1
|
Al-Shaarani AAQA, Pecoraro L. A review of pathogenic airborne fungi and bacteria: unveiling occurrence, sources, and profound human health implication. Front Microbiol 2024; 15:1428415. [PMID: 39364169 PMCID: PMC11446796 DOI: 10.3389/fmicb.2024.1428415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Airborne fungi and bacteria have been extensively studied by researchers due to their significant effects on human health. We provided an overview of the distribution and sources of airborne pathogenic microbes, and a detailed description of the detrimental effects that these microorganisms cause to human health in both outdoor and indoor environments. By analyzing the large body of literature published in this field, we offered valuable insights into how airborne microbes influence our well-being. The findings highlight the harmful consequences associated with the exposure to airborne fungi and bacteria in a variety of natural and human-mediated environments. Certain demographic groups, including children and the elderly, immunocompromised individuals, and various categories of workers are particularly exposed and vulnerable to the detrimental effect on health of air microbial pollution. A number of studies performed up to date consistently identified Alternaria, Cladosporium, Penicillium, Aspergillus, and Fusarium as the predominant fungal genera in various indoor and outdoor environments. Among bacteria, Bacillus, Streptococcus, Micrococcus, Enterococcus, and Pseudomonas emerged as the dominant genera in air samples collected from numerous environments. All these findings contributed to expanding our knowledge on airborne microbe distribution, emphasizing the crucial need for further research and increased public awareness. Collectively, these efforts may play a vital role in safeguarding human health in the face of risks posed by airborne microbial contaminants.
Collapse
Affiliation(s)
- Amran A. Q. A. Al-Shaarani
- College of Pharmaceutical Science & Moganshan Research Institute at Deqing County, Zhejiang University of Technology, Hangzhou, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lorenzo Pecoraro
- College of Pharmaceutical Science & Moganshan Research Institute at Deqing County, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
2
|
Plewa-Tutaj K, Krzyściak P, Dobrzycka A. Mycological air contamination level and biodiversity of airborne fungi isolated from the zoological garden air - preliminary research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43066-43079. [PMID: 38890249 PMCID: PMC11222260 DOI: 10.1007/s11356-024-33926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
The aim of this paper was to evaluate the degree of mycological air contamination and determine the taxonomic diversity of airborne fungi residing in the air of 20 different animal facilities in a zoological garden. The concentrations of fungi in the zoological garden were measured using a MAS-100 air sampler. The collected microorganisms were identified using the combination of molecular and morphological methods. The fungal concentration ranged from 50 to 3.65 × 104 CFU/m3 during the whole study. The quantitative analysis of the fungal aerosol showed that the obtained concentration values were lower than the recommended permissible limits (5 × 104 CFU/m3 for fungi). Environmental factors, including temperature and relative humidity, exerted a varying effect on the presence and concentration of isolated fungi. Relative humidity was shown to correlate positively with the concentration of fungal spores in the air of the facilities studied (rho = 0.57, p < 0.0021). In parallel, no significant correlation was established between temperature and total fungal concentration (rho = - 0.1, p < 0.2263). A total of 112 fungal strains belonging to 50 species and 10 genera were isolated. Penicillium was the dominant genera, including 58.9% of total fungal strains, followed by Aspergillus 25.89%, Cladosporium 3.57%, Talaromyces 3.57%, Mucor 1.78%, Schizophyllum 1.78%, Syncephalastrum 0.89%, Alternaria 0.89%, Absidia 0.89%, and Cunninghamella 0.89%. Our preliminary studies provide basic information about the fungal concentrations, as well as their biodiversity in zoological garden. Further studies are needed to generate additional data from long-term sampling in order to increase our understanding of airborne fungal composition in the zoological garden.
Collapse
Affiliation(s)
- Kinga Plewa-Tutaj
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wroclaw, Wrocław, 51-148, Poland.
