1
|
Zhou J, Liu J, Wang D, Ruan Y, Gong S, Gou J, Zou X. Fungal communities are more sensitive to mildew than bacterial communities during tobacco storage processes. Appl Microbiol Biotechnol 2024; 108:88. [PMID: 38194134 DOI: 10.1007/s00253-023-12882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Mildew poses a significant threat to tobacco production; however, there is limited information on the structure of the abundant and rare microbial subcommunities in moldy tobacco leaves. In this study, we employed high-throughput sequencing technology to discern the disparities in the composition, diversity, and co-occurrence patterns of abundant and rare fungal and bacterial subcommunities between moldy and normal tobacco leaves collected from Guizhou, Shanghai, and Jilin provinces, China. Furthermore, we explored the correlation between microorganisms and metabolites by integrating the metabolic profiles of moldy and normal tobacco leaves. The results showed that the fungi are more sensitive to mildew than bacteria, and that the fungal abundant taxa exhibit greater resistance and environmental adaptability than the rare taxa. The loss of rare taxa results in irreversible changes in the diversity, richness, and composition of the fungal community. Moreover, rare fungal taxa and abundant bacterial taxa played crucial roles in maintaining the stability and functionality of the tobacco microecosystem. In moldy tobacco, however, the disappearance of rare taxa as key nodes resulted in reduced connectivity and stability within the fungal network. In addition, metabolomic analysis showed that the contents of indoles, pyridines, polyketones, phenols, and peptides were significantly enriched in the moldy tobacco leaves, while the contents of amino acids, carbohydrates, lipids, and other compounds were significantly reduced in these leaves. Most metabolites showed negative correlations with Dothideomycetes, Alphaproteobacteria, and Gammaproteobacteria, but showed positive correlations with Eurotiales and Bacilli. This study has demonstrated that abundant fungal taxa are the predominant biological agents responsible for tobacco mildew, while bacteria may indirectly contribute to this process through the production and degradation of metabolites. KEY POINTS: • Fungi exhibited greater sensitivity to mildew of tobacco leaf compared to bacteria • Rare fungal taxa underwent significant damage during the mildew process • Mildew may damage the defense system of the tobacco leaf microecosystem.
Collapse
Affiliation(s)
- Jiaxi Zhou
- Department of Ecology / Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
- Postdoctoral Research Workstation of China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Jing Liu
- Guizhou Tobacco Company Zunyi Branch, Zunyi, China
| | - Dongfei Wang
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Yibin Ruan
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Shuang Gong
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Jianyu Gou
- Guizhou Tobacco Company Zunyi Branch, Zunyi, China
| | - Xiao Zou
- Department of Ecology / Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China.
| |
Collapse
|
2
|
Zou L, Zhang H, Liu Z, Sun J, Hu Y, Ding Y, Ji X, Yang Z, Zhang Q, Hu B. Analyzing the Effect of Microbial Consortia Fermentation on the Quality of HnB by Untargeted Metabolomics. J Microbiol Biotechnol 2024; 34:1890-1897. [PMID: 39187455 PMCID: PMC11485560 DOI: 10.4014/jmb.2402.02039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 08/28/2024]
Abstract
Fermentation has been identified as an effective strategy to alter the chemical makeup of tobacco, thereby enhancing its quality. The deliberate introduction of microorganisms can hasten the fermentation process. In this research, microbial consortia harvested from the tobacco surface were utilized to enhance the tobacco quality. This enhancement also elevated several sensory attributes of HnB cigarettes, such as aroma richness, moisture, strength, and reduced irritation, achieving a sensory quality rating of 84.5. This marks a notable improvement compared to the 82 rating of the original, unfermented cigarettes. Untargeted metabolomics analysis revealed a decrease in total polyphenols and unsaturated fatty acids, while the levels of polyacids, alcohols, ketones, furans, and other compounds increased in the fermented tobacco. Additionally, KEGG pathway enrichment analysis indicated that the enhancement in tobacco quality through microbial consortia fermentation is linked to various biological pathways, with pathways related to fatty acid and amino acid degradation playing pivotal roles. The findings of this study will serve as a reference for the commercial production of HnB cigarettes, and the elucidated mechanism offers a theoretical basis for exploring microbial fermentation as a means to improve tobacco quality.
Collapse
Affiliation(s)
- Ling Zou
- Yunnan Academy of Tobacco Agricultural Science, Kunming 650021, Yunnan, P.R. China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, P.R. China
| | - Hong Zhang
- China National Tobacco Corporation Yunnan Company, Kunming 650032, P.R. China
| | - Zhonghua Liu
- China National Tobacco Corporation Yunnan Company, Kunming 650032, P.R. China
| | - Jianfeng Sun
- China National Tobacco Corporation Yunnan Company, Kunming 650032, P.R. China
| | - Yang Hu
- Chuxiong Prefecture Branch of Yunnan Tobacco Company, Chuxiong 675000, P.R. China
| | - Yishu Ding
- Chuxiong Prefecture Branch of Yunnan Tobacco Company, Chuxiong 675000, P.R. China
| | - Xinwei Ji
- Honghe Prefecture Branch of Yunnan Tobacco Company, Honghe, P.R. China
| | - Zhenfei Yang
- Honghe Prefecture Branch of Yunnan Tobacco Company, Honghe, P.R. China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, P.R. China
| | - Binbin Hu
- Yunnan Academy of Tobacco Agricultural Science, Kunming 650021, Yunnan, P.R. China
| |
Collapse
|
3
|
Mai J, Zhu MJ, Hu BB, Zhang H, Liu ZH, Sun JF, Hu Y, Zhao L. Effects of Phaffia rhodozyma on microbial community dynamics and tobacco quality during tobacco fermentation. Front Microbiol 2024; 15:1451582. [PMID: 39355430 PMCID: PMC11442207 DOI: 10.3389/fmicb.2024.1451582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Carotenoids are important precursors of various aroma components in tobacco and play an important role in the sensory quality of tobacco. Phaffia rhodozyma is a species of Xanthophyllomyces capable of synthesizing a highly valuable carotenoid-astaxanthin, but has not yet been used in improving tobacco quality. Methods The dynamic changes of microbial community and metabolites during tobacco fermentation were analyzed in combination with microbiome and metabolome, and the quality of tobacco after fermentation was evaluated by sensory scores. Results P. rhodozyma could grow and produce carotenoids in tobacco extract, with a maximum biomass of 6.50 g/L and a maximum carotenoid production of 36.13 mg/L at 100 g/L tobacco extract. Meanwhile, the correlation analysis combined with microbiome and metabolomics showed that P. rhodozyma was significantly positively correlated with 11 metabolites such as 6-hydroxyluteolin and quercetin. Furthermore, the contents of alcohols, ketones and esters, which were important aromatic components in fermented tobacco, reached 77.57 μg/g, 58.28 μg/g and 73.51 μg/g, increasing 37.39%, 265.39% and 266.27% compared to the control group, respectively. Therefore, the aroma and flavor, and taste scores of fermented tobacco increased by 0.5 and 1.0 points respectively. Discussion This study confirmed that P. rhodozyma fermentation could effectively improve the sensory evaluation of tobacco, and provided a novel microbial fermentation method to improve tobacco quality.
