1
|
Loos JA, Negro PS, Ortega HH, Salinas FJ, Arán M, Pellizza L, Salerno GL, Cumino AC. Anti-echinococcal effect of metformin in advanced experimental cystic echinococcosis: reprogrammed intermediary carbon metabolism in the parasite. Antimicrob Agents Chemother 2024; 68:e0094124. [PMID: 39264188 PMCID: PMC11459915 DOI: 10.1128/aac.00941-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
Metformin, a safe biguanide derivative with antiproliferative properties, has shown antiparasitic efficacy against the Echinococcus larval stage. Hence, we assessed the efficacy of a dose of 250 mg kg-1 day-1 in experimental models of advanced CE, at 6 and 12 months post-infection with oral and intraperitoneal administration, respectively. At this high dose, metformin reached intracystic concentrations between 0.7 and 1.7 mM and triggered Eg-TOR inhibition through AMPK activation by AMP-independent and -dependent mechanisms, which are dependent on drug dose. Cystic metformin uptake was controlled by increased expression of organic cation transporters in the presence of the drug. In both experimental models, metformin reduced the weight of parasite cysts, altered the ultrastructural integrity of their germinal layers, and reduced the intracystic availability of glucose, limiting the cellular carbon and energy charge and the proliferative capacity of metacestodes. This glucose depletion in the parasite was associated with a slight increase in cystic uptake of 2-deoxiglucose and the transcriptional induction of GLUT genes in metacestodes. In this context, drastic glycogen consumption led to increased lactate production and altered intermediary metabolism in treated metacestodes. Specifically, the fraction of reducing soluble sugars decreased twofold, and the levels of non-reducing soluble sugars, such as sucrose and trehalose, were modified in both cystic fluid and germinal cells. Taken together, our findings highlight the relevance of metformin as a promising candidate for CE treatment and warrant further research to improve the therapeutic conditions of this chronic zoonosis in humans.
Collapse
Affiliation(s)
- Julia A. Loos
- IIPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| | - Perla S. Negro
- Parasitología y Enfermedades Parasitarias, Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario, Casilda, Santa Fe, Argentina
| | - Hugo H. Ortega
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET, Esperanza, Santa Fe, Argentina
| | - Facundo J. Salinas
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET, Esperanza, Santa Fe, Argentina
| | - Martín Arán
- Fundación Instituto Leloir e Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)—CONICET, Buenos Aires, Argentina
| | - Leonardo Pellizza
- Fundación Instituto Leloir e Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)—CONICET, Buenos Aires, Argentina
| | - Graciela L. Salerno
- Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
| | - Andrea C. Cumino
- IIPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| |
Collapse
|
2
|
Chen W, Park YK, Studená L, Bell D, Hapeta P, Fu J, Nixon PJ, Ledesma-Amaro R. Synthetic, marine, light-driven, autotroph-heterotroph co-culture system for sustainable β-caryophyllene production. BIORESOURCE TECHNOLOGY 2024; 410:131232. [PMID: 39117247 DOI: 10.1016/j.biortech.2024.131232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Applying low-cost substrate is critical for sustainable bioproduction. Co-culture of phototrophic and heterotrophic microorganisms can be a promising solution as they can use CO2 and light as feedstock. This study aimed to create a light-driven consortium using a marine cyanobacterium Synechococcus sp. PCC 7002 and an industrial yeast Yarrowia lipolytica. First, the cyanobacterium was engineered to accumulate and secrete sucrose by regulating the expression of genes involved in sucrose biosynthesis and transport, resulting in 4.0 g/L of sucrose secretion. Then, Yarrowia lipolytica was engineered to efficiently use sucrose and produce β-caryophyllene that has various industrial applications. Then, co- and sequential-culture were optimized with different induction conditions and media compositions. A maximum β-caryophyllene yield of 14.1 mg/L was obtained from the co-culture. This study successfully established an artificial light-driven consortium based on a marine cyanobacterium and Y. lipolytica, and provides a foundation for sustainable bioproduction from CO2 and light through co-culture systems.