| | - Paweł Krzyściak
- Department of Infection Control and Mycology, Chair of Microbiology, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| | - Aleksandra Dobrzycka
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wroclaw, Wrocław, 51-148, Poland
| |
Collapse
|
3
|
Palomba E, Colaneri M, Azzarà C, Fava M, Maccaro A, Renisi G, Viero G, Kaur H, Chakrabarti A, Gori A, Lombardi A, Bandera A. Epidemiology, Clinical Manifestations, and Outcome of Mucormycosis in Solid Organ Transplant Recipients: A Systematic Review of Reported Cases. Open Forum Infect Dis 2024; 11:ofae043. [PMID: 38887489 PMCID: PMC11181195 DOI: 10.1093/ofid/ofae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/25/2024] [Indexed: 06/20/2024] Open
Abstract
Mucormycosis is an emerging disease primarily affecting the immunocompromised host, but scarce evidence is available for solid organ transplant recipients (SOTRs). We systematically reviewed 183 cases occurring in SOTRs, exploring epidemiology, clinical characteristics, causative pathogens, therapeutic approaches, and outcomes. Kidney transplants accounted for half of the cases, followed by heart (18.6%), liver (16.9%), and lung (10.4%). Diagnosis showed a dichotomous distribution, with 63.7% of cases reported within 100 days of transplantation and 20.6% occurring at least 1 year after transplant. The 90-day and 1-year mortality rates were 36.3% and 63.4%, respectively. Disseminated disease had the highest mortality at both time points (75% and 93%). Treatment with >3 immunosuppressive drugs showed a significant impact on 90-day mortality (odds ratio [OR], 2.33; 95% CI, 1.02-5.66; P = .0493), as did a disseminated disease manifestation (OR, 8.23; 95% CI, 2.20-36.71; P = .0027) and the presence of diabetes (OR, 2.35; 95% CI, 1.01-5.65; P = .0497). Notably, prophylaxis was administered to 12 cases with amphotericin B. Further investigations are needed to validate these findings and to evaluate the potential implementation of prophylactic regimens in SOTRs at high risk.
Collapse
Affiliation(s)
- Emanuele Palomba
- Department of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy
- Centre for Multidisciplinary Research in Health Science, University of Milan, Milan, Italy
| | - Marta Colaneri
- Department of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy
- Centre for Multidisciplinary Research in Health Science, University of Milan, Milan, Italy
| | - Cecilia Azzarà
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Fava
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angelo Maccaro
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Renisi
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Viero
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Harsimran Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Institution and Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Infectious Disease and Microbiology, Doodhadhari Burfani Hospital and Research Institute, Haridwar, India
| | - Andrea Gori
- Department of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy
- Centre for Multidisciplinary Research in Health Science, University of Milan, Milan, Italy
| | - Andrea Lombardi
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Franconi I, Rizzato C, Ghelardi E, Lupetti A. Hospital distribution, seasonality, time trends and antifungal susceptibility profiles of all Aspergillus species isolated from clinical samples from 2015 to 2022 in a tertiary care hospital. BMC Microbiol 2024; 24:111. [PMID: 38570761 PMCID: PMC10988875 DOI: 10.1186/s12866-024-03267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Aspergillus species cause a variety of serious clinical conditions with increasing trend in antifungal resistance. The present study aimed at evaluating hospital epidemiology and antifungal susceptibility of all isolates recorded in our clinical database since its implementation. METHODS Data on date of isolation, biological samples, patients' age and sex, clinical settings, and antifungal susceptibility tests for all Aspergillus spp. isolated from 2015 to 2022 were extracted from the clinical database. Score test for trend of odds, non-parametric Mann Kendall trend test and logistic regression analysis were used to analyze prevalence, incidence, and seasonality of Aspergillus spp. isolates. RESULTS A total of 1126 Aspergillus spp. isolates were evaluated. A. fumigatus was the most prevalent (44.1%) followed by A. niger (22.3%), A. flavus (17.7%) and A. terreus (10.6%). A. niger prevalence increased over time in intensive care units (p-trend = 0.0051). Overall, 16 (1.5%) were not susceptible to one azole compound, and 108 (10.9%) to amphotericin B, with A. niger showing the highest percentage (21.9%). The risk of detecting A. fumigatus was higher in June, (OR = 2.14, 95% CI [1.16; 3.98] p = 0.016) and reduced during September (OR = 0.48, 95% CI [0.27; 0.87] p = 0.015) and October as compared to January (OR = 0.39, 95% CI [0.21; 0.70] p = 0.002. A. niger showed a reduced risk of isolation from all clinical samples in the month of June as compared to January (OR = 0.34, 95% CI [0.14; 0.79] p = 0.012). Seasonal trend for A. flavus showed a higher risk of detection in September (OR = 2.7, 95% CI [1.18; 6.18] p = 0.019), October (OR = 2.32, 95% CI [1.01; 5.35] p = 0.048) and November (OR = 2.42, 95% CI [1.01; 5.79] p = 0.047) as compared to January. CONCLUSIONS This is the first study to analyze, at once, data regarding prevalence, time trends, seasonality, species distribution and antifungal susceptibility profiles of all Aspergillus spp. isolates over a 8-year period in a tertiary care center. Surprisingly no increase in azole resistance was observed over time.
Collapse
Affiliation(s)
- Iacopo Franconi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37-39, 56127, Pisa, Italy
- Mycology Unit, Pisa University Hospital, Pisa, Italy
| | | | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37-39, 56127, Pisa, Italy
- Mycology Unit, Pisa University Hospital, Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37-39, 56127, Pisa, Italy.