Collapse
Affiliation(s)
- Jing Mai
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou, China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou, China
| | - Bin-Bin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Hong Zhang
- Yunnan Tobacco Monopoly Bureau, Kunming, China
| | | | | | - Yang Hu
- Chuxiong State Tobacco Monopoly Bureau, Chuxiong, China
| | - Lu Zhao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| |
Collapse
|
4
|
Zhang W, Deng Q, Zhu B, Xiao D, Chen Q, Pan H, Chen J. Improving the Quality of Low-grade Tobacco by Enzymatic Treatment and Co-fermentation with Yeast and Lactic Acid Bacteria. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05007-0. [PMID: 39207681 DOI: 10.1007/s12010-024-05007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Enzymatic treatment is a promising method to modulate the chemical composition, flavoring substances and to enhance the sensory quality of cigarettes. This study investigates the feasibility of enzymatic treatment in conjunction with co-fermentation with yeast and lactic acid bacteria to improve the quality of low-quality cigarettes. Amylase, flavourzyme, glucoamylase, protease, and their combinations were used for the enzymatic treatment of tobacco-sorghum by using the liquid-state fermentation method. The biochemical components and flavor substances of the fermented products were analyzed. The findings show that amylase and glucoamylase can effectively degrade starch into fermentable reducing sugars, facilitate microbial growth and proliferation, and significantly enhance the levels of flavoring alcohols and esters. Flavourzyme and glucoamylase, either individually or combined with amylase, achieved a more balanced distribution of flavor substances in the products. Additionally, flavourzyme was capable of increasing the content of guaiacol, solanesol, and 2-acetylpyrrole in the fermented products, thereby improving the richness and depth of the cigarette flavor. While the protease treatment group showed fewer flavor substances and higher nicotine content, which was detrimental to the quality of cigarettes. When integrating the fermentation products into low-quality cigarettes, flavourzyme and glucoamylase combined with amylase treatment received higher scores in sensory quality evaluations. This study provides a beneficial strategy for effectively improving the quality of low-quality cigarettes.
Collapse
Affiliation(s)
- Wei Zhang
- Technology Center, China , Tobacco Yunnan Industrial Co., Ltd, Kunming, 650202, People's Republic of China
| | - Qian Deng
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Baokun Zhu
- Technology Center, China , Tobacco Yunnan Industrial Co., Ltd, Kunming, 650202, People's Republic of China
| | - Dong Xiao
- Technology Center, China , Tobacco Yunnan Industrial Co., Ltd, Kunming, 650202, People's Republic of China
| | - Qiuming Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Hongyang Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Jie Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
5
|
Xu X, Wang Q, Yang L, Chen Z, Zhou Y, Feng H, Zhang P, Wang J. Effects of Exocellobiohydrolase CBHA on Fermentation of Tobacco Leaves. J Microbiol Biotechnol 2024; 34:1727-1737. [PMID: 39049482 PMCID: PMC11380505 DOI: 10.4014/jmb.2404.04028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
The quality of tobacco is directly affected by macromolecular content, fermentation is an effective method to improve biochemical properties. In this study, we utilized CBHA (cellobiohydrolase A) glycosylase, which was expressed by Pichia pastoris, as an additive for fermentation. The contents of main chemical components of tobacco leaves after fermentation were determined, and the changes of microbial community structure and abundance in tobacco leaves during fermentation were analyzed. The relationship between chemical composition and changes in microbial composition was investigated, and the function of bacteria and fungi in fermentation was predicted to identify possible metabolic pathways. After 48 h of CBHA fermentation, the contents of starch, cellulose and total nitrogen in tobacco leaf decreased by 17.60%, 28.91% and 16.05%, respectively. The microbial community structure changed significantly, with Aspergillus abundance decreasing significantly, while Filobasidum, Cladosporium, Bullera, Komagataella, etc., increased in CBHA treated group. Soluble sugar was most affected by microbial community in tobacco leaves, which was negatively correlated with starch, cellulose and total nitrogen. During the fermentation process, the relative abundance of metabolism-related functional genes increased, and the expressions of cellulase and endopeptidase also increased. The results showed that the changes of bacterial community and dominant microbial community on tobacco leaves affected the content of chemical components in tobacco leaves, and adding CBHA for fermentation had a positive effect on improving the quality of tobacco leaves.
Collapse
Affiliation(s)
- Xueqin Xu
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Qianqian Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Longyan Yang
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Zhiyan Chen
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Yun Zhou
- China Tobacco Guangxi Industrial Co., Ltd., P.R. China
| | - Hui Feng
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Peng Zhang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Jie Wang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| |
Collapse
|
6
|
Lai X, Duan W, Zhang W, Peng Z, Wang X, Wang H, Qi X, Pi H, Chen K, Yan L. Integrative analysis of microbiome and metabolome revealed the effect of microbial inoculant on microbial community diversity and function in rhizospheric soil under tobacco monoculture. Microbiol Spectr 2024; 12:e0404623. [PMID: 38989997 PMCID: PMC11302352 DOI: 10.1128/spectrum.04046-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/28/2024] [Indexed: 07/12/2024] Open
Abstract
Over-application of chemical fertilizers and continuous cropping obstacles seriously restrict the sustainable development of tobacco production. Localized fertilization of beneficial microbes has potential advantages in achieving higher productivity, but the underlying biological mechanisms of interactions between rhizospheric microorganisms and the related metabolic cycle remain poorly characterized. Here, an integrative analysis of microbiomes with non-targeted metabolomics was performed on 30 soil samples of rhizosphere, root surrounding, and bulk soils from flue-cured tobacco under continuous and non-continuous monocropping systems. The analysis was conducted using UPLC-MS/MS platforms and high-throughput amplicon sequencing targeting the bacterial 16S rRNA gene and fungal ITS gene. The microbial inoculant consisted of Bacillus subtilis, B. velezensis, and B. licheniformis at the ratio of 1:1:1 in effective microbial counts, improved the cured leaf yield and disease resistance of tobacco, and enhanced nicotine and nitrogen contents of tobacco leaves. The bacterial taxa Rhizobium, Pseudomonas, Sphingomonadaceae, and Burkholderiaceae of the phylum Proteobacteria accumulated in high relative abundance and were identified as biomarkers following the application of the microbial inoculant. Under continuous monocropping, metabolomics demonstrated that the application of the microbial inoculant significantly affected the soil metabolite spectrum, and the differential metabolites were significantly enriched to the synthesis and degradation of nicotine (nicotinate and nicotinamide metabolism and biosynthesis of alkaloids derived from nicotinic acid). In addition, microbes were closely related to the accumulation of metabolites through correlation analysis. The interactions between plant roots and rhizospheric microorganisms provide valuable information for understanding how these beneficial microbes affect complex biological processes and the adaption capacity of plants to environments.IMPORTANCEThis study elaborated on how the microbial fertilizer significantly changed overall community structures and metabolite spectrum of rhizospheric microbes, which provide insights into the process of rhizosphere microbial remolding in response to continuous monocropping. we verified the hypothesis that the application of the microbial inoculant in continuous cropping would lead to the selection of distinct microbiota communities by establishing models to correlate biomarkers. Through correlation analysis of the microbiome and metabolome, we proved that rhizospheric microbes were closely related to the accumulation of metabolites, including the synthesis and degradation of nicotine. The interactions between plant roots and rhizospheric microorganisms provide valuable information for understanding how these beneficial microbes affect complex biological processes and the adaption capacity of plants to environments.
