1
|
Kulik T, Treder K, Rochoń M, Załuski D, Sulima P, Olszewski J, Bilska K, Elena G, Kowalski T. Measurement of the effectiveness of Clonostachys rosea in reducing Fusarium biomass on wheat straw. J Appl Genet 2024; 65:937-947. [PMID: 39276302 PMCID: PMC11561075 DOI: 10.1007/s13353-024-00906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
The survival and growth of plant pathogens on crop residues are key factors facilitating the dynamics of crop diseases. Spores (e.g., perithecia, and chlamydospores) and mycelium of pathogenic fungi overwinter on harvest residues, such as straw, and serve as initial inoculum infecting crops in the next growing season. Therefore, targeting overwintering fungi is essential to attaining effective disease control. Beneficial microorganisms offer advantages in controlling pathogens through their ability to colonize and exploit different environmental niches. In this study, we applied qPCR assays to explore the biocontrol performance of locally isolated strains of Clonostachys against various Fusarium pathogens. We proved that prior colonization of wheat straw by Fusarium spp. can be effectively reduced by Clonostachys rosea. We demonstrated that the efficiency of C. rosea to reduce Fusarium inoculum appears to remain at a similar level for most studied strains regardless of the target pathogen and the level of colonization of substrates by pathogens. Efficient performance of local C. rosea strains identifies possible targets for future strategies to control Fusarium diseases in cereals. Our study also highlights the challenge in sequence-based determination of C. rosea, which is crucial for the efficient selection of beneficial strains for biocontrol purposes.
Collapse
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 1, 10-718, Olsztyn, Poland.
| | - Kinga Treder
- Department of Agroecosystems, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-718, Olsztyn, Poland
| | - Marta Rochoń
- Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 1, 10-718, Olsztyn, Poland
| | - Dariusz Załuski
- Department of Genetics, Plant Breeding and Bioresource Engineering, Plac Lodzki 3, 10-724, Olsztyn, Poland
| | - Paweł Sulima
- Department of Genetics, Plant Breeding and Bioresource Engineering, Plac Lodzki 3, 10-724, Olsztyn, Poland
| | - Jacek Olszewski
- Experimental Education Unit, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 1, 10-727, Olsztyn, Poland
| | - Katarzyna Bilska
- Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Plac Lodzki 1, 10-718, Olsztyn, Poland
| | - Georgina Elena
- Wageningen Plant Research, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, the Netherlands
| | - Tadeusz Kowalski
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425, Krakow, Poland
| |
Collapse
|
2
|
Khalifa ME, Ayllón MA, Rodriguez Coy L, Plummer KM, Gendall AR, Chooi KM, van Kan JAL, MacDiarmid RM. Mycologists and Virologists Align: Proposing Botrytis cinerea for Global Mycovirus Studies. Viruses 2024; 16:1483. [PMID: 39339959 PMCID: PMC11437445 DOI: 10.3390/v16091483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Mycoviruses are highly genetically diverse and can significantly change their fungal host's phenotype, yet they are generally under-described in genotypic and biological studies. We propose Botrytis cinerea as a model mycovirus system in which to develop a deeper understanding of mycovirus epidemiology including diversity, impact, and the associated cellular biology of the host and virus interaction. Over 100 mycoviruses have been described in this fungal host. B. cinerea is an ideal model fungus for mycovirology as it has highly tractable characteristics-it is easy to culture, has a worldwide distribution, infects a wide range of host plants, can be transformed and gene-edited, and has an existing depth of biological resources including annotated genomes, transcriptomes, and isolates with gene knockouts. Focusing on a model system for mycoviruses will enable the research community to address deep research questions that cannot be answered in a non-systematic manner. Since B. cinerea is a major plant pathogen, new insights may have immediate utility as well as creating new knowledge that complements and extends the knowledge of mycovirus interactions in other fungi, alone or with their respective plant hosts. In this review, we set out some of the critical steps required to develop B. cinerea as a model mycovirus system and how this may be used in the future.
Collapse
Affiliation(s)
- Mahmoud E Khalifa
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)/Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Lorena Rodriguez Coy
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kim M Plummer
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Anthony R Gendall
- La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Research Hub for Sustainable Crop Protection, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
3
|
Nguyen TBH, Foulongne-Oriol M, Jany JL, le Floch G, Picot A. New insights into mycotoxin risk management through fungal population genetics and genomics. Crit Rev Microbiol 2024:1-22. [PMID: 39188135 DOI: 10.1080/1040841x.2024.2392179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/08/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Mycotoxin contamination of food and feed is a major global concern. Chronic or acute dietary exposure to contaminated food and feed can negatively affect both human and animal health. Contamination occurs through plant infection by toxigenic fungi, primarily Aspergillus and Fusarium spp., either before or after harvest. Despite the application of various management strategies, controlling these pathogens remains a major challenge primarily because of their ability to adapt to environmental changes and selection pressures. Understanding the genetic structure of plant pathogen populations is pivotal for gaining new insights into their biology and epidemiology, as well as for understanding the mechanisms behind their adaptability. Such deeper understanding is crucial for developing effective and preemptive management strategies tailored to the evolving nature of pathogenic populations. This review focuses on the population-level variations within the two most economically significant toxigenic fungal genera according to space, host, and pathogenicity. Outcomes in terms of migration patterns, gene flow within populations, mating abilities, and the potential for host jumps are examined. We also discuss effective yet often underutilized applications of population genetics and genomics to address practical challenges in the epidemiology and disease control of toxigenic fungi.
