2733-2746. [PMID: 37532947 DOI: 10.1007/s00248-023-02276-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Nitrogen-fixing or diazotrophic microbes fix atmospheric nitrogen (N2) to ammonia (NH3+) using nitrogenase enzyme and play a crucial role in regulating marine primary productivity and carbon dioxide sequestration. However, there is a lack of information about the diversity, structure, and environmental regulations of the diazotrophic communities in the high Arctic fjords, such as Kongsfjorden. Here, we employed nifH gene sequencing to clarify variations in composition, community structure, and assembly mechanism among the diazotrophs of the salinity-driven stratified waters of Kongsfjorden. The principal environmental and ecological drivers of the observed variations were identified. The majority of the nifH gene sequences obtained in the present study belonged to cluster I and cluster III nifH phylotypes, accounting for 65% and 25% of the total nifH gene sequences. The nifH gene diversity and composition, irrespective of the size fractions (free-living and particle attached), showed a clear separation among water mass types, i.e., Atlantic-influenced versus glacier-influenced water mass. Higher nifH gene diversity and relative abundances of non-cyanobacterial nifH OTUs, affiliated with uncultured Rhizobiales, Burkholderiales, Alteromonadaceae, Gallionellaceae (cluster I) and uncultured Deltaproteobacteria including Desulfuromonadaceae (cluster III), were prevalent in GIW while uncultured Gammaproteobacteria and Desulfobulbaceae were abundant in AIW. The diazotrophic community assembly was dominated by stochastic processes, principally ecological drift, and to lesser degrees dispersal limitation and homogeneous dispersal. Differences in the salinity and dissolved oxygen content lead to the vertical segregation of diazotrophs among water mass types. These findings suggest that water column stratification affects the composition and assembly mechanism of diazotrophic communities and thus could affect nitrogen fixation in the Arctic fjord.
Collapse
Affiliation(s)
- Thajudeen Jabir
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India.
| | - Anand Jain
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India
| | - Puthiya Veettil Vipindas
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India
| | - Kottekkatu Padinchati Krishnan
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa, 403 804, India
| |
Collapse
|
8
|
Riemann L, Rahav E, Passow U, Grossart HP, de Beer D, Klawonn I, Eichner M, Benavides M, Bar-Zeev E. Planktonic Aggregates as Hotspots for Heterotrophic Diazotrophy: The Plot Thickens. Front Microbiol 2022; 13:875050. [PMID: 35464923 PMCID: PMC9019601 DOI: 10.3389/fmicb.2022.875050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Biological dinitrogen (N2) fixation is performed solely by specialized bacteria and archaea termed diazotrophs, introducing new reactive nitrogen into aquatic environments. Conventionally, phototrophic cyanobacteria are considered the major diazotrophs in aquatic environments. However, accumulating evidence indicates that diverse non-cyanobacterial diazotrophs (NCDs) inhabit a wide range of aquatic ecosystems, including temperate and polar latitudes, coastal environments and the deep ocean. NCDs are thus suspected to impact global nitrogen cycling decisively, yet their ecological and quantitative importance remain unknown. Here we review recent molecular and biogeochemical evidence demonstrating that pelagic NCDs inhabit and thrive especially on aggregates in diverse aquatic ecosystems. Aggregates are characterized by reduced-oxygen microzones, high C:N ratio (above Redfield) and high availability of labile carbon as compared to the ambient water. We argue that planktonic aggregates are important loci for energetically-expensive N2 fixation by NCDs and propose a conceptual framework for aggregate-associated N2 fixation. Future studies on aggregate-associated diazotrophy, using novel methodological approaches, are encouraged to address the ecological relevance of NCDs for nitrogen cycling in aquatic environments.
Collapse
Affiliation(s)
- Lasse Riemann
- Marine Biology Section, University of Copenhagen, Helsingør, Denmark
| | - Eyal Rahav
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Uta Passow
- Ocean Science Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Hans-Peter Grossart
- Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany.,Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Isabell Klawonn
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research, Rostock, Germany
| | - Meri Eichner
- Institute of Microbiology CAS, Centre ALGATECH, Třeboň, Czechia
| | - Mar Benavides
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France.,Turing Center for Living Systems, Aix-Marseille University, Marseille, France
| | - Edo Bar-Zeev
- The Jacob Blaustein Institutes for Desert Research, Zuckerberg Institute for Water Research (ZIWR), Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|