Collapse
Affiliation(s)
- Xianjun Lai
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan, China
| | - Wangjun Duan
- China Tobacco Sichuan Industrial Co. Ltd, Chengdu, China
| | - Wenyou Zhang
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan, China
| | - Zhengsong Peng
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan, China
| | - Xianjun Wang
- China Tobacco Sichuan Industrial Co. Ltd, Chengdu, China
| | - Haiyan Wang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaobo Qi
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan, China
| | - Huaqiang Pi
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan, China
| | - Kailu Chen
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan, China
| | - Lang Yan
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Liangshan, China
| |
Collapse
|
7
|
Wang X, Yang S, Gao Q, Dai Y, Tian L, Wen L, Yan H, Yang L, Hou X, Liu P, Zhang L. Multi-omics reveals the phyllosphere microbial community and material transformations in cigars. Front Microbiol 2024; 15:1436382. [PMID: 39144227 PMCID: PMC11322134 DOI: 10.3389/fmicb.2024.1436382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
The quality of fermented plant leaves is closely related to the interleaf microorganisms and their metabolic activities. In this experiment, a multi-omics analysis was applied to investigate the link between the structural composition of the phyllosphere microbial community and the main metabolites during the fermentation process. It was found that the whole fermentation process of cigar leaves could be divided into three stages, in which the Mid-Stage was the most active period of microbial metabolic activities and occupied an important position. Staphylococcus, Brevundimonas, Acinetobacter, Brevibacterium, Pantoea, Aspergillus, Wallemia, Meyerozyma, Sampaiozyma, Adosporium and Trichomonascus played important roles in this fermentation. Staphylococcus and Aspergillus are the microorganisms that play an important role in the fermentation process. Staphylococcus were strongly correlated with lipids and amino acids, despite its low abundance, Stenotrophomonas is importantly associated with terpene and plays a significant role throughout the process. It is worth noting that Wapper exists more characteristic fungal genera than Filler and is more rapid in fermentation progress, which implies that the details of the fermentation process should be adjusted appropriately to ensure stable quality when faced with plant leaves of different genotypes. This experiment explored the relationship between metabolites and microorganisms, and provided a theoretical basis for further optimizing the fermentation process of plant leaves and developing techniques to improve product quality. Biomarker is mostly present in the pre-fermentation phase, but the mid-fermentation phase is the most important part of the process.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Shuai Yang
- Yuxi Zhongyan Tobacco Seed Co., Ltd., Yu’xi, China
| | - Qiang Gao
- Shandong Linyi Tobacco Co., Ltd., Lin’yi, China
| | - Youqing Dai
- Cigar Operating Centre of China Tobacco Shandong Industrial Co., Ltd., Ji’nan, China
| | - Lei Tian
- Shandong Linyi Tobacco Co., Ltd., Lin’yi, China
| | - Liang Wen
- Shandong Linyi Tobacco Co., Ltd., Lin’yi, China
| | - Honghao Yan
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
8
|
Yao L, Zhang T, Shan Y, Yang J, Yu J, Yang C, Chen X. The impact of fangxian huangjiu on the fermentation quality and microbial community dynamics of cigar wrapper leaves. Front Bioeng Biotechnol 2024; 12:1428750. [PMID: 39119271 PMCID: PMC11306138 DOI: 10.3389/fbioe.2024.1428750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Cigar wrapper leaves (CWLs) plays a crucial role in reflecting cigar overall quality. Originating from the Qinba region of China, Fangxian Huangjiu (FHJ) is distinctive from other varieties of Huangjiu. Methods: To investigate the effects of FHJ on enhancing the aroma and quality of CWLs, as well as the consequent alterations in microbial communities, Gas Chromatography-Mass Spectrometry (GC-MS) coupled with Odor Active Value (OAV) analysis was utilized to evaluate the volatile aroma components of CWLs. Results and Discussion: The results indicated that the total amount of aroma compounds in CWLs reached 3,086.88 ug/g, increasing of 270.50% and 166.31% compared to the unfermented and naturally fermented groups, respectively. Among them, β-ionone and 4,7,9-megastigmatrien-3-one from the FHJ fermentation group significantly influenced the sensory characteristics of CWLs. Metagenomic results demonstrated that FHJ fermentation enriched the abundance of both shared and unique microbial species in CWLs, while also increased the diversity of differential microbial species. Addition of FHJ effectively altered the microbial community structure of CWLs from a dominance of Staphylococcus to a prevalence of Staphylococcus, Aspergillus, Pseudomonas, and Acinetobacter. The interactions among these diverse microorganisms collectively contribute to the enhancement of the intrinsic quality of CWLs. This paper provides a theoretical basis for improving the quality of CWLs by FHJ and exploring the changes of microbial community structure and interaction between CWLs and FHJ.
Collapse
Affiliation(s)
- Lan Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), College of Life and Health Science, Hubei University of Technology, Wuhan, China
| | - Tongtong Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), College of Life and Health Science, Hubei University of Technology, Wuhan, China
| | - Yule Shan
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), College of Life and Health Science, Hubei University of Technology, Wuhan, China
| | - Jingpeng Yang
- Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Jun Yu
- Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Chunlei Yang
- Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), College of Life and Health Science, Hubei University of Technology, Wuhan, China
| |
Collapse
|
9
|
Zhang M, Guo D, Wang H, Wu G, Shi Y, Zhou J, Zhao E, Zheng T, Li X. Analyzing microbial community and volatile compound profiles in the fermentation of cigar tobacco leaves. Appl Microbiol Biotechnol 2024; 108:243. [PMID: 38421433 PMCID: PMC10904427 DOI: 10.1007/s00253-024-13043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
Variations in industrial fermentation techniques have a significant impact on the fermentation of cigar tobacco leaves (CTLs), consequently influencing the aromatic attributes of the resulting cigars. The entire fermentation process of CTLs can be categorized into three distinct phases: phase 1 (CTLs prior to moisture regain), phase 2 (CTLs post-moisture regain and pile fermentation), and phase 3 (CTLs after fermentation and drying). These phases were determined based on the dynamic changes in microbial community diversity. During phase 2, there was a rapid increase in moisture and total acid content, which facilitated the proliferation of Aerococcus, a bacterial genus capable of utilizing reducing sugars, malic acid, and citric acid present in tobacco leaves. In contrast, fungal microorganisms exhibited a relatively stable response to changes in moisture and total acid, with Aspergillus, Alternaria, and Cladosporium being the dominant fungal groups throughout the fermentation stages. Bacterial genera were found to be more closely associated with variations in volatile compounds during fermentation compared to fungal microorganisms. This association ultimately resulted in higher levels of aroma components in CTLs, thereby improving the overall quality of the cigars. These findings reinforce the significance of industrial fermentation in shaping CTL quality and provide valuable insights for future efforts in the artificial regulation of secondary fermentation in CTLs. KEY POINTS: • Industrial fermentation processes impact CTLs microbial communities. • Moisture and total acid content influence microbial community succession in fermentation. • Bacterial microorganisms strongly influence CTLs' aldehyde and ketone flavors over fungi.