- Mycology Unit, Pisa University Hospital, Pisa, Italy.
| |
Collapse
|
5
|
Muafa MHM, Quach ZM, Al-Shaarani AAQA, Nafis MMH, Pecoraro L. The influence of car traffic on airborne fungal diversity in Tianjin, China. Mycology 2024; 15:506-520. [PMID: 39247890 PMCID: PMC11376297 DOI: 10.1080/21501203.2023.2300343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/22/2023] [Indexed: 09/10/2024] Open
Abstract
Little is known about the effect of car traffic on airborne fungal communities. We investigated the environmental factors affecting the diversity and concentration of airborne fungi at high-traffic density junctions, in Tianjin, China. A total of 244 fungal strains belonging to 78 species and 45 genera of Ascomycota (78.69%) and Basidiomycota (21.31%) were isolated and identified using morphological and molecular analysis. Aspergillus was the species-richest genus, with 9 recorded species, followed by Alternaria and Cladosporium, both with 8 species. Coprinellus radians was the most abundant fungal species, with 31 isolated strains, followed by Alternaria alternata (26 strains), Cladosporium cladosporioides (21), Alternaria compacta (13), and Cladosporium tenuissimum (11). We found a higher diversity and concentration of airborne fungi in the analysed urban air environments when the road traffic was at its highest intensity. Higher level of car traffic resulted in higher concentrations of fungal particles in the air for various taxa, including Alternaria, Aspergillus, and Cladosporium, which are known to cause respiratory allergies and infections. This result suggests that reducing vehicular traffic could be an effective measure to control airborne fungal exposure and microbial pollution.
Collapse
Affiliation(s)
- Mohammed H M Muafa
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Ziwei M Quach
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | | | - Md M H Nafis
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Jabeen R, Kizhisseri MI, Mayanaik SN, Mohamed MM. Bioaerosol assessment in indoor and outdoor environments: a case study from India. Sci Rep 2023; 13:18066. [PMID: 37872255 PMCID: PMC10593752 DOI: 10.1038/s41598-023-44315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
Exposure to bioaerosols has been associated with the occurrence of a variety of health impacts, including infectious illnesses, acute toxic effects, allergies, and cancer. This study aimed at evaluating airborne bacteria and fungi populations at different indoor and outdoor sites on a college campus in Bengaluru, India. Bioaerosol samples were collected using a two-stage Andersen air sampler; and isolates were identified using standard procedures. Six air samples and meteorological data were collected in March and April 2014 to examine the effects of temperature and relative humidity on bioaerosol concentration using linear regression modeling. Among all sites, the canteen showed the highest bioaerosol levels both indoors and outdoors. Specific bacterial identification was not possible, but gram staining and microscopic analysis helped to identify gram positive and gram negative bacteria. The most prevalent fungal species in the samples were Cladosporium, Aspergillus niger, Penicillium, Rhizopus, Fusarium, Mucor, and Alternaria. Due to the impact of weather conditions, such as temperature and relative humidity, the bioaerosol concentration varied greatly at each site according to the regression model. The indoor bioaerosol concentrations at all sites exceeded the values established by the American Industrial Hygiene Association (< 250 CFU/m3 for total fungi and < 500 CFU/m3 for total bacteria). Higher concentrations of bioaerosols may be attributed to the transportation of microbes from the ground surface to suspended particles, the release of microbes from the respiratory tract, higher rate of shredding of human skin cells, and many other factors.