Collapse
Affiliation(s)
- Toan Bao Hung Nguyen
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | | | - Jean-Luc Jany
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | - Gaétan le Floch
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| | - Adeline Picot
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Plouzané, France
| |
Collapse
|
4
|
Prom LK, Ahn EJS, Perumal R, Isakeit TS, Odvody GN, Magill CW. Genetic and Pathogenic Variability among Isolates of Sporisorium reilianum Causing Sorghum Head Smut. J Fungi (Basel) 2024; 10:62. [PMID: 38248970 PMCID: PMC10820674 DOI: 10.3390/jof10010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Sporisorium reilianum, the causal agent of sorghum (Sorghum bicolor (L.) Moench) head smut, is present in most sorghum-producing regions. This seed replacement fungal disease can reduce yield by up to 80% in severely infected fields. Management of this disease can be challenging due to the appearance of different pathotypes within the pathogenic population. In this research, the genetic variability and pathogenicity of isolates collected from five Texas Counties was conducted. Due to the lack of available space, 21 out of 32 sequenced isolates were selected and evaluated for virulence patterns on the six sorghum differentials, Tx7078, BTx635, SC170-6-17 (TAM2571), SA281 (Early Hegari), Tx414, and BTx643. The results reveal the occurrence of a new pathotype, 1A, and four previously documented US pathotypes when the 21 isolates were evaluated for virulence patterns on the differentials. The most prevalent was pathotype 5, which was recovered from Brazos, Hidalgo, Nueces, and Willacy Counties, Texas. This pathotype was followed by 1A and 6 in frequency of recovery. Pathotype 4 was identified only from isolates collected from Hidalgo County, while pathotype 1 was from Burleson County, Texas. It appeared that the previous US head smut pathotypes (2 and 3) are no longer common, and the new pathotypes, 1A, 5, and 6, are now predominant. The phylogenetic tree constructed from the single-nucleotide polymorphism (SNP) data through the neighbor-joining method showed high genetic diversity among the tested isolates. Some of the diverse clades among the tested isolates were independent of their sampled locations. Notably, HS37, HS49, and HS65 formed a clade and were classified as 1A in the virulence study, while HS 61 and HS 66, which were collected from Nueces County, were grouped and identified as pathotype 5.
Collapse
Affiliation(s)
- Louis K. Prom
- USDA-ARS, Plains Area Agricultural Research Center, College Station, TX 77845, USA
| | | | - Ramasamy Perumal
- Department of Agronomy, Agricultural Research Center, Kansas State University, Hays, KS 67601, USA;
| | - Thomas S. Isakeit
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA; (T.S.I.); (C.W.M.)
| | - Gary N. Odvody
- Department of Plant Pathology and Microbiology, Texas AgriLife Research Station, Corpus Christi, TX 78406, USA;
| | - Clint W. Magill
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA; (T.S.I.); (C.W.M.)
| |
Collapse
|
5
|
Haegeman A, Foucart Y, De Jonghe K, Goedefroit T, Al Rwahnih M, Boonham N, Candresse T, Gaafar YZA, Hurtado-Gonzales OP, Kogej Zwitter Z, Kutnjak D, Lamovšek J, Lefebvre M, Malapi M, Mavrič Pleško I, Önder S, Reynard JS, Salavert Pamblanco F, Schumpp O, Stevens K, Pal C, Tamisier L, Ulubaş Serçe Ç, van Duivenbode I, Waite DW, Hu X, Ziebell H, Massart S. Looking beyond Virus Detection in RNA Sequencing Data: Lessons Learned from a Community-Based Effort to Detect Cellular Plant Pathogens and Pests. PLANTS (BASEL, SWITZERLAND) 2023; 12:2139. [PMID: 37299118 PMCID: PMC10255714 DOI: 10.3390/plants12112139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
High-throughput sequencing (HTS), more specifically RNA sequencing of plant tissues, has become an indispensable tool for plant virologists to detect and identify plant viruses. During the data analysis step, plant virologists typically compare the obtained sequences to reference virus databases. In this way, they are neglecting sequences without homologies to viruses, which usually represent the majority of sequencing reads. We hypothesized that traces of other pathogens might be detected in this unused sequence data. In the present study, our goal was to investigate whether total RNA-seq data, as generated for plant virus detection, is also suitable for the detection of other plant pathogens and pests. As proof of concept, we first analyzed RNA-seq datasets of plant materials with confirmed infections by cellular pathogens in order to check whether these non-viral pathogens could be easily detected in the data. Next, we set up a community effort to re-analyze existing Illumina RNA-seq datasets used for virus detection to check for the potential presence of non-viral pathogens or pests. In total, 101 datasets from 15 participants derived from 51 different plant species were re-analyzed, of which 37 were selected for subsequent in-depth analyses. In 29 of the 37 selected samples (78%), we found convincing traces of non-viral plant pathogens or pests. The organisms most frequently detected in this way were fungi (15/37 datasets), followed by insects (13/37) and mites (9/37). The presence of some of the detected pathogens was confirmed by independent (q)PCRs analyses. After communicating the results, 6 out of the 15 participants indicated that they were unaware of the possible presence of these pathogens in their sample(s). All participants indicated that they would broaden the scope of their bioinformatic analyses in future studies and thus check for the presence of non-viral pathogens. In conclusion, we show that it is possible to detect non-viral pathogens or pests from total RNA-seq datasets, in this case primarily fungi, insects, and mites. With this study, we hope to raise awareness among plant virologists that their data might be useful for fellow plant pathologists in other disciplines (mycology, entomology, bacteriology) as well.
