1
|
Wang Y, Feng J, Gao J, Han S, Li Q, Kong L, Wu Y. The occurrence of wheat crown rot correlates with the microbial community and function in rhizosphere soil. Front Microbiol 2025; 16:1538093. [PMID: 40008036 PMCID: PMC11850533 DOI: 10.3389/fmicb.2025.1538093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Wheat crown rot (WCR) is a significant soil-borne disease affecting wheat production worldwide. Understanding the impact of wheat crown rot on the structure and function of microbial communities in the wheat rhizosphere soil can provide a theoretical basis for the mining biological control resources against WCR. In this study, rhizosphere soils with varying WCR severities (light, moderate, severe) were analyzed for chemical properties, microbial community composition and functions using high-throughput sequencing. The results revealed that WCR decreased rhizosphere soil pH, the content of available nitrogen and phosphorus, and the abundance of beneficial taxa such as Bacillus and Streptomyces. Additionally, functional predictions showed that microbial communities adapted to WCR by enhancing signaling pathways and reducing their anabolic activity. From soil with light WCR occurrence, we isolated Bacillus velezensis BF-237, whose abundance was reduced by WCR. Greenhouse experiments demonstrated that BF-237 achieved a control efficiency of 56.61% against WCR in artificially inoculated sterilized soil and 53.32% in natural soil. This study clarifies the impact of wheat crown rot on the community structure, and function of rhizosphere soil microorganisms, alongside identifying a promising biocontrol agent. These findings contribute to understanding WCR pathogenesis and offer practical resources for its management.
Collapse
Affiliation(s)
- Yajiao Wang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| | - Jian Feng
- Plant Protection Plant Inspection Station of Baoding City, Baoding, China
| | - Jianhai Gao
- Cangxian Agriculture and Rural Bureau, Cangxian, China
| | - Sen Han
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| | - Qiusheng Li
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| | - Lingxiao Kong
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| | - Yuxing Wu
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Baoding, China
| |
Collapse
|
2
|
Shi Q, Fu Q, Zhang J, Hao G, Liang C, Duan F, Ma J, Zhao H, Song W. Paenibacillus polymyxa J2-4 induces cucumber to enrich rhizospheric Pseudomonas and contributes to Meloidogyne incognita management under field conditions. PEST MANAGEMENT SCIENCE 2025; 81:266-276. [PMID: 39319624 DOI: 10.1002/ps.8429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Root knot nematodes (RKNs) pose a great threat to agricultural production worldwide. The bacterial nematocides have received increasing attention due to their safe and efficient control against RKNs. Here, we investigated the biocontrol efficacy of Paenibacillus polymyxa J2-4 against Meloidogyne incognita in the field and analyzed the rhizosphere microbiome of cucumber under nematode infection after application of the J2-4 strain. Furthermore, a biomarker strain of Pseudomonas spp. was isolated from the J2-4-inoculated rhizosphere soil, and its nematocidal activity and growth-promoting effect on host plants were determined. In addition, chemotaxis assay of P. fluroescens ZJ5 toward root exudates was carried out. RESULTS The field experiment demonstrated that P. polymyxa J2-4 could effectively suppressed gall formation in cucumber plants, with the galling index reduced by 67.63% in 2022 and 65.50% in 2023, respectively, compared with controls. Meanwhile, plant height and yield were significantly increased in J2-4 treated plants compared with controls. Metagenomic analysis indicated that J2-4 altered the rhizosphere microbial communities. The relative abundance of Pseudomonas spp. was notably enhanced in the J2-4 group, which was consistent with Linear discriminant analysis Effect Size results that Pseudomonas was determined as one of the biomarkers in the J2-4 group. Furthermore, the ZJ5 strain, one of the biomarker Pseudomonas strains, was isolated from the J2-4-inoculated rhizosphere soil and was identified as Pseudomonas fluorescens. In addition, P. fluorescens ZJ5 exhibited high nematicidal activity in vitro and in vivo, with 99.20% of the mortality rate of M. incognita at 24 h and 69.75% of gall index reduction. The biocontrol efficiency of the synthetic community of ZJ5 plus J2-4 was superior to that of any other single bacteria against M. incognita. Additionally, ZJ5 exhibited great chemotaxis ability toward root exudates inoculated with J2-4. CONCLUSION Paenibacillus polymyxa J2-4 has good potential in the biological control against M. incognita under field conditions. Enrichment of the beneficial bacteria Pseudomonas fluorescens ZJ5 in the J2-4-inoculated rhizosphere soil contributes to M. incognita management. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qianqian Shi
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qi Fu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Guangyang Hao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Chen Liang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fangmeng Duan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Juan Ma
- Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of IPM on Crops in Northern Region of North China, MARA China/Hebei IPM Innovation Center/International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding, China
| | - Honghai Zhao