Collapse
Affiliation(s)
- Wenchao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Department of Bioengineering, Bezos Centre for Sustainable Protein, Microbial Food Hub and Centre for Synthetic Biology, Imperial College London, London SW72AZ, UK
| | - Young-Kyoung Park
- Department of Bioengineering, Bezos Centre for Sustainable Protein, Microbial Food Hub and Centre for Synthetic Biology, Imperial College London, London SW72AZ, UK; Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Lucie Studená
- Department of Bioengineering, Bezos Centre for Sustainable Protein, Microbial Food Hub and Centre for Synthetic Biology, Imperial College London, London SW72AZ, UK
| | - David Bell
- SynbiCITE Innovation and Knowledge Centre, Imperial College London, London SW7 2AZ, UK
| | - Piotr Hapeta
- Department of Bioengineering, Bezos Centre for Sustainable Protein, Microbial Food Hub and Centre for Synthetic Biology, Imperial College London, London SW72AZ, UK
| | - Jing Fu
- Department of Bioengineering, Bezos Centre for Sustainable Protein, Microbial Food Hub and Centre for Synthetic Biology, Imperial College London, London SW72AZ, UK
| | - Peter J Nixon
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Bezos Centre for Sustainable Protein, Microbial Food Hub and Centre for Synthetic Biology, Imperial College London, London SW72AZ, UK.
| |
Collapse
|
3
|
Hubáček M, Wey LT, Kourist R, Malihan-Yap L, Nikkanen L, Allahverdiyeva Y. Strong heterologous electron sink outcompetes alternative electron transport pathways in photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2500-2513. [PMID: 39008444 DOI: 10.1111/tpj.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/27/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Improvement of photosynthesis requires a thorough understanding of electron partitioning under both natural and strong electron sink conditions. We applied a wide array of state-of-the-art biophysical and biochemical techniques to thoroughly investigate the fate of photosynthetic electrons in the engineered cyanobacterium Synechocystis sp. PCC 6803, a blueprint for photosynthetic biotechnology, expressing the heterologous gene for ene-reductase, YqjM. This recombinant enzyme catalyses the reduction of an exogenously added substrate into the desired product by utilising photosynthetically produced NAD(P)H, enabling whole-cell biotransformation. Through coupling the biotransformation reaction with biophysical measurements, we demonstrated that the strong artificial electron sink, outcompetes the natural electron valves, the flavodiiron protein-driven Mehler-like reaction and cyclic electron transport. These results show that ferredoxin-NAD(P)H-oxidoreductase is the preferred route for delivering photosynthetic electrons from reduced ferredoxin and the cellular NADPH/NADP+ ratio as a key factor in orchestrating photosynthetic electron flux. These insights are crucial for understanding molecular mechanisms of photosynthetic electron transport and harnessing photosynthesis for sustainable bioproduction by engineering the cellular source/sink balance. Furthermore, we conclude that identifying the bioenergetic bottleneck of a heterologous electron sink is a crucial prerequisite for targeted engineering of photosynthetic biotransformation platforms.
Collapse
Affiliation(s)
- Michal Hubáček
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Laura T Wey
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Robert Kourist
- Institute of Molecular Biotechnology, NAWI Graz, BioTechMed, Graz University of Technology, Graz, 8010, Austria
| | - Lenny Malihan-Yap
- Institute of Molecular Biotechnology, NAWI Graz, BioTechMed, Graz University of Technology, Graz, 8010, Austria
| | - Lauri Nikkanen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| |
Collapse
|
4
|
Diaz‐Troya S, Huertas MJ. Green microbes: Potential solutions for key sustainable development goals. Microb Biotechnol 2024; 17:e14546. [PMID: 39126420 PMCID: PMC11316392 DOI: 10.1111/1751-7915.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The latest assessment of progress towards the Sustainable Development Goals (SDGs) has identified major obstacles, such as climate change, global instability and pandemics, which threaten efforts to achieve the SDGs even by 2050. Urgent action is needed, particularly to reduce poverty, hunger and climate change. In this context, microalgae are emerging as a promising solution, particularly in the context of food security and environmental sustainability. As versatile organisms, microalgae offer nutritional benefits such as high-quality proteins and essential fatty acids, and can be cultivated in non-arable areas, reducing competition for resources and improving the sustainability of food systems. The role of microalgae also includes other applications in aquaculture, where they serve as sustainable alternatives to animal feed, and in agriculture, where they act as biofertilizers and biostimulants. These microorganisms also play a key role in interventions on degraded land, stabilizing soils, improving hydrological function and increasing nutrient and carbon availability. Microalgae therefore support several SDGs by promoting sustainable agricultural practices and contributing to land restoration and carbon sequestration efforts. The integration of microalgae in these areas is essential to mitigate environmental impacts and improve global food security, highlighting the need for increased research and development, as well as public and political support, to exploit their full potential to advance the SDGs.