Collapse
Affiliation(s)
- Mingzhu Zhang
- Key Laboratory for Agricultural Products Processing, School of Food and Biological Engineering, Hefei University of Technology, Danxia Road 485#, Hefei, 230601, Anhui, China
| | - Dongfeng Guo
- Anhui China Tobacco Anhui Industry Co., Ltd., Huangshan Road 606#, Hefei, 230088, Anhui, China.
| | - Haiqing Wang
- Key Laboratory for Agricultural Products Processing, School of Food and Biological Engineering, Hefei University of Technology, Danxia Road 485#, Hefei, 230601, Anhui, China
| | - Guanglong Wu
- Key Laboratory for Agricultural Products Processing, School of Food and Biological Engineering, Hefei University of Technology, Danxia Road 485#, Hefei, 230601, Anhui, China
| | - Yaqi Shi
- Anhui China Tobacco Anhui Industry Co., Ltd., Huangshan Road 606#, Hefei, 230088, Anhui, China
| | - Jinlong Zhou
- Anhui China Tobacco Anhui Industry Co., Ltd., Huangshan Road 606#, Hefei, 230088, Anhui, China
| | - Eryong Zhao
- Key Laboratory for Agricultural Products Processing, School of Food and Biological Engineering, Hefei University of Technology, Danxia Road 485#, Hefei, 230601, Anhui, China
| | - Tianfei Zheng
- Key Laboratory for Agricultural Products Processing, School of Food and Biological Engineering, Hefei University of Technology, Danxia Road 485#, Hefei, 230601, Anhui, China
- Anhui China Tobacco Anhui Industry Co., Ltd., Huangshan Road 606#, Hefei, 230088, Anhui, China
| | - Xingjiang Li
- Key Laboratory for Agricultural Products Processing, School of Food and Biological Engineering, Hefei University of Technology, Danxia Road 485#, Hefei, 230601, Anhui, China.
| |
Collapse
|
10
|
Ma L, Wang Y, Wang X, Lü X. Solid-State Fermentation Improves Tobacco Leaves Quality via the Screened Bacillus subtilis of Simultaneously Degrading Starch and Protein Ability. Appl Biochem Biotechnol 2024; 196:506-521. [PMID: 37148443 DOI: 10.1007/s12010-023-04486-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
The process of tobacco aging plays a significant role in enhancing the smoking experience by improving the flavor and quality of tobacco leaves. During natural aging, the metabolic activity of the microbes on the surface of tobacco leaves will be greatly changed. Besides, starch and protein are two of the main macromolecular compounds causing the poor smoking quality of tobacco leaves which to be degraded for better tobacco quality. In this study, a bacterium with the simultaneously degrading ability of starch (degradation rate of 33.87%) and protein (degradation rate of 20%) has been screened out from high-class tobacco leaf and then inoculated into low-class tobacco leaf by solid-state fermentation for quality improvement. The changes in components related to carbon and nitrogen showed that the strain had an obvious effect on the quality improvement of tobacco leaves. After that, GC-MS analyses displayed the volatile flavor compounds which become rich and the flavor has been improved. It has been proved that inoculation solid-state fermentation by dominant strain could improve tobacco quality, as well as instead of the traditional natural aging process which greatly shortens the aging process. The work also offers a helpful strategy for solid-state products for deep fermentation.
Collapse
Affiliation(s)
- Lingling Ma
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Shaanxi Province, 712100, Yangling, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, China
| | - Ying Wang
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Shaanxi Province, 712100, Yangling, China
- Technology Center, China Tobacco Shaanxi Industrial Co., Ltd., Baoji, 721013, Shaanxi Province, China
| | - Xin Wang
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Shaanxi Province, 712100, Yangling, China
| | - Xin Lü
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Shaanxi Province, 712100, Yangling, China.
| |
Collapse
|
11
|
Si H, Cui B, Liu F, Zhao M. Microbial community and chemical composition of cigar tobacco ( Nicotiana tabacum L.) leaves altered by tobacco wildfire disease. PLANT DIRECT 2023; 7:e551. [PMID: 38099080 PMCID: PMC10719477 DOI: 10.1002/pld3.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Tobacco wildfire disease caused by Pseudomonas syringae pv. tabaci is one of the most destructive foliar bacterial diseases occurring worldwide. However, the effect of wildfire disease on cigar tobacco leaves has not been clarified in detail. In this study, the differences in microbiota and chemical factors between wildfire disease-infected leaves and healthy leaves were characterized using high-throughput Illumina sequencing and a continuous-flow analytical system, respectively. The results demonstrated significant alterations in the structure of the phyllosphere microbial community in response to wildfire disease, and the infection of P. syringae pv. tabaci led to a decrease in bacterial richness and diversity. Furthermore, the content of nicotine, protein, total nitrogen, and Cl- in diseased leaves significantly increased by 47.86%, 17.46%, 20.08%, and 72.77% in comparison to healthy leaves, while the levels of total sugar and reducing sugar decreased by 59.59% and 70.0%, respectively. Notably, the wildfire disease had little effect on the content of starch and K+. Redundancy analysis revealed that Pseudomonas, Staphylococcus, Cladosporium, and Wallemia displayed positive correlations with nicotine, protein, total nitrogen, Cl- and K+ contents, while Pantoea, Erwinia, Sphingomonas, Terrisporobacter, Aspergillus, Alternaria, Sampaiozyma, and Didymella displayed positive correlations with total sugar and reducing sugar contents. Brevibacterium, Brachybacterium, and Janibacter were found to be enriched in diseased leaves, suggesting their potential role in disease suppression. Co-occurrence network analysis indicated that positive correlations were prevalent in microbial networks, and the bacterial network of healthy tobacco leaves exhibited greater complexity compared to diseased tobacco leaves. This study revealed the impact of wildfire disease on the microbial community and chemical compositions of tobacco leaves and provides new insights for the biological control of tobacco wildfire disease.