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenwen Song
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Xu X, Yu TF, Wei JT, Ma XF, Liu YW, Zhang JP, Zheng L, Hou ZH, Chen J, Zhou YB, Chen M, Ma J, Jiang YF, Ji HT, Li LH, Ma YZ, Zhang ZA, Xu ZS. TaWRKY24 integrates the tryptophan metabolism pathways to participate in defense against Fusarium crown rot in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1764-1785. [PMID: 39499237 DOI: 10.1111/tpj.17079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024]
Abstract
Wheat growth process has been experiencing severe challenges arising from the adverse environment. Notably, the incidence of Fusarium crown rot (FCR), a severe soil-borne disease caused by Fusarium pseudograminearum (Fp), has significantly intensified in various wheat-growing regions, resulting in a decline in grain yield. However, the identification of wheat varieties and the exploration of effective gene resources resistant to FCR have not yet been accomplished. Here, we screened and identified the tryptophan metabolism pathway to participate in wheat resistance to FCR by correlation analysis between transcriptome and metabolome, and found that indole-3-acetaldehyde (IAAld) and melatonin, two key metabolites in the tryptophan metabolic pathway, were significantly accumulated in Fp-induced wheat stem bases. Interestingly, exogenous application of these two metabolites could significantly enhance wheat resistance against Fp. Additionally, we observed that the activity of TaALDHase, a crucial enzyme responsible for catalyzing IAAld to produce indole-3-acetic acid (IAA), was inhibited. Conversely, the activity of TaMTase, a rate-limiting involved in melatonin biosynthesis, was enhanced in the Fp-induced wheat transcriptome. Further analysis showed that TaWRKY24 could regulate IAA and melatonin biosynthesis by inhibiting the expression of TaALDHase and enhancing the transcription of TaMTase, respectively. Silencing of TaALDHase could significantly increase wheat resistance to FCR. However, interference with TaWRKY24 or TaMTase could decrease wheat resistance to FCR. Collectively, our findings demonstrate the crucial role of the tryptophan metabolism pathway in conferring resistance against FCR in wheat, thereby expanding its repertoire of biological functions within the plant system.
Collapse
Affiliation(s)
- Xing Xu
- College of Agronomy, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Tai-Fei Yu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ji-Tong Wei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiao-Fei Ma
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Yong-Wei Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Drought-Alkali Tolerance in Wheat, Cangzhou, Shijiazhuang, 050051, China
| | - Jin-Peng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lei Zheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ze-Hao Hou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jun Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yong-Bin Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ming Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yun-Feng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hu-Tai Ji
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Li-Hui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Seed Industry Laboratory, Sanya, China
| | - You-Zhi Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Seed Industry Laboratory, Sanya, China
| | - Zhi-An Zhang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhao-Shi Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Seed Industry Laboratory, Sanya, China
| |
Collapse
|
4
|
Li F, Guo C, Zhao Q, Wen W, Zhai S, Cao X, Liu C, Cheng D, Guo J, Zi Y, Liu A, Song J, Liu J, Liu J, Li H. Genome-wide linkage mapping of Fusarium crown rot in common wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1457437. [PMID: 39554517 PMCID: PMC11563792 DOI: 10.3389/fpls.2024.1457437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/03/2024] [Indexed: 11/19/2024]
Abstract
Introduction Powdery mildew (PM) poses an extreme threat to wheat yields and quality.[Methods] In this study, 262 recombinant inbred lines (RILs) of Doumai and Shi 4185 cross were used to map PM resistance genes across four environments. A high-density genetic linkage map of the Doumai/Shi 4185 RIL population was constructed using the wheat Illumina iSelect 90K single-nucleotide polymorphism (SNP) array. Results In total, four stable quantitative trait loci (QTLs) for PM resistance, QPm.caas-2AS, QPm.caas-4AS, QPm.caas-4BL, and QPm.caas-6BS, were detected and explained 5.6%-15.6% of the phenotypic variances. Doumai contributed all the resistance alleles of QPm.caas-2AS, QPm.caas-4AS, QPm.ca as-4BL, and QPm.caas-6BS. Among these, QPm.caas-4AS and QPm.caas-6BS overlapped with the previously reported loci, whereas QPm.caas-2AS and QPm.caas-4BL are potentially novel. Additionally, six high-confidence genes encoding the NBS-LRR-like resistance protein, disease resistance protein family, and calcium/calmodulin-dependent serine/threonine-kinase were selected as the candidate genes for PM resistance. Three kompetitive allele-specific PCR (KASP) markers, Kasp_PMR_2AS for QPm.caas-2AS, Kasp_PMR_4BL for QPm.caas-4BL, and Kasp_PMR_6BS for QPm.caas-6BS, were developed, and their genetic effects were validated in a natural population including 100 cultivars. Discussion These findings will offer valuable QTLs and available KASP markers to enhance wheat marker-assisted breeding for PM resistance.