Collapse
Affiliation(s)
- Sandra Diaz‐Troya
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de BiologíaUniversidad de SevillaSevillaSpain
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones CientíficasSevillaSpain
| | - María José Huertas
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de BiologíaUniversidad de SevillaSevillaSpain
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones CientíficasSevillaSpain
| |
Collapse
|
5
|
Broussos PI, Romanos GE, Stamatakis K. Salt and heat stress enhances hydrogen production in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2024; 161:117-125. [PMID: 38546812 DOI: 10.1007/s11120-024-01098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/22/2024] [Indexed: 07/25/2024]
Abstract
Cyanobacteria are among the most suitable organisms for the capture of excessive amounts of CO2 and can be grown in extreme environments. In our research we use the single-celled freshwater cyanobacteria Synechococcus elongatus PCC7942 PAMCOD strain and Synechocystis sp. PCC6714 for the production of carbohydrates and hydrogen. PAMCOD strain and Synechocystis sp. PCC6714 synthesize sucrose when exposed to salinity stress, as their main compatible osmolyte. We examined the cell proliferation rate and the sucrose accumulation in those two different strains of cyanobacteria under salt (0.4 M NaCl) and heat stress (35 0C) conditions. The intracellular sucrose (mol sucrose content per Chl a) was found to increase by 50% and 108% in PAMCOD strain and Synechocystis sp. PCC6714 cells, respectively. As previously reported, PAMCOD strain has the ability to produce hydrogen through the process of dark anaerobic fermentation (Vayenos D, Romanos GE, Papageorgiou GC, Stamatakis K (2020) Photosynth Res 146, 235-245). In the present study, we demonstrate that Synechocystis sp. PCC6714 has also this ability. We further examined the optimal conditions during the dark fermentation of PAMCOD and Synechocystis sp. PCC6714 regarding H2 formation, increasing the PAMCOD H2 productivity from 2 nmol H2 h- 1 mol Chl a- 1 to 23 nmol H2 h- 1 mol Chl a- 1. Moreover, after the dark fermentation, the cells demonstrated proliferation in both double BG-11 and BG-11 medium enriched in NaNO3, thus showing the sustainability of the procedure.
Collapse
Affiliation(s)
- Panayiotis-Ilias Broussos
- Institute of Biosciences and Applications, NCSR Demokritos, Patr. Gregoriou E & Neapoleos 27, 15341 Agia Paraskevi, Attikis, Greece
| | - George E Romanos
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Patr. Gregoriou E & Neapoleos 27, 15341 Agia Paraskevi, Attikis, Greece
| | - Kostas Stamatakis
- Institute of Biosciences and Applications, NCSR Demokritos, Patr. Gregoriou E & Neapoleos 27, 15341 Agia Paraskevi, Attikis, Greece.
