1
|
Abdullahi IN, Lozano C, Latorre-Fernández J, Zarazaga M, Stegger M, Torres C. Genomic analysis of multi-drug resistant coagulase-negative staphylococci from healthy humans and animals revealed unusual mechanisms of resistance and CRISPR-Cas system. Int Microbiol 2024:10.1007/s10123-024-00577-9. [PMID: 39287832 DOI: 10.1007/s10123-024-00577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Coagulase-negative staphylococci (CoNS) are evolving as major reservoirs and vectors of unusual and critical antimicrobial resistance (AMR) mechanisms. MATERIALS AND METHODS In this study, the genomic characterization of 26 multidrug-resistant (MDR)-CoNS (S. borealis, S. saprophyticus, S. sciuri, S. hominis, S. epidermidis, S. pasteuri, S. hyicus, S. simulans, S. haemolyticus, and S. arlettae) previously obtained from the nasal cavity of healthy nestling storks, humans who had no contact with animals, pigs, and pig farmers, as well as dogs and dog owners from Spain was performed. High-quality draft genomes obtained by Illumina sequencing technology were used to determine their resistome, virulome, mobile genetic elements, and CRISPR-Cas types. The relatedness of three CoNS species with publicly available genomes was assessed by core-genome single nucleotide polymorphisms (SNPs). RESULTS AMR genes to all classes of antibiotics in staphylococci were detected including unusual ones (mecC, ermT, and cfr), of which their corresponding genetic organizations were analyzed. About 96.1% of the MDR-CoNS strains harbored diverse adherence or immune evasion genes. Remarkably, one enterotoxin-C and -L-carrying S. epidermidis-ST595 strain from a nestling stork was detected. Moreover, various plasmid bound-biocide resistance genes (qacACGJ) were identified in 34.6% of the MDR-CoNS. Two genes that encode for cadmium and zinc resistance (cadD, czrC) were found, of which czrC predominated (42.3%). Complete CRISPR-Cas system was detected in 19.2% of the CoNS strains, of which cas-1, -2, and -9 predominated, especially in 75% of the S. borealis strains. The phylogenetic analysis identified clusters of related S. epidermidis lineages with those of other countries (SNP < 100). Also, highly related S. borealis isolates (SNP < 10) from pigs was confirmed for the first time in Spain. CONCLUSION These findings showed that various ecological niches harbor CoNS that presented MDR phenotypes mediated by multiple AMR genes carried by mobile genetic elements with relatively low frequency of intact CRISPR-Cas systems. Furthermore, the transmission of some CoNS species in humans and animals is strongly suggested.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Javier Latorre-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Marc Stegger
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain.
| |
Collapse
|
2
|
Sigudu TT, Oguttu JW, Qekwana DN. Antimicrobial Resistance of Staphylococcus spp. from Human Specimens Submitted to Diagnostic Laboratories in South Africa, 2012-2017. Microorganisms 2024; 12:1862. [PMID: 39338536 PMCID: PMC11433687 DOI: 10.3390/microorganisms12091862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant worldwide health challenge associated with prolonged illnesses, increased healthcare costs, and high mortality rates. The present study examined the patterns and predictors of AMR among human Staphylococcus isolates obtained from diagnostic laboratories in South Africa between 2012 and 2017. This study examined data from 404 217 isolates, assessing resistance rates across different characteristics such as age, sample origin, Staphylococcus species, and study period. The highest resistance was observed against cloxacillin (70.3%), while the lowest resistance was against Colistin (0.1%). A significant (p < 0.05) decreasing trend in AMR was observed over the study period, while a significant increasing temporal trend (p < 0.05) was observed for multidrug resistance (MDR) over the same period. A significant (p < 0.05) association was observed between specimen type, species of organism, and year of isolation with AMR outcome. Significant (p < 0.05) associations were observed between specimen type and season with MDR. The observed high levels of AMR and a growing trend in MDR are concerning for public health. Clinicians should take these findings into account when deciding on therapeutic options. Continued monitoring of AMR among Staphylococcus spp. and judicious use of antimicrobials in human medicine should be promoted.