Collapse
Affiliation(s)
- Hongyang Si
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province, College of Tobacco ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Bing Cui
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province, College of Tobacco ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Fang Liu
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province, College of Tobacco ScienceHenan Agricultural UniversityZhengzhouHenanChina
| | - Mingqin Zhao
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province, College of Tobacco ScienceHenan Agricultural UniversityZhengzhouHenanChina
| |
Collapse
|
12
|
Wu X, Hu Y, Wang Q, Liu J, Fang S, Huang D, Pang X, Cao J, Gao Y, Ning Y. Study on the correlation between the dominant microflora and the main flavor substances in the fermentation process of cigar tobacco leaves. Front Microbiol 2023; 14:1267447. [PMID: 38075898 PMCID: PMC10699171 DOI: 10.3389/fmicb.2023.1267447] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 09/28/2024] Open
Abstract
The flavor of cigar tobacco leaf determines the quality of finished cigar tobacco, and the enhancement of flavor generally relies on microbial fermentation. In this paper, the correlation between the dominant microorganisms and the main flavor substances of cigar tobacco leaves during fermentation and the correlation between the two were investigated to reveal the correlation between microorganisms and flavor and the metabolic pathways of microorganisms affecting the flavor substances. During the fermentation process, the main flavors of cigar tobacco leaves were sweet, light and grassy, with hexanal, 2,6-dimethylpyridine, nonanal, phenylacetaldehyde, naphthalene, and methyl benzoate as the main constituents, and the key microorganisms Haloferax mediterranei, Haloterrigena limicola, Candidatus Thorarchaeota archaeon SMTZ-45, the genera Methyloversatilis, Sphingomonas, Thauera, Pseudomonas, Penicillium, and Aspergillus. Correlation analysis revealed that fungi were negatively correlated with the main aroma and inhibited the main flavor substances, while bacteria were positively correlated with Benzoic acid, methyl ester in the main flavor substances, which was conducive to the accumulation of green aroma. Functional analysis revealed that the dominant bacterial population was producing aroma by metabolizing glycoside hydrolases and glycosyltransferases, performing amino acid metabolism, carbohydrate metabolism and film transport metabolism. The present study showed that the bacterial and fungal dominant microorganisms during the fermentation of cigar tobacco were influencing the production and degradation of the main flavor substances through the enzyme metabolism by the occurrence of the Merad reaction.
Collapse
Affiliation(s)
- Xue Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanqi Hu
- Shandong China Tobacco Industry Limited Company, Jinan, China
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jian Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Song Fang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Dewen Huang
- Hunan Tobacco Company Chenzhou Company, Chenzhou, China
| | - Xueli Pang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jianmin Cao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yumeng Gao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Ning
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
13
|
Si H, Zhou K, Zhao T, Cui B, Liu F, Zhao M. The bacterial succession and its role in flavor compounds formation during the fermentation of cigar tobacco leaves. BIORESOUR BIOPROCESS 2023; 10:74. [PMID: 38647588 PMCID: PMC10992852 DOI: 10.1186/s40643-023-00694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/03/2023] [Indexed: 04/25/2024] Open
Abstract
Fermentation is the key process required for developing the characteristic properties of cigar tobacco leaves, complex microorganisms are involved in this process. However, the microbial fermentation mechanisms during the fermentation process have not been well-characterized. This study investigated the dynamic changes in conventional chemical composition, flavor compounds, and bacterial community during the fermentation of cigar tobacco leaves from Hainan and Sichuan provinces in China, as well as the potential roles of bacteria. Fermentation resulted in a reduction of conventional chemical components in tobacco leaves, with the exception of a noteworthy increase in insoluble protein content. Furthermore, the levels of 10 organic acids and 19 amino acids showed a significant decrease, whereas the concentration of 30 aromatic substances exhibited a unimodal trend. Before fermentation, the bacterial community structures and dominant bacteria in Hainan and Sichuan tobacco leaves differed significantly. As fermentation progressed, the community structures in the two regions became relatively similar, with Delftia, Ochrobactrum, Rhodococcus, and Stenotrophomonas being dominant. Furthermore, a total of 12 functional bacterial genera were identified in Hainan and Sichuan tobacco leaves using bidirectional orthogonal partial least squares (O2PLS) analysis. Delftia, Ochrobactrum, and Rhodococcus demonstrated a significant negative correlation with oleic acid and linoleic acid, while Stenotrophomonas and Delftia showed a significant negative correlation with undesirable amino acids, such as Ala and Glu. In addition, Bacillus showed a positive correlation with benzaldehyde, while Kocuria displayed a positive correlation with 2-acetylfuran, isophorone, 2, 6-nonadienal, and β-damascenone. The co-occurrence network analysis of microorganisms revealed a prevalence of positive correlations within the bacterial network, with non-abundant bacteria potentially contributing to the stabilization of the bacterial community. These findings can improve the overall tobacco quality and provide a novel perspective on the utilization of microorganisms in the fermentation of cigar tobacco leaves.
Collapse
Affiliation(s)
- Hongyang Si
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Henan Agricultural University, No.218 Ping An Avenue, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Kun Zhou
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Henan Agricultural University, No.218 Ping An Avenue, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Tingyi Zhao
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Henan Agricultural University, No.218 Ping An Avenue, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Bing Cui
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Henan Agricultural University, No.218 Ping An Avenue, Zhengdong New District, Zhengzhou, 450046, Henan, China.
| | - Fang Liu
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Henan Agricultural University, No.218 Ping An Avenue, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Mingqin Zhao
- College of Tobacco Science, Flavors and Fragrance Engineering & Technology Research Center of Henan Province, Henan Agricultural University, No.218 Ping An Avenue, Zhengdong New District, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
14
|
Zhang Q, Yang S, Yang Z, Zheng T, Li P, Zhou Q, Cai W, Wang Y, Zhang J, Ji X, Li D. Effects of a novel microbial fermentation medium produced by Tremella aurantialba SCT-F3 on cigar filler leaf. Front Microbiol 2023; 14:1267916. [PMID: 37808308 PMCID: PMC10556473 DOI: 10.3389/fmicb.2023.1267916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Adding a fermentation medium is an effective way to improve the quality of cigar tobacco leaves. Methods A novel microbial fermentation medium produced by an edible medicinal fungus, Tremella aurantialba SCT-F3 (CGMCC No.23831) was used to improve the quality of cigar filler leaves (CFLs). Changes in sensory quality, chemical components, volatile flavor compounds (VFCs), and the structure and function of microbes were investigated during the fermentation process. Results The sensory quality of CFLs supplemented with the T. aurantialba SCT-F3 fermentation medium significantly improved. Adding the fermentation medium increased the total alkaloid, reducing sugar, total sugar, and 12 VFCs significantly. A total of 31 microbial genera were significantly enriched, which increased the microbial community's richness and diversity. Microbial functions increased, including nucleotide biosynthesis, amino acid biosynthesis, fatty acid and lipid biosynthesis, nicotine degradation, and nicotinate degradation. During fermentation, the total alkaloid, reducing sugar, and total sugar content decreased. The richness and diversity of the microbial community decreased, whereas bacterial enzyme activity increased. At the end of fermentation, the sensory quality was excellent. The microbial structure gradually stabilized, and functional genes were low. The contents of the four Maillard reaction products and three nicotine degradation products increased significantly. 2-Ethyl-6-methylpyrazine, methylpyrazine, D,L-anatabine, β-nicotyrine, nicotinic degradation products, and total nitrogen were significantly and positively correlated with sensory quality. Methylpyrazine, D,L-anatabine, and β-nicotyrine were negatively correlated with Luteimonas, Mitochondria, Paracoccus, Stemphylium, and Stenotrophomonas. Conclusion This research provides not only a new microbial fermentation medium that utilizes edible and medicinal fungi to improve the quality of fermented CFLs, but also new ideas for the development and application of other edible medicinal fungi to improve the quality of cigar tobacco leaves.