Collapse
Affiliation(s)
- Annelies Haegeman
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | - Yoika Foucart
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | - Kris De Jonghe
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | - Thomas Goedefroit
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | - Maher Al Rwahnih
- Foundation Plant Services, Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Neil Boonham
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Bordeaux, 33882 Villenave-d’Ornon, France
| | - Yahya Z. A. Gaafar
- Centre for Plant Health, Canadian Food Inspection Agency, 8801 East Saanich Road, North Saanich, BC V8L 1H3, Canada
| | - Oscar P. Hurtado-Gonzales
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture (USDA-APHIS), Beltsville, ML 20705, USA
| | - Zala Kogej Zwitter
- Department of Biotechnology and Systems Biology, National Institute of Biology (NIB), 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology (NIB), 1000 Ljubljana, Slovenia
| | - Janja Lamovšek
- Plant Protection Department, Agricultural Institute of Slovenia (KIS), 1000 Ljubljana, Slovenia
| | - Marie Lefebvre
- UMR 1332 Biologie du Fruit et Pathologie, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Bordeaux, 33882 Villenave-d’Ornon, France
| | - Martha Malapi
- Biotechnology Risk Analysis Program, Animal and Plant Health Inspection Service, United States Department of Agriculture (USDA-APHIS), Riverdale, ML 20737, USA
| | - Irena Mavrič Pleško
- Plant Protection Department, Agricultural Institute of Slovenia (KIS), 1000 Ljubljana, Slovenia
| | - Serkan Önder
- Department of Plant Protection, Faculty of Agriculture, Eskişehir Osmangazi University, Odunpazarı, Eskişehir 26160, Turkey
| | | | | | - Olivier Schumpp
- Department of Plant Protection, Agroscope, 1260 Nyon, Switzerland
| | - Kristian Stevens
- Foundation Plant Services, Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Chandan Pal
- Zespri International Limited, 400 Maunganui Road, Mount Maunganui 3116, New Zealand
| | - Lucie Tamisier
- Unités GAFL et Pathologie Végétale, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 84143 Montfavet, France
| | - Çiğdem Ulubaş Serçe
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, 51240 Niğde, Turkey
| | - Inge van Duivenbode
- Dutch General Inspection Service for Agricultural Seed and Seed Potatoes (NAK), Randweg 14, 8304 AS Emmeloord, The Netherlands
| | - David W. Waite
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland 1140, New Zealand
| | - Xiaojun Hu
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture (USDA-APHIS), Beltsville, ML 20705, USA
| | - Heiko Ziebell
- Institute for Epidemiology and Pathogen Diagnostics, Federal Research Centre for Cultivated Plants, Julius Kühn Institute (JKI), Messeweg 11-12, 38104 Braunschweig, Germany
| | - Sébastien Massart
- Plant Pathology Laboratory, University of Liège, Gembloux Agro-Bio Tech, TERRA, 5030 Gembloux, Belgium
| |
Collapse
|
6
|
Jiang S, Chen Y, Han S, Lv L, Li L. Next-Generation Sequencing Applications for the Study of Fungal Pathogens. Microorganisms 2022; 10:microorganisms10101882. [PMID: 36296159 PMCID: PMC9609632 DOI: 10.3390/microorganisms10101882] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Next-generation sequencing (NGS) has become a widely used technology in biological research. NGS applications for clinical pathogen detection have become vital technologies. It is increasingly common to perform fast, accurate, and specific detection of clinical specimens using NGS. Pathogenic fungi with high virulence and drug resistance cause life-threatening clinical infections. NGS has had a significant biotechnological impact on detecting bacteria and viruses but is not equally applicable to fungi. There is a particularly urgent clinical need to use NGS to help identify fungi causing infections and prevent negative impacts. This review summarizes current research on NGS applications for fungi and offers a visual method of fungal detection. With the development of NGS and solutions for overcoming sequencing limitations, we suggest clinicians test specimens as soon as possible when encountering infections of unknown cause, suspected infections in vital organs, or rapidly progressive disease.
Collapse
Affiliation(s)
- Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Correspondence: ; Tel.: +86-0571-8723-6458
| |
Collapse
|