Collapse
Affiliation(s)
- Themba Titus Sigudu
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg 1710, South Africa;
- Department of Health and Society, School of Public Health, Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2193, South Africa
| | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg 1710, South Africa;
| | - Daniel Nenene Qekwana
- Section Veterinary Public Health, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa;
| |
Collapse
|
3
|
Roberts E, Nuttall TJ, Gkekas G, Mellanby RJ, Fitzgerald JR, Paterson GK. Not just in man's best friend: A review of Staphylococcus pseudintermedius host range and human zoonosis. Res Vet Sci 2024; 174:105305. [PMID: 38805894 DOI: 10.1016/j.rvsc.2024.105305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
Staphylococcus pseudintermedius is one species in the commensal staphylococcal population in dogs. While it is commonly carried on healthy companion dogs it is also an opportunistic pathogen associated with a range of skin, ear, wound and other infections. While adapted to dogs, it is not restricted to them, and we have reviewed its host range, including increasing reports of human colonisation and infections. Despite its association with pet dogs, S. pseudintermedius is found widely in animals, covering companion, livestock and free-living species of birds and mammals. Human infections, typically in immunocompromised individuals, are increasingly being recognised, in part due to improved diagnosis. Colonisation, infection, and antimicrobial resistance, including frequent multidrug resistance, among S. pseudintermedius isolates represent important One Health challenges.
Collapse
Affiliation(s)
- E Roberts
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - T J Nuttall
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - G Gkekas
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - R J Mellanby
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - J R Fitzgerald
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - G K Paterson
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
4
|
Abdullahi IN, Lozano C, Zarazaga M, Latorre-Fernández J, Hallstrøm S, Rasmussen A, Stegger M, Torres C. Genomic Characterization and Phylogenetic Analysis of Linezolid-Resistant Enterococcus from the Nostrils of Healthy Hosts Identifies Zoonotic Transmission. Curr Microbiol 2024; 81:225. [PMID: 38877167 PMCID: PMC11178607 DOI: 10.1007/s00284-024-03737-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/08/2024] [Indexed: 06/16/2024]
Abstract
Linezolid resistance in Enterococcus spp. is increasingly considered critically important and a public health threat which mandates the need to understand their genomic contents and dissemination patterns. Here, we used whole-genome sequencing to characterize the resistome, virulome and mobile genetic elements of nine linezolid-resistant (LZDR) enterococci (seven optrA-E. faecalis, one poxtA-E. faecium and one optrA-E. casseliflavus) previously obtained from the nares of healthy dogs, pigs, pig farmers and tracheal samples of nestling storks in Spain. Also, the relatedness of the isolates with publicly available genomes was accessed by core-genome single nucleotide polymorphism (SNP) analysis. The optrA gene of the E. faecalis and E. casseliflavus isolates was located downstream of the fexA gene. The optrA gene in the E. casseliflavus isolate was carried in a plasmid (pURX4962), while those in the seven E. faecalis isolates were chromosomally located. The OptrA proteins were mostly variants of wild type (DP-2: Y176D/T481P; RDK: I104R/Y176D/E256K; DD-3: Y176D/G393D; and EDD: K3E/Y176D/G393D), except two that were wild type (one E. faecalis and one E. casseliflavus). The poxtA gene in the E. faecium isolate was found alone within its contig. The cfrD was upstream of ermB gene in the E. casseliflavus isolate and flanked by ISNCY and IS1216. All the LZDR enterococci carried plasmid rep genes (2-3) containing tetracycline, chloramphenicol and aminoglycoside resistance genes. All isolates except E. casseliflavus carried at least one intact prophage, of which E. faecalis-ST330 (X4957) from a pig carried the highest (n = 5). Tn6260 was associated with lnuG in E. faecalis-ST330 while Tn554 was with fexA in E. feaecalis-ST59 isolates. All except E. casseliflavus (n = 0) carried at least two metal resistance genes (MRGs), of which poxtA-carrying E. faecium-ST1739 isolate contained the most (arsA, copA, fief, ziaA, znuA, zosA, zupT, and zur). SNP-based analyses identified closely related optrA-E. faecalis isolates from a pig and a pig farmer on the same farm (SNP = 4). Moreover, optrA- carrying E. faecalis-ST32, -ST59, and -ST474 isolates from pigs were related to those previously described from humans (sick and healthy) and cattle in Spain, Belgium, and Switzerland (SNP range 43-86). These findings strongly suggest the transmission of LZDR-E. faecalis between a pig and a pig farmer and potential inter-country dissemination. These highlight the need to strengthen molecular surveillance of LZDR enterococci in all ecological niches and body parts to direct appropriate control strategies.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, College of Medical Sciences, Ahmadu Bello University, PMB 05 , Zaria, Nigeria
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| | - Javier Latorre-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| | - Søren Hallstrøm
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, Copenhagen, Denmark
| | - Astrid Rasmussen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, Copenhagen, Denmark
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| |
Collapse
|
5
|
Cuny C, Layer-Nicolaou F, Werner G, Witte W. A look at staphylococci from the one health perspective. Int J Med Microbiol 2024; 314:151604. [PMID: 38367509 DOI: 10.1016/j.ijmm.2024.151604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024] Open
Abstract
Staphylococcus aureus and other staphylococcal species are resident and transient multihost colonizers as well as conditional pathogens. Especially S. aureus represents an excellent model bacterium for the "One Health" concept because of its dynamics at the human-animal interface and versatility with respect to host adaptation. The development of antimicrobial resistance plays another integral part. This overview will focus on studies at the human-animal interface with respect to livestock farming and to companion animals, as well as on staphylococci in wildlife. In this context transmissions of staphylococci and of antimicrobial resistance genes between animals and humans are of particular significance.