| |
Collapse
|
6
|
Zhang T, Liu D, Zhang Y, Chen L, Zhang W, Sun T. Biomedical engineering utilizing living photosynthetic cyanobacteria and microalgae: Current status and future prospects. Mater Today Bio 2024; 27:101154. [PMID: 39113912 PMCID: PMC11304071 DOI: 10.1016/j.mtbio.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis on Earth. Besides their traditional roles serving as primary producers, cyanobacteria also synthesize abundant secondary metabolites including carotenoids, alkaloids, peptides, which have been reported to possess medicinal potentials. More importantly, the advancement of synthetic biology technology has further expanded their potential biomedical applications especially using living/engineered cyanobacteria, providing promising and attractive strategies for future disease treatments. To improve the understanding and to facilitate future applications, this review aims to discuss the current status and future prospects of cyanobacterial-based biomedical engineering. Firstly, specific properties of cyanobacteria related with biomedical applications like their natural products of bioactive compounds and heavy metal adsorption were concluded. Subsequently, based on these properties of cyanobacteria, we discussed the progress of their applications in various disease models like hypoxia microenvironment alleviation, wound healing, drug delivery, and so on. Finally, the future prospects including further exploration of cyanobacteria secondary metabolites, the integration of bioactive compounds synthesized by cyanobacteria in situ with medical diagnosis and treatment, and the optimization of in vivo application were critically presented. The review will promote the studies related with cyanobacteria-based biomedical engineering and its practical application in clinical trials in the future.
Collapse
Affiliation(s)
- Tong Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Dailin Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, PR China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
7
|
Tiwari D, Kumar N, Bongirwar R, Shukla P. Nutraceutical prospects of genetically engineered cyanobacteria- technological updates and significance. World J Microbiol Biotechnol 2024; 40:263. [PMID: 38980547 DOI: 10.1007/s11274-024-04064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/23/2024] [Indexed: 07/10/2024]
Abstract
Genetically engineered cyanobacterial strains that have improved growth rate, biomass productivity, and metabolite productivity could be a better option for sustainable bio-metabolite production. The global demand for biobased metabolites with nutraceuticals and health benefits has increased due to their safety and plausible therapeutic and nutritional utility. Cyanobacteria are solar-powered green cellular factories that can be genetically tuned to produce metabolites with nutraceutical and pharmaceutical benefits. The present review discusses biotechnological endeavors for producing bioprospective compounds from genetically engineered cyanobacteria and discusses the challenges and troubleshooting faced during metabolite production. This review explores the cyanobacterial versatility, the use of engineered strains, and the techno-economic challenges associated with scaling up metabolite production from cyanobacteria. Challenges to produce cyanobacterial bioactive compounds with remarkable nutraceutical values have been discussed. Additionally, this review also summarises the challenges and future prospects of metabolite production from genetically engineered cyanobacteria as a sustainable approach.
Collapse
Affiliation(s)
- Deepali Tiwari
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Niwas Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Riya Bongirwar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
8
|
Yun L, Zegarac R, Ducat DC. Impact of irradiance and inorganic carbon availability on heterologous sucrose production in Synechococcus elongatus PCC 7942. FRONTIERS IN PLANT SCIENCE 2024; 15:1378573. [PMID: 38650707 PMCID: PMC11033428 DOI: 10.3389/fpls.2024.1378573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Cyanobacteria have been proposed as a potential alternative carbohydrate feedstock and multiple species have been successfully engineered to secrete fermentable sugars. To date, the most productive cyanobacterial strains are those designed to secrete sucrose, yet there exist considerable differences in reported productivities across different model species and laboratories. In this study, we investigate how cultivation conditions (specifically, irradiance, CO2, and cultivator type) affect the productivity of sucrose-secreting Synechococcus elongatus PCC 7942. We find that S. elongatus produces the highest sucrose yield in irradiances far greater than what is often experimentally utilized, and that high light intensities are tolerated by S. elongatus, especially under higher density cultivation where turbidity may attenuate the effective light experienced in the culture. By increasing light and inorganic carbon availability, S. elongatus cscB/sps produced a total of 3.8 g L-1 of sucrose and the highest productivity within that period being 47.8 mg L-1 h-1. This study provides quantitative description of the impact of culture conditions on cyanobacteria-derived sucrose that may assist to standardize cross-laboratory comparisons and demonstrates a significant capacity to improve productivity via optimizing cultivation conditions.
