1
|
Sokołowski W, Marek-Kozaczuk M, Sosnowski P, Sajnaga E, Jach ME, Karaś MA. Profiling Metabolites with Antifungal Activities from Endophytic Plant-Beneficial Strains of Pseudomonas chlororaphis Isolated from Chamaecytisus albus (Hack.) Rothm. Molecules 2024; 29:4370. [PMID: 39339366 PMCID: PMC11433735 DOI: 10.3390/molecules29184370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Fungal phytopathogens represent a large and economically significant challenge to food production worldwide. Thus, the application of biocontrol agents can be an alternative. In the present study, we carried out biological, metabolomic, and genetic analyses of three endophytic isolates from nodules of Chamaecytisus albus, classified as Pseudomonas chlororaphis acting as antifungal agents. The efficiency of production of their diffusible and volatile antifungal compounds (VOCs) was verified in antagonistic assays with the use of soil-borne phytopathogens: B. cinerea, F. oxysporum, and S. sclerotiorum. Diffusible metabolites were identified using chromatographic and spectrometric analyses (HPTLC, GC-MS, and LC-MS/MS). The phzF, phzO, and prnC genes in the genomes of bacterial strains were confirmed by PCR. In turn, the plant growth promotion (PGP) properties (production of HCN, auxins, siderophores, and hydrolytic enzymes, phosphate solubilization) of pseudomonads were bioassayed. The data analysis showed that all tested strains have broad-range antifungal activity with varying degrees of antagonism. The most abundant bioactive compounds were phenazine derivatives: phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine, and diketopiperazine derivatives as well as ortho-dialkyl-aromatic acids, pyrrolnitrin, siderophores, and HCN. The results indicate that the tested P. chlororaphis isolates exhibit characteristics of biocontrol organisms; therefore, they have potential to be used in sustainable agriculture and as commercial postharvest fungicides to be used in fruits and vegetables.
Collapse
Affiliation(s)
- Wojciech Sokołowski
- Department of Genetics and Microbiology, Institute of Biological Science, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Monika Marek-Kozaczuk
- Department of Genetics and Microbiology, Institute of Biological Science, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| | - Piotr Sosnowski
- Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b Str., 20-059 Lublin, Poland
| | - Ewa Sajnaga
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, Konstantynów 1J Str., 20-708 Lublin, Poland
| | - Monika Elżbieta Jach
- Department of Molecular Biology, John Paul II Catholic University of Lublin, Konstantynów 1I Str., 20-708 Lublin, Poland
| | - Magdalena Anna Karaś
- Department of Genetics and Microbiology, Institute of Biological Science, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Str., 20-033 Lublin, Poland
| |
Collapse
|
2
|
Zheng F, Fu Y, Yu P, Qin C, Guo T, Xu H, Chen J, Ahammed GJ, Liu A, Chen S. Flavonoid synthesis is crucial for Trichoderma asperellum-induced systemic resistance to root-knot nematodes in tomato plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108706. [PMID: 38776824 DOI: 10.1016/j.plaphy.2024.108706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
Trichoderma spp. can enhance plant resistance against a wide range of biotic stressors. However, the fundamental mechanisms by which Trichoderma enhances plant resistance against Meloidogyne incognita, known as root-knot nematodes (RKNs), are still unclear. Here, we identified a strain of Trichoderma asperellum (T141) that could effectively suppress RKN infestation in tomato (Solanum lycopersicum L.). Nematode infestation led to an increase in the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) in roots but pre-inoculation with T141 significantly decreased oxidative stress. The reduction in ROS and MDA was accompanied by an increase in the activity of antioxidant enzymes and the accumulation of flavonoids and phenols. Moreover, split root test-based analysis showed that T141 inoculation in local roots before RKN inoculation increased the concentration of phytohormone jasmonate (JA) and the transcripts of JA synthesis and signaling-related genes in distant roots. UPLC-MS/MS-based metabolomics analysis identified 1051 differentially accumulated metabolites (DAMs) across 4 pairwise comparisons in root division test, including 81 flavonoids. Notably, 180 DAMs were found in comparison between RKN and T141-RKN, whereas KEGG annotation and enrichment analysis showed that the secondary metabolic pathways, especially the flavonoid biosynthesis, played a key role in the T141-induced systemic resistance to RKNs. The role of up-regulated flavonoids in RKN mortality was further verified by in vitro experiments with the exogenous treatment of kaempferol, hesperidin and rutin on J2-stage RKNs. Our results revealed a critical mechanism by which T141 induced resistance of tomato plants against the RKNs by systemically promoting secondary metabolism in distant roots.