Collapse
Affiliation(s)
- Christiane Cuny
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany.
| | - Franziska Layer-Nicolaou
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, National Reference Centre for Staphylococci and Enterococci, Wernigerode Branch, 38855 Wernigerode, Germany
| | | |
Collapse
|
6
|
Abdullahi IN, Lozano C, Zarazaga M, Simón C, Höfle U, Sieber RN, Latorre-Fernández J, Stegger M, Torres C. Comparative genomics of Staphylococcus aureus strains from wild birds and pig farms elucidates levels of mobilomes, antibiotic pressure and host adaptation. J Glob Antimicrob Resist 2024; 36:142-150. [PMID: 38128728 DOI: 10.1016/j.jgar.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVES This study characterized the resistome, mobilome and phylogenomic relatedness of Staphylococcus aureus strains previously obtained from healthy nestling storks (HNS), pigs (HP) and pig farmers (HPF) to analyse possible transmission pathways of S. aureus with implications for the spread of antimicrobial resistance. METHODS The genomic contents of 52 S. aureus strains obtained from the nasal cavity of HNS, HP and HPF in Spain were sequenced using the Illumina NextSeq platform to characterize their resistome, virulome and mobile genetic elements. The relatedness of strains was assessed by core-genome single nucleotide polymorphisms (SNPs). RESULTS The frequencies of multidrug-resistance phenotype and transposons were significantly lower in strains from HNS than in those from HP and HPF (P < 0.005). However, the presence of human immune evasion cluster genes in S. aureus strains from HNS was significantly higher than in those from HP and HPF (P < 0.005). Interestingly, the frequencies of plasmids and phages were not significantly associated with the host (P > 0.05). The phylogenetic analysis identified a cluster of all the MSSA-CC398 strains carrying φSa3 and ermT on rep13 separately from the two MRSA-CC398 strains (carrying ermT on repUS18). Highly related MRSA-CC398 strains were detected in some pigs and related farmers (<10 SNPs). CONCLUSION This study confirms high-level antibiotic selection in S. aureus in HP and HPF in comparison to HNS. Furthermore, our findings highlight the continuous transmission of MRSA-CC398 in the pig-to-human interface and MSSA-CC398 with human adaptation markers in HNS. Molecular surveillance of S. aureus using the One Health model is required to establish appropriate control strategies.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Simón
- Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - Ursula Höfle
- Spanish Wildlife Research Institute IREC (CSIC‑UCLM‑JCCM), SaBio (Health and Biotechnology) Research Group, Ciudad Real, Spain
| | - Raphael N Sieber
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Javier Latorre-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark; Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain.
| |
Collapse
|
7
|
Djordjevic SP, Jarocki VM, Seemann T, Cummins ML, Watt AE, Drigo B, Wyrsch ER, Reid CJ, Donner E, Howden BP. Genomic surveillance for antimicrobial resistance - a One Health perspective. Nat Rev Genet 2024; 25:142-157. [PMID: 37749210 DOI: 10.1038/s41576-023-00649-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 09/27/2023]
Abstract
Antimicrobial resistance (AMR) - the ability of microorganisms to adapt and survive under diverse chemical selection pressures - is influenced by complex interactions between humans, companion and food-producing animals, wildlife, insects and the environment. To understand and manage the threat posed to health (human, animal, plant and environmental) and security (food and water security and biosecurity), a multifaceted 'One Health' approach to AMR surveillance is required. Genomic technologies have enabled monitoring of the mobilization, persistence and abundance of AMR genes and mutations within and between microbial populations. Their adoption has also allowed source-tracing of AMR pathogens and modelling of AMR evolution and transmission. Here, we highlight recent advances in genomic AMR surveillance and the relative strengths of different technologies for AMR surveillance and research. We showcase recent insights derived from One Health genomic surveillance and consider the challenges to broader adoption both in developed and in lower- and middle-income countries.
Collapse
Affiliation(s)
- Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia.