Collapse
Affiliation(s)
- Qianying Zhang
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Shuanghong Yang
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Zhen Yang
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Tianfei Zheng
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Pinhe Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Quanwei Zhou
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Wen Cai
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Yue Wang
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Juan Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xiaoying Ji
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| | - Dongliang Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Cigar Technology Innovation Center of China Tobacco, Chengdu, China
- Industrial Efficient Utilization of Domestic Cigar Tobacco Key Laboratory of Sichuan Province, Shifang, China
| |
Collapse
|
15
|
Jia Y, Zhou W, Yang Z, Zhou Q, Wang Y, Liu Y, Jia Y, Li D. A critical assessment of the Candida strains isolated from cigar tobacco leaves. Front Bioeng Biotechnol 2023; 11:1201957. [PMID: 37691904 PMCID: PMC10485251 DOI: 10.3389/fbioe.2023.1201957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction: Candida genus plays a crucial role in cigar fermentation, and strains from different sources might have differences in metabolic characteristics. Therefore, this study conducted directional isolation of Candida strains from cigar tobacco leaves and compared their fermentabilities to screen suitable strains for cigar fermentation, thereby improving the cigar quality. Methods: First, the Candida strains from cigars tobacco leaves in different production areas were directionally isolated by pure culture. Then, the isolated strains were screened based on chemical indexes and flavor component contents. Finally, the fermentabilities of preferred strains were verified by sensory evaluation. Results: Five strains of C. parapsilosis and four strains of C. metapsilosis were obtained through directional isolation. By comparing the physicochemical indexes of nine strains of Candida, it was found that C. parapsilosis P1 and C. metapsilosis M4 not only reduced the alkaloids content (by 25.3% and 32.6%, respectively) but also increased the flavor components content (by 25.2% and 18.9%, respectively). Among them, P1 could raise the content of chlorophyll degradation products, carotenoid degradation products, and Maillard reaction products, and enhance the beany and nutty flavor of cigars. M4 could raise the content of chlorophyll degradation products, cembranoids degradation products, and Maillard reaction products, and improve the baking, nutty, cocoa, and honey flavor of the cigar. Discussion: In this study, the Candida strains were directionally isolated from cigars tobacco leaves in different production areas, and two functional strains suitable for cigar fermentation were screened based on physicochemical indexes and sensory evaluation, which would contribute to the directed regulation of cigar quality and flavor diversification.
Collapse
Affiliation(s)
- Yun Jia
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co Ltd., Chengdu, Sichuan, China
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co Ltd., Shifang, Sichuan, China
| | - Wen Zhou
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co Ltd., Shifang, Sichuan, China
| | - Zhen Yang
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co Ltd., Chengdu, Sichuan, China
| | - Quanwei Zhou
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co Ltd., Chengdu, Sichuan, China
| | - Yue Wang
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co Ltd., Chengdu, Sichuan, China
| | - Yi Liu
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co Ltd., Shifang, Sichuan, China
| | - Yuhong Jia
- Industry Efficient Utilization to Domestic Cigar Tobacco Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co Ltd., Shifang, Sichuan, China
| | - Dongliang Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Sichuan Industrial Co Ltd., Chengdu, Sichuan, China
| |
Collapse
|
16
|
Yao L, Ding J, Zhang T, Jia Y, Dai J, Zheng X, Yu J, Yang C, Chen X. Heterogeneity changes of active bacterial community on cigar filler leaves after fermentation based on metagenome. Biosci Biotechnol Biochem 2023; 87:1056-1067. [PMID: 37279907 DOI: 10.1093/bbb/zbad071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Microorganisms play an important role in cigar fermentation. To further explore the dynamic changes of bacterial community composition, the changes of surface bacterial diversity of cigar filler leaves were investigated in the present study by high-throughput sequencing technology. It was found that the surface bacterial richness was declined after fermentation, and the dominant microorganisms on the surface of cigar filler leaves evolved from Pseudomonas spp. and Sphingomonas spp. before fermentation to Staphylococcus spp. after fermentation. The chemical composition and sensory quality evaluation of cigar filler leaves were closely related to the changes of surface bacterial community. The changes of the dominant surface bacterial community led to the differences of metabolic functions, among which the metabolic pathways such as the synthesis of secondary metabolites, carbon metabolism, and amino acid biosynthesis were significantly different. The results provide a basis for clarifying the roles of bacteria in fermentation of cigar filler leaves.
Collapse
Affiliation(s)
- Lan Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, 28th of Nanli Road, Wuhan, China
| | - Jingyi Ding
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, 28th of Nanli Road, Wuhan, China
| | - Tongtong Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, 28th of Nanli Road, Wuhan, China
| | - Youpiao Jia
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, 28th of Nanli Road, Wuhan, China
| | - Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, 28th of Nanli Road, Wuhan, China
| | - Xueyun Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, 28th of Nanli Road, Wuhan, China
| | - Jun Yu
- Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Chunlei Yang
- Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), College of Bioengineering, Hubei University of Technology, 28th of Nanli Road, Wuhan, China
| |
Collapse
|
17
|
Wu Q, Peng Z, Pan Y, Liu L, Li L, Zhang J, Wang J. Interaction analysis of tobacco leaf microbial community structure and volatiles flavor compounds during cigar stacking fermentation. Front Microbiol 2023; 14:1168122. [PMID: 37637131 PMCID: PMC10457113 DOI: 10.3389/fmicb.2023.1168122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Cigar stacking fermentation is a key step in tobacco aroma enhancement and miscellaneous gas reduction, which both have a great influence on increasing cigar flavor and improving industrial availability. Methods To analyze the effect of cigar tobacco leaf (CTLs) microbial community on volatiles flavor compounds (VFCs), this study used multi-omics technology to reveal the changes in microbial community structure and VFCs of different cigar varieties during stacking fermentation, in addition to exploring the interaction mechanism of microbiome and VFCs. Results The results showed that the dominant microbial compositions of different CTL varieties during stacking fermentation were similar, which included Staphylococcus, Corynebacterium 1, Aerococcus, and Aspergillus. These dominant microbes mainly affected the microbial community structure and characteristic microorganisms of CTLs through microbial interactions, thereby influencing the transformation of VFCs. Characteristic microorganisms of different CTLs varieties such as Trichothecium, Trichosporon, Thioalkalicoccus and Jeotgalicoccus, were found to positively correlate with characteristic VFCs like megastigmatrienone 4, pyrazine, tetramethyl-, geranyl acetone, and 2-undecanone, 6,10-dimethyl-, respectively. This in turn affected the aroma and sensory quality of the CTLs. Discussion This study provides theoretical support for the analysis of the mechanism of microorganisms on VFCs and aroma, and development of microbial agents during cigar stacking fermentation.