Collapse
Affiliation(s)
- Fangying Zheng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Yalun Fu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Peng Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Congrui Qin
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Tianmeng Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Huihang Xu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Jingying Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China.
| | - Airong Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China.
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China.
| |
Collapse
|
3
|
Correa-Delgado R, Brito-López P, Jaizme Vega MC, Laich F. Biodiversity of Trichoderma species of healthy and Fusarium wilt-infected banana rhizosphere soils in Tenerife (Canary Islands, Spain). Front Microbiol 2024; 15:1376602. [PMID: 38800760 PMCID: PMC11122028 DOI: 10.3389/fmicb.2024.1376602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Banana (Musa acuminata) is the most important crop in the Canary Islands (38.9% of the total cultivated area). The main pathogen affecting this crop is the soil fungal Fusarium oxysporum f. sp. cubense subtropical race 4 (Foc-STR4), for which there is no effective control method under field conditions. Therefore, the use of native biological control agents may be an effective and sustainable alternative. This study aims to: (i) investigate the diversity and distribution of Trichoderma species in the rhizosphere of different banana agroecosystems affected by Foc-STR4 in Tenerife (the island with the greatest bioclimatic diversity and cultivated area), (ii) develop and preserve a culture collection of native Trichoderma species, and (iii) evaluate the influence of soil chemical properties on the Trichoderma community. A total of 131 Trichoderma isolates were obtained from 84 soil samples collected from 14 farms located in different agroecosystems on the northern (cooler and wetter) and southern (warmer and drier) slopes of Tenerife. Ten Trichoderma species, including T. afroharzianum, T. asperellum, T. atrobrunneum, T. gamsii, T. guizhouense, T. hamatum, T. harzianum, T. hirsutum, T. longibrachiatum, and T. virens, and two putative novel species, named T. aff. harzianum and T. aff. hortense, were identified based on the tef1-α sequences. Trichoderma virens (35.89% relative abundance) and T. aff. harzianum (27.48%) were the most abundant and dominant species on both slopes, while other species were observed only on one slope (north or south). Biodiversity indices (Margalef, Shannon, Simpson, and Pielou) showed that species diversity and evenness were highest in the healthy soils of the northern slope. The Spearman analysis showed significant correlations between Trichoderma species and soil chemistry parameters (mainly with phosphorus and soil pH). To the best of our knowledge, six species are reported for the first time in the Canary Islands (T. afroharzianum, T. asperellum, T. atrobrunneum, T. guizhouense, T. hamatum, T. hirsutum) and in the rhizosphere of banana soils (T. afroharzianum, T. atrobrunneum, T. gamsii, T. guizhouense, T. hirsutum, T. virens). This study provides essential information on the diversity/distribution of native Trichoderma species for the benefit of future applications in the control of Foc-STR4.
Collapse
Affiliation(s)
| | | | | | - Federico Laich
- Unidad de Protección Vegetal, Instituto Canario de Investigaciones Agrarias, Valle de Guerra, Santa Cruz de Tenerife, Canary Islands, Spain
| |
Collapse
|
4
|
Kredics L, Büchner R, Balázs D, Allaga H, Kedves O, Racić G, Varga A, Nagy VD, Vágvölgyi C, Sipos G. Recent advances in the use of Trichoderma-containing multicomponent microbial inoculants for pathogen control and plant growth promotion. World J Microbiol Biotechnol 2024; 40:162. [PMID: 38613584 PMCID: PMC11015995 DOI: 10.1007/s11274-024-03965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/21/2024] [Indexed: 04/15/2024]
Abstract
Chemical pesticides and fertilizers are used in agricultural production worldwide to prevent damage from plant pathogenic microorganisms, insects, and nematodes, to minimize crop losses and to preserve crop quality. However, the use of chemical pesticides and fertilizers can severely pollute soil, water, and air, posing risks to the environment and human health. Consequently, developing new, alternative, environment-friendly microbial soil treatment interventions for plant protection and crop yield increase has become indispensable. Members of the filamentous fungal genus Trichoderma (Ascomycota, Sordariomycetes, Hypocreales) have long been known as efficient antagonists of plant pathogenic microorganisms based on various beneficial traits and abilities of these fungi. This minireview aims to discuss the advances in the field of Trichoderma-containing multicomponent microbiological inoculants based on recent experimental updates. Trichoderma strains can be combined with each other, with other fungi and/or with beneficial bacteria. The development and field performance of such inoculants will be addressed, focusing on the complementarity, synergy, and compatibility of their microbial components.
