1
|
Birhanu M, Abegaz WE, Schröder D, Mihret A, Abebe T, Jacobsson S, Tasew G, Addis T, Abdeta A, Alem Y, Desalegn Z, Ademe M, Teka B, Yohannes M, Yigeremus M, Golparian D, Gebre-Selassie S, Unemo M. Antimicrobial susceptibility in Neisseria gonorrhoeae and epidemiological data of gonorrhoea patients in five cities across Ethiopia, 2021-22. JAC Antimicrob Resist 2024; 6:dlae002. [PMID: 38304725 PMCID: PMC10833647 DOI: 10.1093/jacamr/dlae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Introduction Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a global public health concern and enhanced global gonococcal AMR surveillance is imperative. As in many African countries, regular, representative and quality-assured gonococcal AMR is lacking in Ethiopia. We describe the AMR in gonococcal isolates from five cities across Ethiopia, 2021-22, and patient epidemiological data. Methods Urethral discharge from males and cervical discharge from females were collected from October 2021 to September 2022. Epidemiological data were collected using a questionnaire. MIC determination (ETEST; eight antimicrobials) was performed on gonococcal isolates and EUCAST breakpoints (v13.1) were used. Results From 1142 urogenital swab samples, 299 species-identified gonococcal isolates were identified; 78.3% were from males and 21.7% from females. The median age for males and females was 25 and 23 years, respectively. Most isolates (61.2%) were identified in Addis Ababa, followed by Gondar (11.4%), Adama (10.4%), Bahir Dar (10.0%) and Jimma (7.0%). The resistance level to ciprofloxacin, tetracycline and benzylpenicillin was 97.0%, 97.0% and 87.6%, respectively, and 87.6% of isolates were producing β-lactamase. All isolates were susceptible to ceftriaxone, cefixime, azithromycin and spectinomycin. Recommended therapy [ceftriaxone (250 mg) plus azithromycin (1 g)] was used for 84.2% of patients. Conclusions We present the first national quality-assured gonococcal AMR data from Ethiopia. Resistance levels to ciprofloxacin, tetracycline and benzylpenicillin were exceedingly high. However, all isolates were susceptible to ceftriaxone, cefixime, azithromycin and spectinomycin. In Ethiopia, it is essential to strengthen the gonococcal AMR surveillance by including further epidemiological data, more isolates from different cities, and WGS.
Collapse
Affiliation(s)
- Muluken Birhanu
- Department of Medical Laboratory Science, College of Health Science, Assosa University, Assosa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Woldaregay Erku Abegaz
- Department of Microbiology, Immunology and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Schröder
- Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, Örebro University, Örebro, Sweden
| | - Adane Mihret
- Department of Microbiology, Immunology and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Bacteriology, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Susanne Jacobsson
- Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, Örebro University, Örebro, Sweden
| | - Geremew Tasew
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Tesfa Addis
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abera Abdeta
- National Clinical Bacteriology and Mycology Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Yonas Alem
- Department of Medical Laboratory Sciences, Ambo University, Ambo, Ethiopia
| | - Zelealem Desalegn
- Department of Microbiology, Immunology and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Muluneh Ademe
- Department of Microbiology, Immunology and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Birhanu Teka
- Department of Microbiology, Immunology and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Meron Yohannes
- Department of Medical Laboratory Science, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mahlet Yigeremus
- Department of Gynecology and Obstetrics, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Golparian
- Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, Örebro University, Örebro, Sweden
| | - Solomon Gebre-Selassie
- Department of Microbiology, Immunology and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Magnus Unemo
- Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and Other STIs, Örebro University, Örebro, Sweden
- Institute for Global Health, University College London (UCL), London, UK
| |
Collapse
|
2
|
Rony MKK, Sharmi PD, Alamgir HM. Addressing antimicrobial resistance in low and middle-income countries: overcoming challenges and implementing effective strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101896-101902. [PMID: 37610548 DOI: 10.1007/s11356-023-29434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Antimicrobial resistance (AMR) has become a critical worldwide health crisis. It poses major challenges for healthcare systems across the globe, demanding immediate attention and action. Low and middle-income countries (LMICs), in particular, encounter unique obstacles in addressing AMR due to various factors. This article aims to examine specific challenges and propose effective strategies to combat this issue. Through a comprehensive review of existing literature, this article identifies common barriers and successful interventions in tackling AMR. The research highlights several challenges faced by LMICs in addressing AMR, including limited access to quality healthcare services, socioeconomic disparities, limited awareness, inadequate surveillance systems and data collection, limited regulatory frameworks and quality control, as well as weak healthcare infrastructure and infection prevention practices. The research suggests strategies like improving healthcare access, promoting responsible antimicrobial use, enhancing surveillance, ensuring quality antimicrobial drugs, and fostering global collaboration to address these challenges. By understanding the challenges encountered by LMICs, it is possible to mitigate the impact of AMR and contribute to global efforts in combating this growing threat.