Collapse
Affiliation(s)
- Raisa Jabeen
- Department of Environmental Engineering, China State Construction Engineering Corporation, Middle East L.L.C, Dubai, United Arab Emirates
| | - Mohamed Ibrahim Kizhisseri
- Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | | | - Mohamed Mostafa Mohamed
- Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
Nafis MMH, Quach ZM, Al-Shaarani AAQA, Muafa MHM, Pecoraro L. Pathogenicity of Aspergillus Airborne Fungal Species Collected from Indoor and Outdoor Public Areas in Tianjin, China. Pathogens 2023; 12:1154. [PMID: 37764962 PMCID: PMC10534727 DOI: 10.3390/pathogens12091154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Airborne fungi play an important role in air pollution and may have various negative effects on human health. In particular, Aspergillus fungi are pathogenic to humans and several domestic animals. In this work, Aspergillus strains isolated from airborne fungal communities sampled from different indoor and outdoor environments in Tianjin University were tested for pathogenicity on Drosophila melanogaster. Airborne fungi were sampled using an HAS-100B air sampler, over a one-year sampling period. Isolated fungal strains were identified based on morphological and molecular analysis. The Aspergillus-centered study was conducted as part of a larger work focusing on the total airborne fungal community in the analyzed environments, which yielded 173 fungal species. In this context, the genus Aspergillus showed the second-highest species richness, with 14 isolated species. Pathogenicity tests performed on male adults of Drosophila melanogaster through a bodily contact bioassay showed that all analyzed airborne Aspergillus species were pathogenic to fruit flies, with high insect mortality rates and shortened lifespan. All the studied fungi induced 100% mortality of fruit flies within 30 culture days, with one exception constituted by A. creber (39 days), while the shortest lifespan (17 days) was observed in fruit flies treated with A. tubingensis. Our results allow us to hypothesize that the studied airborne fungal species may have a pathogenic effect on humans, given the affinity between fruit flies and the human immune system, and may help to explain the health risk linked with Aspergillus fungi exposure in densely populated environments.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
8
|
Li Z, Lu J, Tong Y, Li S, He F. Differences in microbial community composition and factors affecting different particulate matter during autumn in three cities of Xinjiang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161275. [PMID: 36587705 DOI: 10.1016/j.scitotenv.2022.161275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Environmental pollution has become an issue of increasing concern in China, owing to the country's rapid economic development. Atmospheric particulate matter (PM) is known to be an important parameter in air quality monitoring; further, bioaerosol forms a crucial component of PM. As the climatic environments in the north and south of Xinjiang, China, are significantly different, here, atmospheric PM samples collected from three cities, Shihezi, Yining, and Tumushuk, located in different directions, were analysed for a better understanding of the spatial distribution patterns of microbial community composition of Xinjiang. The16s rDNA and 18 s rDNA were used to locate bacteria and fungi in PM2.5, PM10, and total suspended particulate matter (TSP) at the species level and genus level, and the microbial communities with the top 15 abundances were selected for analysis. The reports indicate that the most abundant group in Shihezi and Yining was Cenchrus_americanus, which belongs to Proteobacteria. The remaining 14 dominant species had their own distribution pattern in each city. The most dominant strain in Tumushuk was Bacillus_taeanensis, but this strain was not detected in Yining and Shihezi. Similarly, the most predominant fungus in Tumushuk (Microdorylaimus_miser under Myriophyllum) was not detected in the other two cities. The analysis of the effect of environmental impact factors on bacteria and fungi revealed that the impact factors such as temperature, humidity, and wind speed had a greater effect on microorganisms, while O3 had a negative correlation with most microorganisms, owing to its toxicity. Overall, the results of this study show that short-range transported air masses have a greater impact on local pollutants and microorganisms.
Collapse
Affiliation(s)
- Zhuoying Li
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Xinjiang 832003, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Xinjiang 832003, China.
| | - Yanbin Tong
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Xinjiang 832003, China
| | - Shanman Li
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Xinjiang 832003, China
| | - Feifei He
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang Bingtuan, Xinjiang 832003, China
| |
Collapse
|
9
|
Nageen Y, Wang X, Pecoraro L. Seasonal variation of airborne fungal diversity and community structure in urban outdoor environments in Tianjin, China. Front Microbiol 2023; 13:1043224. [PMID: 36699604 PMCID: PMC9869124 DOI: 10.3389/fmicb.2022.1043224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Airborne fungi are ubiquitous in human living environments and may be a source of respiratory problems, allergies, and other health issues. A 12 months study was performed to investigate the diversity, concentration and community structure of culturable airborne fungi in different outdoor environments of Tianjin City, using an HAS-100B air sampler. A total of 1,015 fungal strains belonging to 175 species and 82 genera of Ascomycota 92.5%, Basidiomycota 7%, and Mucoromycota 0.3% were isolated and identified using morphological and molecular analysis. The most abundant fungal genera were Alternaria 35%, Cladosporium 18%, Penicillium 5.6%, Talaromyces 3.9%, Didymella 3%, and Aspergillus 2.8%, while the most frequently occurring species were A. alternata (24.7%), C. cladosporioides (11%), A. tenuissima (5.3%), P. oxalicum (4.53%), and T. funiculosus (2.66%). The fungal concentration ranged from 0 to 340 CFU/m3 during the whole study. Environmental factors, including temperature, relative humidity, wind speed, and air pressure exerted a varying effect on the presence and concentration of different fungal taxa. The four analyzed seasons showed significantly different airborne fungal communities, which were more strongly influenced by air temperature and relative humidity in spring and summer, whereas wind speed and air pressure had a stronger effect in autumn and winter. Fungal communities from green and busy sites did not show significant differences over the four analyzed seasons, which may be due to the effect of the surrounding environments characterized by high human activities on the air of the relatively small parks present in Tianjin. The present study provided valuable information on the seasonal dynamics and the environmental factors shaping the diversity and concentration of the analyzed outdoor airborne fungal communities, which can be of help for air quality monitoring, microbial contamination control, and health risk assessment in urban environments.
Collapse
|