Collapse
Affiliation(s)
- Qiaoyin Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Yong Pan
- China Tobacco Hubei Industrial Co., Ltd, Wuhan, China
| | - Liping Liu
- China Tobacco Hubei Industrial Co., Ltd, Wuhan, China
| | - Linlin Li
- China Tobacco Hubei Industrial Co., Ltd, Wuhan, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jian Wang
- China Tobacco Hubei Industrial Co., Ltd, Wuhan, China
| |
Collapse
|
18
|
Xue F, Yang J, Luo C, Li D, Shi G, Song G, Li Y. Metagenomic insight into the biodegradation of biomass and alkaloids in the aging process of cigar. BIORESOUR BIOPROCESS 2023; 10:45. [PMID: 38647787 PMCID: PMC10992288 DOI: 10.1186/s40643-023-00667-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/16/2023] [Indexed: 04/25/2024] Open
Abstract
A significant distinction between cigar production and tobacco lies in the necessary aging process, where intricate microbial growth, metabolic activities, enzymatic catalysis, and chemical reactions interact. Despite its crucial role in determining the final quality of cigars, our comprehension of the underlying chemical and biological mechanisms within this process remains insufficient. Biomass and alkaloids are the primary constituents that influence the flavor of cigars. Consequently, investigating the entire aging process could begin by exploring the involvement of microbes and enzymes in their biodegradation. In this study, handmade cigars were aged under different conditions. Metagenomic sequencing was employed to identify the microbes and enzymes responsible for the degradation of biomass and alkaloids derived from tobacco leaves. The results revealed that various environmental factors, including temperature, humidity, duration time, and turning frequency, yielded varying contents of total sugar and alkaloids in the cigars. Significant correlations were observed between microbial communities and starch, reducing sugars, total sugars, and alkaloids. Key species involved in the breakdown of biomass constituents, such as starch (Bacillus pumilus, Pseudomonas sp. 286, and Aspergillus cristatus), reducing sugars and total sugars (Aspergillus cristatus and Nitrolancea hollandica), were identified. Furthermore, Corynespora cassiicola and Pseudomonas fulva were found to potentially contribute to the degradation of alkaloid compounds, specifically nornicotine and neonicotinoid. Our work contributes to a deeper understanding of the microbial roles in the aging of cigars. Moreover, the selection of specific microbial strains or starter cultures can be employed to control and manipulate the aging process, thereby further refining the flavor development in cigar products.
Collapse
Affiliation(s)
- Fang Xue
- Key Laboratory of Chinese Cigar Fermentation, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, China
| | - Juan Yang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Cheng Luo
- Key Laboratory of Chinese Cigar Fermentation, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, China
| | - Dongliang Li
- Key Laboratory of Chinese Cigar Fermentation, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, China
| | - Guiyang Shi
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Guangfu Song
- Key Laboratory of Chinese Cigar Fermentation, Cigar Technology Innovation Center of China Tobacco, China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, China
| | - Youran Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Ning Y, Mai J, Hu BB, Lin ZL, Chen Y, Jiang YL, Wei MY, Zhu MJ. Study on the effect of enzymatic treatment of tobacco on HnB cigarettes and microbial succession during fermentation. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12577-2. [PMID: 37209161 DOI: 10.1007/s00253-023-12577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/17/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
Starch and cellulose are the fundamental components of tobacco, while their excessive content will affect the quality of tobacco. Enzymatic treatment with different enzymes is a promising method to modulate the chemical composition and improve the sensory quality of tobacco leaves. In this study, enzymatic treatments, such as amylase, cellulase, and their mixed enzymes, were used to improve tobacco quality, which could alter the content of total sugar, reducing sugar, starch, and cellulose in tobacco leaves. The amylase treatment changed surface structure of tobacco leaves, increased the content of neophytadiene in tobacco by 16.48%, and improved the total smoking score of heat-not-burn (HnB) cigarette products by 5.0 points compared with the control. The Bacillus, Rubrobacter, Brevundimonas, Methylobacterium, Stenotrophomonas, Acinetobacter, Pseudosagedia-chlorotica, and Sclerophora-peronella were found to be significant biomarkers in the fermentation process by LEfSe analysis. The Basidiomycota and Agaricomycetes were significantly correlated with aroma and flavor, taste, and total score of HnB. The results showed that microbial community succession occurred due to amylase treatment, which promoted the formation of aroma compounds, and regulated the chemical composition of tobacco, and improved tobacco quality during tobacco fermentation. This study provides a method for enzymatic treatment to upgrade the quality of tobacco raw materials, thereby improving the quality of HnB cigarettes, and the potential mechanism is also revealed by chemical composition and microbial community analysis. KEY POINTS: Enzymatic treatment can change the chemical composition of tobacco leaves. The microbial community was significantly affected by enzymatic treatment. The quality of HnB cigarettes was significantly improved by amylase treatment.
Collapse
Affiliation(s)
- Ying Ning
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, People's Republic of China
| | - Jing Mai
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, People's Republic of China
| | - Bin-Bin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China.
| | - Zhong-Long Lin
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Yong-Lei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Ming-Yang Wei
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, 510006, People's Republic of China.
- College of Life and Geographic Sciences, The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities Under the Department of Education of Xinjiang Uygur Autonomous Region, Kashi University, Kashi, 844006, People's Republic of China.
| |
Collapse
|
20
|
Li J, Zhao Y, Yang H, Yang X, Wang J, Zhou J, Shi H. Identification of Bacteria Associated with Tobacco Mildew and Tobacco-Specific Nitrosamines During Tobacco Fermentation. Curr Microbiol 2023; 80:218. [PMID: 37204530 DOI: 10.1007/s00284-023-03314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/25/2023] [Indexed: 05/20/2023]
Abstract
Tobacco mildew and tobacco-specific nitrosamines (TSNAs) affect the quality of tobacco products during fermentation. Microbes are thought to play key roles in the development of specific properties of fermented tobacco; however, little is known about the bacteria involved in the fermentation process. This study aims to identify key microbes related to mildew and TSNA formation. Tobacco was fermented at 25 °C, 35 °C, and 45 °C for 2, 4, and 6 weeks, with unfermented samples used as controls. Our preliminary exploration found that TSNAs content elevated with the increase of temperature and period, and mildew was easy to occur at low temperature with short period. Hence, samples were divided into three groups: the temperature gradient group (25 °C, 35 °C, and 45 °C for 6 weeks); the low-temperature group (control, 25 °C for 2, 4, and 6 weeks); and the high-temperature group (control, 45 °C for 2, 4, and 6 weeks). After collecting fermented tobacco leaves, 16S rRNA gene sequencing was used to explore the structure and dynamic changes of bacterial community during fermentation. Methylobacterium and Deinococcus were shared between the temperature gradient and high-temperature groups and showed a linear downward trend; these might play a role in the production of TSNAs. Massilia, Ruminiclostridium, and Cellulosilyticum species increased with prolonged fermentation time in the low-temperature group; this might be associated with tobacco mildew. In summary, the microbial diversity of fermented tobacco was explored under different conditions. These findings might provide data and material support to improve the quality of fermented tobacco products; however, further omics based studies are warranted to analysis the gene and protein expression patter in the identified bacteria.