Collapse
Affiliation(s)
- Moustaq Karim Khan Rony
- Masters of Public Health, Bangladesh Open University, Dhaka, Bangladesh.
- University of Dhaka, Dhaka, Bangladesh.
| | - Priyanka Das Sharmi
- College of Nursing, International University of Business Agriculture and Technology, Dhaka, Bangladesh
| | - Hasnat M Alamgir
- Department of Public Health, State University of Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
3
|
Kakooza F, Golparian D, Matoga M, Maseko V, Lamorde M, Krysiak R, Manabe YC, Chen JS, Kularatne R, Jacobsson S, Godreuil S, Hoffman I, Bercot B, Wi T, Unemo M. Genomic surveillance and antimicrobial resistance determinants in Neisseria gonorrhoeae isolates from Uganda, Malawi and South Africa, 2015-20. J Antimicrob Chemother 2023; 78:1982-1991. [PMID: 37352017 DOI: 10.1093/jac/dkad193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
OBJECTIVES Global antimicrobial resistance (AMR) surveillance in Neisseria gonorrhoeae is essential. In 2017-18, only five (10.6%) countries in the WHO African Region reported to the WHO Global Gonococcal Antimicrobial Surveillance Programme (WHO GASP). Genomics enhances our understanding of gonococcal populations nationally and internationally, including AMR strain transmission; however, genomic studies from Africa are extremely scarce. We describe the gonococcal genomic lineages/sublineages, including AMR determinants, and baseline genomic diversity among strains in Uganda, Malawi and South Africa, 2015-20, and compare with sequences from Kenya and Burkina Faso. METHODS Gonococcal isolates cultured in Uganda (n = 433), Malawi (n = 154) and South Africa (n = 99) in 2015-20 were genome-sequenced. MICs were determined using ETEST. Sequences of isolates from Kenya (n = 159), Burkina Faso (n = 52) and the 2016 WHO reference strains (n = 14) were included in the analysis. RESULTS Resistance to ciprofloxacin was high in all countries (57.1%-100%). All isolates were susceptible to ceftriaxone, cefixime and spectinomycin, and 99.9% were susceptible to azithromycin. AMR determinants for ciprofloxacin, benzylpenicillin and tetracycline were common, but rare for cephalosporins and azithromycin. Most isolates belonged to the more antimicrobial-susceptible lineage B (n = 780) compared with the AMR lineage A (n = 141), and limited geographical phylogenomic signal was observed. CONCLUSIONS We report the first multi-country gonococcal genomic comparison from Africa, which will support the WHO GASP and WHO enhanced GASP (EGASP). The high prevalence of resistance to ciprofloxacin (and empirical use continues), tetracycline and benzylpenicillin, and the emerging resistance determinants for azithromycin show it is imperative to strengthen the gonococcal AMR surveillance, ideally including genomics, in African countries.
Collapse
Affiliation(s)
- Francis Kakooza
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Daniel Golparian
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Örebro University, Örebro, Sweden
| | | | - Venessa Maseko
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Mohammed Lamorde
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Yuka C Manabe
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jane S Chen
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ranmini Kularatne
- Labtests Laboratory and Head Office, Mt Wellington, Auckland, New Zealand
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susanne Jacobsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Örebro University, Örebro, Sweden
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, and MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Irving Hoffman
- UNC Project Malawi, Lilongwe, Malawi
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Beatrice Bercot
- Infectious Agents Department, French National Reference Centre for Bacterial STIs, Associated Laboratory for Gonococci, and APHP, Saint Louis Hospital, Paris, France
| | - Teodora Wi
- Department of the Global HIV, Hepatitis and STI Programmes, WHO, Geneva, Switzerland
| | - Magnus Unemo
- Department of Laboratory Medicine, Faculty of Medicine and Health, WHO Collaborating Centre for Gonorrhoea and other STIs, National Reference Laboratory for STIs, Örebro University, Örebro, Sweden
- Institute for Global Health, University College London, London, UK
| |
Collapse
|