1
|
Zou X, Zou X, Gao L, Zhao H. Gut microbiota and psoriasis: pathogenesis, targeted therapy, and future directions. Front Cell Infect Microbiol 2024; 14:1430586. [PMID: 39170985 PMCID: PMC11335719 DOI: 10.3389/fcimb.2024.1430586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Background Psoriasis is one of the most common autoimmune skin diseases. Increasing evidence shows that alterations in the diversity and function of microbiota can participate in the pathogenesis of psoriasis through various pathways and mechanisms. Objective To review the connection between microbial changes and psoriasis, how microbial-targeted therapy can be used to treat psoriasis, as well as the potential of prebiotics, probiotics, synbiotics, fecal microbiota transplantation, diet, and Traditional Chinese Medicine as supplementary and adjunctive therapies. Methods Literature related to the relationship between psoriasis and gut microbiota was searched in PubMed and CNKI. Results Adjunct therapies such as dietary interventions, traditional Chinese medicine, and probiotics can enhance gut microbiota abundance and diversity in patients with psoriasis. These therapies stimulate immune mediators including IL-23, IL-17, IL-22, and modulate gamma interferon (IFN-γ) along with the NF-kB pathway, thereby suppressing the release of pro-inflammatory cytokines and ameliorating systemic inflammatory conditions. Conclusion This article discusses the direction of future research and clinical treatment of psoriasis from the perspective of intestinal microbiota and the mechanism of traditional Chinese medicine, so as to provide clinicians with more comprehensive diagnosis and treatment options and bring greater hope to patients with psoriasis.
Collapse
Affiliation(s)
- Xinyan Zou
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| | - Xinfu Zou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Longxia Gao
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| | - Hanqing Zhao
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| |
Collapse
|
2
|
Sun C, Chao Y, Xu H, Yang X, Pei L, Xu G, Wang F, Fan X, Tang L, Xie C, Su Y, Wang X. Combined analysis of metabolomics and 16S rRNA sequencing for ankylosing spondylitis patients before and after secukinumab therapy. Int J Rheum Dis 2024; 27:e15218. [PMID: 38923187 DOI: 10.1111/1756-185x.15218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/28/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Alterations in gut microbiota have been implicated in the pathogenesis of ankylosing spondylitis (AS), but the underlying mechanisms remain elusive. This study aims to investigate changes in gut microbiota and metabolites in individuals with AS before and after treatment with secukinumab, to identify the biological characteristics specific to AS patients and investigate the potential biomarkers, for optimizing therapeutic strategies more effectively. METHODS Fecal microbiome data were collected from 30 AS patients before and after secukinumab therapy and compared with data from 40 healthy controls (HC). Additionally, we analyzed the metabolic profile of both groups from plasma. RESULTS Findings indicated that the treatment-induced changes in the composition of several crucial bacterial groups, including Megamonas, Prevotella_9, Faecalibacterium, Roseburia, Bacteroides, and Agathobacter. Post-treatment, these groups exhibited a distribution more akin to that of the healthy populations compared with their pretreatment status. We identified three gut microbial taxa, namely Prevotellaceae_bacterium_Marseille_P2831, Prevotella_buccae, and Elusimicrobiota, as potential biomarkers for diagnosing individuals at a higher risk of developing AS and assessing disease outcomes. Plasma metabolomics analysis revealed 479 distinct metabolites and highlighted three disrupted metabolic pathways. Integration of microbiome and metabolomics datasets demonstrated a significant degree of correlation, underscoring the impact of the microbiome on metabolic activity. CONCLUSION Secukinumab can restore the balance of the gut microbiome and metabolites in AS patients, rendering them more similar to those found in the healthy population. The analysis of microbiome and metabolomics data have unveiled some candidate biomarkers capable of evaluating treatment efficacy.