Collapse
Affiliation(s)
- Faji Li
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Can Guo
- Shangqiu Academy of Agriculture and Forestry Sciences, Shangqiu, China
| | - Qi Zhao
- Collage of Life Science, Yantai University, Yantai, China
| | - Weie Wen
- Department of Cell Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shengnan Zhai
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xinyou Cao
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Cheng Liu
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Dungong Cheng
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jun Guo
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yan Zi
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Aifeng Liu
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianmin Song
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianjun Liu
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jindong Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Haosheng Li
- Crop Research Institute, National Engineering Laboratory for Wheat and Maize, National Key Laboratory of Wheat Improvement, Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
5
|
He T, Yang M, Du H, Du R, He Y, Wang S, Deng W, Liu Y, He X, Zhu Y, Zhu S, Du F. Biocontrol agents transform the stability and functional characteristics of the grape phyllosphere microenvironment. FRONTIERS IN PLANT SCIENCE 2024; 15:1439776. [PMID: 39479547 PMCID: PMC11524152 DOI: 10.3389/fpls.2024.1439776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
The spread of grape leaf diseases has a negative impact on the sustainable development of agriculture. Diseases induced by Uncinula necator significantly affect the quality of grapes. Bacillus biocontrol agents have been proven effective in disease management. However, limited research has been conducted on the impact of biocontrol agents on the assembly and potential functions of plant phyllosphere microbial communities. This study used high-throughput sequencing combined with bioinformatics analysis and culture omics technology for analysis. The results showed that biocontrol bacteria B. subtilis utilized in this study can significantly reduce the disease index of powdery mildew (p<0.05); concurrently, it exhibits a lower disease index compared to traditional fungicides. A comprehensive analysis has revealed that biocontrol bacteria have no significant impact on the diversity of phyllosphere fungi and bacteria, while fungicides can significantly reduce bacterial diversity. Additionally, biocontrol agents can increase the complexity of fungal networks and enhance the degree of modularity and stability of the bacterial network. The results also showed that the biocontrol agents, which contained a high amount of B. subtilis, were able to effectively colonize the grapevine phyllosphere, creating a microenvironment that significantly inhibits pathogenic bacteria on grape leaves while enhancing leaf photosynthetic capacity. In conclusion, biocontrol agents significantly reduce the grape powdery mildew disease index, promote a microenvironment conducive to symbiotic microorganisms and beneficial bacteria, and enhance plant photosynthetic capacity. These findings provide a basis for promoting biocontrol agents and offer valuable insights into sustainable agriculture development.
Collapse
Affiliation(s)
- Tao He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Meng Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Hongyan Du
- Institute of Ecological Agriculture in Hot Areas, Yunnan Academy of Agricultural Sciences, Yuanmou, Yunnan, China
| | - Ronghui Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Sheng Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Weiping Deng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Xiahong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Fei Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
6
|
Liu L, Jin Y, Lian H, Yin Q, Wang H. Exploring the Biocontrol Potential of Phanerochaete chrysosporium against Wheat Crown Rot. J Fungi (Basel) 2024; 10:641. [PMID: 39330400 PMCID: PMC11432967 DOI: 10.3390/jof10090641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
The worldwide occurrence of wheat crown rot, predominantly caused by the pathogen Fusarium pseudograminearum, has a serious impact on wheat production. Numerous microorganisms have been employed as biocontrol agents, exhibiting effectiveness in addressing a wide array of plant pathogens through various pathways. The mycelium of the white-rot fungus Phanerochaete chrysosporium effectively inhibits the growth of F. pseudograminearum by tightly attaching to it and forming specialized penetrating structures. This process leads to the release of intracellular inclusions and the eventual disintegration of pathogen cells. Furthermore, volatile organic compounds and fermentation products produced by P. chrysosporium exhibit antifungal properties. A comprehensive understanding of the mechanisms and modalities of action will facilitate the advancement and implementation of this biocontrol fungus. In order to gain a deeper understanding of the mycoparasitic behavior of P. chrysosporium, transcriptome analyses were conducted to examine the interactions between P. chrysosporium and F. pseudograminearum at 36, 48, and 84 h. During mycoparasitism, the up-regulation of differentially expressed genes (DEGs) encoding fungal cell-wall-degrading enzymes (CWDEs), iron ion binding, and mycotoxins were mainly observed. Moreover, pot experiments revealed that P. chrysosporium not only promoted the growth and quality of wheat but also hindered the colonization of F. pseudograminearum in wheat seedlings. This led to a delay in the development of stem base rot, a reduction in disease severity and incidence, and the activation of the plant's self-defense mechanisms. Our study provides important insights into the biocontrol mechanisms employed by P. chrysosporium against wheat crown rot caused by F. pseudograminearum.