Collapse
Affiliation(s)
- László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.
| | - Rita Büchner
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Dóra Balázs
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Henrietta Allaga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Orsolya Kedves
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Gordana Racić
- Faculty of Ecological Agriculture, Educons University, Vojvode Putnika 87, Sremska Kamenica, 21208, Serbia
| | - András Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Viktor Dávid Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Institute of Forest and Natural Resource Management, Faculty of Forestry, University of Sopron, Sopron, 9400, Hungary
| |
Collapse
|
5
|
Benigno A, Aglietti C, Cacciola SO, Moricca S. Trunk Injection Delivery of Biocontrol Strains of Trichoderma spp. Effectively Suppresses Nut Rot by Gnomoniopsis castaneae in Chestnut ( Castanea sativa Mill.). BIOLOGY 2024; 13:143. [PMID: 38534412 DOI: 10.3390/biology13030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
Gnomoniopsis castaneae is responsible for brown or chalky nut rot in sweet chestnut (Castanea sativa), causing heavy reductions in nut production. Controlling it is challenging, due to its inconspicuous infections, erratic colonization of host tissues and endophytic lifestyle. Fungicides are not applicable because they are prohibited in chestnut forests and strongly discouraged in fruit chestnut groves. Trichoderma species are safe and wide-spectrum biocontrol agents (BCAs), with a variety of beneficial effects in plant protection. This study tested selected strains of T. viride, T. harzianum and T. atroviride for their ability to suppress G. castaneae. Field experiments were conducted in four chestnut groves (two test plots plus two controls) at two sites with a different microclimate. As the size of the trees were a major drawback for uniform and effective treatments, the Trichoderma strains were delivered directly by trunk injection, using the BITE® (Blade for Infusion in TrEes) endotherapic tool. The BCA application, repeated twice in two subsequent years, significantly reduced nut rot incidence, with a more marked, presumably cumulative, effect in the second year. Our data showed the tested Trichoderma strains retain great potential for the biological control of G. castaneae in chestnut groves. The exploitation of Trichoderma spp. as biopesticides is a novelty in the forestry sector and proves the benefits of these microbes in plant disease protection.
Collapse
Affiliation(s)
- Alessandra Benigno
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Chiara Aglietti
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Salvatore Moricca
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| |
Collapse
|
6
|
Cirillo V, Romano I, Woo SL, Di Stasio E, Lombardi N, Comite E, Pepe O, Ventorino V, Maggio A. Inoculation with a microbial consortium increases soil microbial diversity and improves agronomic traits of tomato under water and nitrogen deficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1304627. [PMID: 38126011 PMCID: PMC10731302 DOI: 10.3389/fpls.2023.1304627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Microbial-based biostimulants, functioning as biotic and abiotic stress protectants and growth enhancers, are becoming increasingly important in agriculture also in the context of climate change. The search for new products that can help reduce chemical inputs under a variety of field conditions is the new challenge. In this study, we tested whether the combination of two microbial growth enhancers with complementary modes of action, Azotobacter chroococcum 76A and Trichoderma afroharzianum T22, could facilitate tomato adaptation to a 30% reduction of optimal water and nitrogen requirements. The microbial inoculum increased tomato yield (+48.5%) under optimal water and nutrient conditions. In addition, the microbial application improved leaf water potential under stress conditions (+9.5%), decreased the overall leaf temperature (-4.6%), and increased shoot fresh weight (+15%), indicating that this consortium could act as a positive regulator of plant water relations under limited water and nitrogen availability. A significant increase in microbial populations in the rhizosphere with applications of A. chroococcum 76A and T. afroharzianum T22 under stress conditions, suggested that these inoculants could enhance soil microbial abundance, including the abundance of native beneficial microorganisms. Sampling time, limited water and nitrogen regimes and microbial inoculations all affected bacterial and fungal populations in the rhizospheric soil. Overall, these results indicated that the selected microbial consortium could function as plant growth enhancer and stress protectant, possibly by triggering adaptation mechanisms via functional changes in the soil microbial diversity and relative abundance.
Collapse
Affiliation(s)
- Valerio Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Ida Romano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Sheridan L. Woo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- National Research Council, Institute for Sustainable Plant Protection, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Emilio Di Stasio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Ernesto Comite
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|