Collapse
Affiliation(s)
- Lisa Yun
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Energy-Michigan State University Plant Research Laboratories, Michigan State University, East Lansing, MI, United States
| | - Robert Zegarac
- Department of Energy-Michigan State University Plant Research Laboratories, Michigan State University, East Lansing, MI, United States
| | - Daniel C. Ducat
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Energy-Michigan State University Plant Research Laboratories, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
9
|
Yun L, Sakkos JK, Ducat DC. Population-level heterogeneity complicates utilization of Synechococcus elongatus PCC 7942 surface display platforms. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001097. [PMID: 38633869 PMCID: PMC11022076 DOI: 10.17912/micropub.biology.001097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Surface display technologies have been primarily developed for heterotrophic microbes, leaving photosynthetic counterparts like cyanobacteria with limited molecular tools. Here, we expanded upon surface display systems in Synechococcus elongatus PCC 7942 by modifying two outer-membrane proteins, SomA and Intimin, to display tags ( e.g. , SpyTag) to mediate physical interactions of living cyanobacteria with other biotic and abiotic targets. While re-engineered SomA constructs successfully translocated to the cell surface and could bind to compatible ligands, the efficacy of the best-performing designs was limited by a poorly-understood heterogeneity in the accessibility of the tags in living cells, resulting in low attachment penetrance.
Collapse
Affiliation(s)
- Lisa Yun
- DOE-MSU Plant Research Laboratories, Michigan State University, East Lansing, Michigan, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States
| | - Jonathan K Sakkos
- DOE-MSU Plant Research Laboratories, Michigan State University, East Lansing, Michigan, United States
| | - Daniel C Ducat
- DOE-MSU Plant Research Laboratories, Michigan State University, East Lansing, Michigan, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
10
|
Lee C, Han SI, Na H, Kim Z, Ahn JW, Oh B, Kim HS. Comprehensive understanding of the mutant 'giant' Arthrospira platensis developed via ultraviolet mutagenesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1369976. [PMID: 38567133 PMCID: PMC10985164 DOI: 10.3389/fpls.2024.1369976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Introduction Cyanobacteria are typically of a size that can be observed under a microscope. Here, we present cyanobacteria of a size that can be observed with the naked eye. Arthrospira platensis NCB002 strain showed differentiated morphological characteristics compared to previously reported Arthrospira spp. Methods Arthrospira platensis NCB002 was obtained by the UV irradiation of Arthrospira sp. NCB001, which was isolated from freshwater and owned by NCell Co., Ltd. A. platensis NIES-39 was obtained from the National Institute for Environmental Studies (Tsukuba, Japan). We used various analytical techniques to determine its overall characteristics. Results and discussion The draft genome of strain NCB002 consists of five contigs comprising 6,864,973 bp with a G+C content of 44.3 mol%. The strain NCB002 had an average length of 11.69 ± 1.35 mm and a maximum of 15.15 mm, which is 23.4-50.5 times longer than the length (0.3-0.5 mm) of previously known Arthrospira spp., allowing it to be harvested using a thin sieve. Transcriptome analysis revealed that these morphological differences resulted from changes in cell wall formation mechanisms and increased cell division. Our results show that NCB002 has outstanding industrial value and provides a comprehensive understanding of it.
Collapse
Affiliation(s)
- Changsu Lee
- Bio Division, NCell. Co., Ltd., Seoul, Republic of Korea
| | - Sang-Il Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Ho Na
- Bio Division, NCell. Co., Ltd., Seoul, Republic of Korea
| | - Zun Kim
- Bio Division, NCell. Co., Ltd., Seoul, Republic of Korea
| | - Joon Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Byeolnim Oh
- Department of Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Hyun Soo Kim
- Department of Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Sengupta A, Bandyopadhyay A, Sarkar D, Hendry JI, Schubert MG, Liu D, Church GM, Maranas CD, Pakrasi HB. Genome streamlining to improve performance of a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. mBio 2024; 15:e0353023. [PMID: 38358263 PMCID: PMC10936165 DOI: 10.1128/mbio.03530-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Cyanobacteria are photosynthetic organisms that have garnered significant recognition as potential hosts for sustainable bioproduction. However, their complex regulatory networks pose significant challenges to major metabolic engineering efforts, thereby limiting their feasibility as production hosts. Genome streamlining has been demonstrated to be a successful approach for improving productivity and fitness in heterotrophs but is yet to be explored to its full potential in phototrophs. Here, we present the systematic reduction of the genome of the cyanobacterium exhibiting the fastest exponential growth, Synechococcus elongatus UTEX 2973. This work, the first of its kind in a photoautotroph, involved an iterative process using state-of-the-art genome-editing technology