Collapse
Affiliation(s)
| | | | | | | | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (L.L.); (Y.J.); (H.L.); (Q.Y.)
| |
Collapse
|
7
|
Kimotho RN, Zheng X, Li F, Chen Y, Li X. A potent endophytic fungus Purpureocillium lilacinum YZ1 protects against Fusarium infection in field-grown wheat. THE NEW PHYTOLOGIST 2024; 243:1899-1916. [PMID: 38946157 DOI: 10.1111/nph.19935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Abstract
Fusarium diseases pose a severe global threat to major cereal crops, particularly wheat. Existing biocontrol strains against Fusarium diseases are believed to primarily rely on antagonistic mechanisms, but not widely used under field conditions. Here, we report an endophytic fungus, Purpureocillium lilacinum YZ1, that shows promise in combating wheat Fusarium diseases. Under glasshouse conditions, YZ1 inoculation increased the survival rate of Fusarium graminearum (Fg)-infected wheat seedlings from 0% to > 60% at the seedling stage, and reduced spikelet infections by 70.8% during anthesis. In field trials, the application of YZ1 resulted in an impressive 89.0% reduction in Fg-susceptible spikelets. While a slight antagonistic effect of YZ1 against Fg was observed on plates, the induction of wheat systemic resistance by YZ1, which is distantly effective, non-specific, and long-lasting, appeared to be a key contributor to YZ1's biocontrol capabilities. Utilizing three imaging methods, we confirmed YZ1 as a potent endophyte capable of rapid colonization of wheat roots, and systematically spreading to the stem and leaves. Integrating dual RNA-Seq, photosynthesis measurements and cell wall visualization supported the link between YZ1's growth-promoting abilities and the activation of wheat systemic resistance. In conclusion, endophytes such as YZ1, which exhibits non-antagonistic mechanisms, hold significant potential for industrial-scale biocontrol applications.
Collapse
Affiliation(s)
- Roy Njoroge Kimotho
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zheng
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Furong Li
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| | - Yijun Chen
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofang Li
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
| |
Collapse
|
8
|
Waqar S, Bhat AA, Khan AA. Endophytic fungi: Unravelling plant-endophyte interaction and the multifaceted role of fungal endophytes in stress amelioration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108174. [PMID: 38070242 DOI: 10.1016/j.plaphy.2023.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 02/15/2024]
Abstract
Endophytic fungi colonize interior plant tissue and mostly form mutualistic associations with their host plant. Plant-endophyte interaction is a complex mechanism and is currently a focus of research to understand the underlying mechanism of endophyte asymptomatic colonization, the process of evading plant immune response, modulation of gene expression, and establishment of a balanced mutualistic relationship. Fungal endophytes rely on plant hosts for nutrients, shelter, and transmission and improve the host plant's tolerance against biotic stresses, including -herbivores, nematodes, bacterial, fungal, viral, nematode, and other phytopathogens. Endophytic fungi have been reported to improve plant health by reducing and eradicating the harmful effect of phytopathogens through competition for space or nutrients, mycoparasitism, and through direct or indirect defense systems by producing secondary metabolites as well as by induced systemic resistance (ISR). Additionally, for efficient crop improvement, practicing them would be a fruitful step for a sustainable approach. This review article summarizes the current research progress in plant-endophyte interaction and the fungal endophyte mechanism to overcome host defense responses, their subsequent colonization, and the establishment of a balanced mutualistic interaction with host plants. This review also highlighted the potential of fungal endophytes in the amelioration of biotic stress. We have also discussed the relevance of various bioactive compounds possessing antimicrobial potential against a variety of agricultural pathogens. Furthermore, endophyte-mediated ISR is also emphasized.
Collapse
Affiliation(s)
- Sonia Waqar
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Adil Ameen Bhat
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Abrar Ahmad Khan
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|