Collapse
Affiliation(s)
- Chao Sun
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, Bengbu, China
| | - Yuyan Chao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Haojie Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Xinmeng Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, Bengbu, China
| | - Lijia Pei
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Guixia Xu
- Department of Dermatology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Fei Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xiaoyun Fan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, Bengbu, China
| | - Lin Tang
- Biomarker Technologies Corporation, Beijing, China
| | - Changhao Xie
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, Bengbu, China
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Xin Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, Bengbu, China
| |
Collapse
|
3
|
Chen Y, Peng C, Zhu L, Wang J, Cao Q, Chen X, Li J. Atopic Dermatitis and Psoriasis: Similarities and Differences in Metabolism and Microbiome. Clin Rev Allergy Immunol 2024; 66:294-315. [PMID: 38954264 DOI: 10.1007/s12016-024-08995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
Atopic dermatitis and psoriasis are common chronic inflammatory diseases of high incidence that share some clinical features, including symptoms of pruritus and pain, scaly lesions, and histologically, acanthosis and hyperkeratosis. Meanwhile, they are both commonly comorbid with metabolic disorders such as obesity and diabetes, indicating that both diseases may exist with significant metabolic disturbances. Metabolomics reveals that both atopic dermatitis and psoriasis have abnormalities in a variety of metabolites, including lipids, amino acids, and glucose. Meanwhile, recent studies have highlighted the importance of the microbiome and its metabolites in the pathogenesis of atopic dermatitis and psoriasis. Metabolic alterations and microbiome dysbiosis can also affect the immune, inflammatory, and epidermal barrier, thereby influencing the development of atopic dermatitis and psoriasis. Focusing on the metabolic and microbiome levels, this review is devoted to elaborating the similarities and differences between atopic dermatitis and psoriasis, thus providing insights into the intricate relationship between both conditions.
Collapse
Affiliation(s)
- Yihui Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Jiayi Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Qiaozhi Cao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| |
Collapse
|
4
|
Zhu Q, Zhao L, Ding H, Song J, Zhang Q, Yu S, Wang Y, Wang H. Interleukins and Psoriasis. J Cutan Med Surg 2024; 28:NP19-NP35. [PMID: 38314729 DOI: 10.1177/12034754241227623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Psoriasis is an immune-mediated chronic inflammatory skin disease that affects 2% to 3% of the world's population. It is widely assumed that immune cells and cytokines acting together play a crucial part in the pathophysiology of psoriasis by promoting the excessive proliferation of skin keratinocytes and inflammatory infiltration. Interleukins (ILs), as a critical component of cytokines, have been closely associated with the pathogenesis and progression of psoriasis. This review summarizes the current contribution of ILs to psoriasis and describes the role each IL performs in psoriasis. Furthermore, the paper presents the therapeutic effects and application prospects of biologics developed for ILs in clinical treatment and experiments. The study aims to further the research on ILs in the treatment of psoriasis.
Collapse
Affiliation(s)
- Qi Zhu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Haining Ding
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingna Song
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuhua Yu
- Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Yi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongmei Wang
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
5
|
Tang B, Zheng X, Luo Q, Li X, Yang Y, Bi Y, Chen Y, Han L, Chen H, Lu C. Network pharmacology and gut microbiota insights: unraveling Shenling Baizhu powder's role in psoriasis treatment. Front Pharmacol 2024; 15:1362161. [PMID: 38425649 PMCID: PMC10904012 DOI: 10.3389/fphar.2024.1362161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Background: Psoriasis, a chronic skin condition characterized by systemic inflammation and altered gut microbiota, has been a target of Traditional Chinese Medicine (TCM) for centuries. Shenling Baizhu Powder (SLBZP), a TCM formulation, holds promise for treating inflammatory diseases, but its specific role in psoriasis and impact on gut microbiota is not fully understood. Objective: This study aims to elucidate the mechanism of SLBZP in treating psoriasis, integrating component analysis, network pharmacology, and experimental validation in mice models. Methods: We commenced with a detailed component analysis of SLBZP using liquid chromatograph and mass spectrometer (LC-MS). Network pharmacology analysis was used to predict the potential action targets and pathways of SLBZP in psoriasis. An in vivo experiment was conducted with psoriasis mice models, treated with SLBZP. Therapeutic effects were assessed via symptomatology, histopathology, and immunohistochemical analysis. Gut microbiota composition was analyzed using 16S rRNA gene sequencing. Results: A total of 42 main components and quality markers were identified, primarily from licorice and ginseng, including flavonoids, saponins and other markers. PPI topology analysis showed that TNF, IL-6, IL-1β, TP53 and JUN were the core DEPs. 168 signaling pathways including lipid and atherosclerosis, AGE-RAGE signaling pathway, IL-17 signaling pathway and Th17 cell differentiation were enriched by KEGG. SLBZP demonstrated significant therapeutic effects on psoriasis in mice, with alterations in skin pathology and biomarkers. Additionally, notable changes in gut microbiota composition were observed post-treatment, indicating a possible gut-skin axis involvement. Conclusion: This research has pinpointed lipid metabolism as a key pathway in the treatment of psoriasis with SLBZP. It explores how SLBZP's modulation of gut microbiota and lipid metabolism can alleviate psoriasis, suggesting that balancing gut microbiota may reduce inflammation mediators and offer therapeutic benefits. This underscores lipid metabolism modulation as a potential new strategy in psoriasis treatment.
Collapse
Affiliation(s)
- Bin Tang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuwei Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianqian Luo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiong Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujie Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Bi
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonggen Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Han
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiming Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuanjian Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|