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia.
| | - Veronica M Jarocki
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Torsten Seemann
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Max L Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Anne E Watt
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Barbara Drigo
- UniSA STEM, University of South Australia, Adelaide, South Australia, Australia
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Ethan R Wyrsch
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Cameron J Reid
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food, and Environments (CRC SAAFE), Adelaide, South Australia, Australia
| | - Benjamin P Howden
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Abdullahi IN, Lozano C, Zarazaga M, Trabelsi I, Reuben RC, Stegger M, Torres C. Nasal staphylococci microbiota and resistome in healthy adults in La Rioja, northern Spain: High frequency of toxigenic S. aureus and MSSA-CC398 subclade. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105529. [PMID: 38013047 DOI: 10.1016/j.meegid.2023.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
This study determined the nasal staphylococci diversity and characterized their resistome, with a focus on the mobilome of methicillin-susceptible Staphylococcus aureus (MSSA)-CC398 subclade from healthy adults in La Rioja (northern Spain). Nasal staphylococci recovered from 57 healthy individuals (HI) were identified (MALDI-TOF-MS) and their antimicrobial resistance, virulence determinants and genetic lineages were studied. The relatedness of MSSA-CC398 isolates was assessed by core-genome single-nucleotide-polymorphisms (SNPs). One-hundred-forty-three non-repetitive staphylococci were obtained from most HI (98.2%), of which S. epidermidis (87.7%) and S. aureus (36.8%) were the predominant species. About 15% of the 27 S. aureus and 30.1% of the 116 coagulase-negative staphylococci (CoNS) isolates presented a multidrug resistance (MDR) phenotype. All S. aureus isolates were MSSA but 30.2% of CoNS isolates were mecA-positive and carried SCCmec types III, IV, and V. The highest non-beta-lactam resistance (frequency/genes) in S. aureus and CoNS were: erythromycin-clindamycin-inducible (25.9%/ermT, ermC) and mupirocin (30.1%/mupA), respectively. About 85% of S. aureus isolates carried relevant virulence genes. Eight clonal complexes (CCs) of MSSA were identified, of which CC398 was the predominant (33.3%). About 78% of the CC398 isolates harboured rep13-bound ermT gene, however, one carried a rep10-bound ermC gene. Only the ermT-positive MSSA-CC398 isolates were closely related (<50 SNPs) and carried the φSa3. Diverse MDR-S. epidermidis isolates were identified which included the lineages ST59 and ST210. The high rate of toxigenic S. aureus and of MSSA-CC398 subclade highlight the ability of HI to carry and transmit virulent isolates. Moreover, the high frequency of MDR-CoNS, often linked with SCCmec, needs to be monitored for their potential human health implications.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Islem Trabelsi
- Bioresources, Environment and Biotechnology Laboratory, Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark; Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain.
| |
Collapse
|
9
|
Suepaul S, Stegger M, Boyen F, Georges K, Butaye P. The Diversity and Zoonotic Potential of Staphylococcus pseudintermedius in Humans and Pet Dogs in Trinidad and Tobago. Antibiotics (Basel) 2023; 12:1266. [PMID: 37627686 PMCID: PMC10451167 DOI: 10.3390/antibiotics12081266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Staphylococcus pseudintermedius is an opportunistic pathogen that is frequently isolated from canines. It is of escalating interest because of its increasing antimicrobial resistance and zoonotic potential. Although many published articles are available that describe isolates obtained from diseased dogs and humans, this study focused on isolates obtained from healthy dogs and their owners who presented at clinics for routine veterinary care and utilized whole genome sequencing-based analyses for strain comparisons. A total of 25 humans and 27 canines were sampled at multiple sites, yielding 47 and 45 isolates, respectively. Whole genome sequence analysis was performed. We detected mostly new sequence types (STs) and a high diversity. Strains carried few antimicrobial resistance genes and plasmids, albeit three MRSP strains were found that belonged to two internationally distributed STs. The virulence content did not provide insights toward a tendency to colonization of humans but supported that there may be differences in the surface proteins between carrier strains and those causing pyoderma. We identified 13 cases in which humans were infected with strains from the dog they owned.
Collapse
Affiliation(s)
- Sharianne Suepaul
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, True Blue, St. George’s FZ818, Grenada
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 685509, Trinidad and Tobago;
| | - Marc Stegger
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark;
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia
| | - Filip Boyen
- Department of Pathobiology, Pharmacology and Wildlife Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (F.B.); or (P.B.)
| | - Karla Georges
- Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 685509, Trinidad and Tobago;
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Wildlife Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (F.B.); or (P.B.)
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- School of Veterinary Medicine, Ross University, Basseterre P.O. Box 334, Saint Kitts and Nevis
| |
Collapse
|