Collapse
Affiliation(s)
- Jingjing Li
- College of Tobacco Science/Tobacco Harm Reduction Research Center, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002, Henan, China
| | - Yuanyuan Zhao
- College of Tobacco Science/Tobacco Harm Reduction Research Center, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002, Henan, China
| | - Huijuan Yang
- College of Tobacco Science/Tobacco Harm Reduction Research Center, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002, Henan, China
| | - Xingyou Yang
- College of Tobacco Science/Tobacco Harm Reduction Research Center, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002, Henan, China
| | - Jun Wang
- Deyang Branch of Sichuan Tobacco Company, Deyang, 618000, Sichuan, China
| | - Jun Zhou
- Shanghai Tobacco Group, No. 717 Changyang Road, Yangpu District, Shanghai, 200082, China
| | - Hongzhi Shi
- College of Tobacco Science/Tobacco Harm Reduction Research Center, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
21
|
Ning Y, Zhang LY, Mai J, Su JE, Cai JY, Chen Y, Jiang YL, Zhu MJ, Hu BB. Tobacco microbial screening and application in improving the quality of tobacco in different physical states. BIORESOUR BIOPROCESS 2023; 10:32. [PMID: 38647749 PMCID: PMC10992236 DOI: 10.1186/s40643-023-00651-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/09/2023] [Indexed: 04/25/2024] Open
Abstract
The first-cured tobacco contains macromolecular substances with negative impacts on tobacco products quality, and must be aged and fermented to mitigate their effects on the tobacco products quality. However, the natural fermentation takes a longer cycle with large coverage area and low economic efficiency. Microbial fermentation is a method to improve tobacco quality. The change of chemical composition of tobacco during the fermentation is often correlated with shapes of tobacco. This study aimed to investigate the effects of tobacco microorganisms on the quality of different shapes of tobacco. Specifically, Bacillus subtilis B1 and Cytobacillus oceanisediminis C4 with high protease, amylase, and cellulase were isolated from the first-cured tobacco, followed by using them for solid-state fermentation of tobacco powder (TP) and tobacco leaves (TL). Results showed that strains B1 and C4 could significantly improve the sensory quality of TP, enabling it to outperform TL in overall texture and skeleton of tobacco products during cigarette smoking. Compared with the control, microbial fermentation could increase reducing sugar; regulate protein, starch, and cellulose, reduce nicotine, improve total aroma substances, and enable the surface of fermented TP and TL to be more loose, wrinkled, and porous. Microbial community analysis indicated that strains B1 and C4 could change the native structure of microbial community in TP and TL. LEfSe analysis revealed that the potential key biomarkers in TP and TL were Bacilli, Pseudonocardia, Pantoea, and Jeotgalicoccus, which may have cooperative effects with other microbial taxa in improving tobacco quality. This study provides a theoretical basis for improving tobacco fermentation process for better cigarettes quality.
Collapse
Affiliation(s)
- Ying Ning
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Panyu, Guangzhou, 510006, People's Republic of China
| | - Li-Yuan Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Panyu, Guangzhou, 510006, People's Republic of China
| | - Jing Mai
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Panyu, Guangzhou, 510006, People's Republic of China
| | - Jia-En Su
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Jie-Yun Cai
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Yong-Lei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou Higher Education Mega Center, South China University of Technology, Panyu, Guangzhou, 510006, People's Republic of China.
- College of Life and Geographic Sciences, The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities Under the Department of Education of Xinjiang Uygur Autonomous Region, Kashi University, Kashi, 844006, China.
| | - Bin-Bin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China.
| |
Collapse
|
22
|
Jia Y, Liu Y, Hu W, Cai W, Zheng Z, Luo C, Li D. Development of Candida autochthonous starter for cigar fermentation via dissecting the microbiome. Front Microbiol 2023; 14:1138877. [PMID: 36910204 PMCID: PMC9998997 DOI: 10.3389/fmicb.2023.1138877] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction The main goal of tobacco fermentation technology is to minimize the alkaloid content while improving flavor substance content. Methods This study revealed the microbial community structure and their metabolic functions during cigar leaf fermentation by high-throughput sequencing and correlation analysis, and evaluated the fermentation performance of functional microbes based on in vitro isolation and bioaugmentation fermentation. Results The relative abundance of Staphylococcus and Aspergillus increased first but then decreased during the fermentation, and would occupy the dominant position of bacterial and fungal communities, respectively, on the 21st day. Correlation analysis predicted that Aspergillus, Staphylococcus and Filobasidium could contribute to the formation of saccharide compounds, Bacillus might have degradation effects on nitrogenous substances. In particular, Candida, as a co-occurring taxa and biomarker in the later stage of fermentation, could not only degrade nitrogenous substrates and synthesize flavor substances, but also contribute to maintaining the stability of microbial community. Moreover, based on in vitro isolation and bioaugmentation inoculation, it was found that Candida parapsilosis and Candida metapsilosis could significantly reduce the alkaloids content and increase the content of flavor components in tobacco leaves. Discussion This study found and validated the critical role of Candida in the fermentation of cigar tobacco leaves through high-throughput sequencing and bioaugmentation inoculation, which would help guide the development of microbial starters and directional regulation of cigar tobacco quality.
Collapse
Affiliation(s)
- Yun Jia
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanrong Hu
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| | - Wen Cai
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| | - Zhaojun Zheng
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cheng Luo
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| | - Dongliang Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| |
Collapse
|
23
|
Liu T, Guo S, Wu C, Zhang R, Zhong Q, Shi H, Zhou R, Qin Y, Jin Y. Phyllosphere microbial community of cigar tobacco and its corresponding metabolites. Front Microbiol 2022; 13:1025881. [PMID: 36439836 PMCID: PMC9691965 DOI: 10.3389/fmicb.2022.1025881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 08/29/2023] Open
Abstract
Cigar is made of a typical fermented tobacco where the microbiota inhabits within an alkaline environment. Our current understanding on cigar fermentation is far from thorough. This work employed both high-throughput sequencing and chromatography-mass spectrometric technologies to provide new scientific reference for this specific fermented system. Typical cigar samples from different regions (the Caribbeans, South America, East Asia, and Southeast Asia) were investigated. The results show that Firmicutes, Actinobacteria, Proteobacteria, Ascomycota, and Basidiomycota were the predominant phyla in the cigar samples. Rather than the fungal community, it was the bacterial community structures that played vital roles to differentiate the cigar from different regions: Staphylococcus was the dominant genus in the Americas; Bacillus was the dominant genus in Southeast Asia; while in East Asia, there was no dominant genus. Such differences in community structure then affected the microflora metabolism. The correlation between microbiota and metabolites revealed that Aspergillaceae, Cercospora, and Staphylococcus were significantly correlated with sclareolide; Bacillus were positively associated with isophorone. Alcaligenaceae was significantly and positively correlated with L-nicotine and hexadecanoic acid, methyl ester. GRAPHICAL ABSTRACT.
Collapse
Affiliation(s)
- Tiantian Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Shiping Guo
- R&D Department, Sichuan Provincial Branch of China National Tobacco Crop Tobacco Science Institute, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Ruina Zhang
- R&D Department, Deyang Tobacco Company of Sichuan Province, Sichuan, Deyang, China
| | - Qiu Zhong
- R&D Department, Deyang Tobacco Company of Sichuan Province, Sichuan, Deyang, China
| | - Hongzhi Shi
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yanqing Qin
- R&D Department, Sichuan Provincial Branch of China National Tobacco Crop Tobacco Science Institute, Chengdu, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|