guided by experimental analysis and computational tools. CRISPR-Cas3 enabled large, progressive deletions of predicted dispensable regions and aided in the identification of essential genes. The large deletions were combined to obtain a strain with 55-kb genome reduction. The strains with streamlined genome showed improvement in growth (up to 23%) and productivity (by 22.7%) as compared to the wild type (WT). This streamlining strategy not only has the potential to develop cyanobacterial strains with improved growth and productivity traits but can also facilitate a better understanding of their genome-to-phenome relationships.IMPORTANCEGenome streamlining is an evolutionary strategy used by natural living systems to dispense unnecessary genes from their genome as a mechanism to adapt and evolve. While this strategy has been successfully borrowed to develop synthetic heterotrophic microbial systems with desired phenotype, it has not been extensively explored in photoautotrophs. Genome streamlining strategy incorporates both computational predictions to identify the dispensable regions and experimental validation using genome-editing tool, and in this study, we have employed a modified strategy with the goal to minimize the genome size to an extent that allows optimal cellular fitness under specified conditions. Our strategy has explored a novel genome-editing tool in photoautotrophs, which, unlike other existing tools, enables large, spontaneous optimal deletions from the genome. Our findings demonstrate the effectiveness of this modified strategy in obtaining strains with streamlined genome, exhibiting improved fitness and productivity.
Collapse
Affiliation(s)
- Annesha Sengupta
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | | | - Debolina Sarkar
- Department of Chemical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - John I. Hendry
- Department of Chemical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Max G. Schubert
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA
| | - Deng Liu
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - George M. Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Costas D. Maranas
- Department of Chemical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | | |
Collapse
|
12
|
Diankristanti PA, Lin YC, Yi YC, Ng IS. Polyhydroxyalkanoates bioproduction from bench to industry: Thirty years of development towards sustainability. BIORESOURCE TECHNOLOGY 2024; 393:130149. [PMID: 38049017 DOI: 10.1016/j.biortech.2023.130149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The pursuit of carbon neutrality goals has sparked considerable interest in expanding bioplastics production from microbial cell factories. One prominent class of bioplastics, polyhydroxyalkanoates (PHA), is generated by specific microorganisms, serving as carbon and energy storage materials. To begin with, a native PHA producer, Cupriavidus necator (formerly Ralstonia eutropha) is extensively studied, covering essential topics such as carbon source selection, cultivation techniques, and accumulation enhancement strategies. Recently, various hosts including archaea, bacteria, cyanobacteria, yeast, and plants have been explored, stretching the limit of microbial PHA production. This review provides a comprehensive overview of current advancements in PHA bioproduction, spanning from the native to diversified cell factories. Recovery and purification techniques are discussed, and the current status of industrial applications is assessed as a critical milestone for startups. Ultimately, it concludes by addressing contemporary challenges and future prospects, offering insights into the path towards reduced carbon emissions and sustainable development goals.
Collapse
Affiliation(s)
| | - Yu-Chieh Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, USA
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
13
|
Li C, Zheng H, Li H, Liu L, Wang J, Ni J. Synthetic Light-Driven Consortia for Carbon-Negative Biosynthesis. Chembiochem 2023; 24:e202300122. [PMID: 37401840 DOI: 10.1002/cbic.202300122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/07/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Synthetic light-driven consortia composed of phototrophs and heterotrophs have attracted increasing attention owing to their potential to be used in sustainable biotechnology. In recent years, synthetic phototrophic consortia have been used to produce bulk chemicals, biofuels, and other valuable bioproducts. In addition, autotrophic-heterotrophic symbiosis systems have potential applications in wastewater treatment, bioremediation, and as a method for phytoplankton bloom control. Here, we discuss progress made on the biosynthesis of phototrophic microbial consortia. In addition, strategies for optimizing the synthetic light-driven consortia are summarized. Moreover, we highlight current challenges and future research directions for the development of robust and controllable synthetic light-driven consortia.
Collapse
Affiliation(s)
- Chaofeng Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haotian Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hengrun Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liangxu Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawei Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Ni
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|