1
|
Zhu Z, Lu S, Wang H, Wang F, Xu W, Zhu Y, Xue J, Yang L. Innovations in Transgene Integration Analysis: A Comprehensive Review of Enrichment and Sequencing Strategies in Biotechnology. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39760503 DOI: 10.1021/acsami.4c14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Understanding the integration of transgene DNA (T-DNA) in transgenic crops, animals, and clinical applications is paramount for ensuring the stability and expression of inserted genes, which directly influence desired traits and therapeutic outcomes. Analyzing T-DNA integration patterns is essential for identifying potential unintended effects and evaluating the safety and environmental implications of genetically modified organisms (GMOs). This knowledge is crucial for regulatory compliance and fostering public trust in biotechnology by demonstrating transparency in genetic modifications. This review highlights recent advancements in T-DNA integration analysis, specifically focusing on targeted DNA enrichment and sequencing strategies. We examine key technologies, such as polymerase chain reaction (PCR)-based methods, hybridization capture, RNA/DNA-guided endonuclease-mediated enrichment, and high-throughput resequencing, emphasizing their contributions to enhancing precision and efficiency in transgene integration analysis. We discuss the principles, applications, and recent developments in these techniques, underscoring their critical role in advancing biotechnological products. Additionally, we address the existing challenges and future directions in the field, offering a comprehensive overview of how innovative DNA-targeted enrichment and sequencing strategies are reshaping biotechnology and genomics.
Collapse
Affiliation(s)
- Zaobing Zhu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
- Zhejiang Yuzhi Biotechnology Company, Limited, Ningbo 315032, People's Republic of China
| | - Shengtao Lu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Zhejiang Yuzhi Biotechnology Company, Limited, Ningbo 315032, People's Republic of China
| | - Hongchun Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Fan Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wenting Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yulei Zhu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Jing Xue
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Litao Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Zhejiang Yuzhi Biotechnology Company, Limited, Ningbo 315032, People's Republic of China
| |
Collapse
|
2
|
Harrison JC, Morgan GV, Kuppravalli A, Novak N, Farrell M, Bircher S, Garner E, Ashbolt NJ, Pruden A, Muenich RL, Boyer TH, Williams C, Ahmed W, Maal-Bared R, Hamilton KA. Determinants of antimicrobial resistance in biosolids: A systematic review, database, and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177455. [PMID: 39577596 DOI: 10.1016/j.scitotenv.2024.177455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Biosolids can provide a nutrient rich soil amendment, particularly for poor soils and semi-arid or drought-prone areas. However, there are concerns that sludge and biosolids could be a source of propagation and exposure to AMR determinants such as antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). To inform risk assessment efforts, a systematic literature review was performed to build a comprehensive spreadsheet database of ARB and ARG concentrations in biosolids (and some sludges specified as intended for land application), along with 69 other quantitative and qualitative meta-data fields from 68 published studies describing sampling information and processing methods that can be used for modeling purposes. Mean ARG concentrations per gram in positive samples of biosolids ranged from -5.7 log10(gene copies [gc]/g) to 12.92 log10(gc/g) (with these range values reported per dry weight), and aqueous concentrations ranged from 0.9 log10(gc/L) to 14.6 log10(gc/L). Mean ARB concentrations per gram of biosolids ranged from 2.02 log10 (colony forming units [CFU]/g) to 9.00 log10 (CFU/g) (dry weight), and aqueous concentrations ranged from 3.23 log10 (CFU/L) to 12.0 log10 (CFU/L). ARG log removal values (LRVs) during sewage sludge stabilization were calculated from a meta-analysis of mean concentrations before and after stabilization from 31 studies, ranging from -2.05 to 5.52 logs. The classes of resistance most relevant for a risk assessment corresponded to sulfonamide (sul1 and sul2), tetracycline (tetZ, tetX, tetA and tetG), beta-lactam (blaTEM), macrolide (ermB and ermF), aminoglycoside (strA and aac(6')-Ib-cr), and integron-associated (intI1). The resistance classes most relevant for ARB risk assessment included sulfonamides (sulfamethoxazole and sulfamethazine), cephalosporin (cephalothin and cefoxitin), penicillin (ampicillin), and ciprofloxin (ciprofloxacin). Considerations for exposure assessment are discussed to highlight risk assessment needs relating to antimicrobial resistance (AMR) associated with biosolids application. This study aids in prioritization of resources for reducing the spread of AMR within a One Health framework.
Collapse
Affiliation(s)
- Joanna Ciol Harrison
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Grace V Morgan
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA
| | - Aditya Kuppravalli
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | | | - Michael Farrell
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Sienna Bircher
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV 26505, USA
| | - Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV 26505, USA
| | - Nicholas J Ashbolt
- Cooperative Research Centre for Solving Antimicrobial Resistance in Agribusiness, Food and Environments (CRC SAAFE), Mawson Lakes, SA 5095, Australia
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rebecca L Muenich
- Biological and Agricultural Engineering, University of Arkansas, 790 W. Dickson St., Fayetteville, AR 72701, USA
| | - Treavor H Boyer
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| | - Clinton Williams
- US Department of Agriculture Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Rasha Maal-Bared
- Bellevue Research and Testing Laboratory, CDM Smith, 14432 SE Eastgate Way Suite 100, Bellevue, WA 98007, USA
| | - Kerry A Hamilton
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
3
|
Zomorodi AR, Motamedifar M, Rahmanian K, Shakeri M, Hajikhani B, Heidari H, Mansury D, Jahromi AS. Investigation of integron classes 1, 2, and 3 among multi-drug resistant Staphylococcus aureus isolates in Iran: a multi-center study. BMC Infect Dis 2024; 24:1430. [PMID: 39696000 DOI: 10.1186/s12879-024-10311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Rising methicillin-resistant Staphylococcus aureus (MRSA) poses a global health threat, contributing to serious infections with high mortality rates. Integrons are recognized as significant genetic elements in disseminating multidrug-resistant (MDR) strains. This study focuses on assessing the prevalence of integron classes 1, 2, and 3 in S. aureus strains from four major cities in Iran. METHODS This cross-sectional study analyzed 183 S. aureus isolates from Shiraz, Tehran, Isfahan, and Yazd in Iran. The isolates were identified using specific biochemical and molecullar tests. The Kirby-Bauer disc diffusion method and microbroth dilution method were employed to determine the susceptibility of the isolates to relevant antibiotics and vancomycin, respectively. The macrolide-lincosamide-streptogramin B (MLSB) resistance phenotype was also evaluated using the D-test. All isolates were sought for presence of the intI1, intI2, and intI3 genes. RESULTS Among 183 S. aureus isolates, high resistance rates were noted: 86.3% for erythromycin, 66.1% for ciprofloxacin, and 61.7% for clindamycin, while all isolates were susceptible to linezolid and vancomycin. Of the 183 isolates, 59.6% were identified as MRSA and 78.1% as MDR. According to the D-test results, 112/183 (61.2%), 29/183 (15.8%), 25/183 (13.7%), and 17/183 (9.7%) of S. aureus isolates showed constitutive resistance-MLSB, inducible resistance-MLSB, sensitive, and resistance to macrolide-streptogramin B (MS) phenotypes, respectively. The intI1 gene was found in 14 out of 183 S. aureus isolates (7.6%), while none were positive for the intI2 or intI3 genes. Notably, 11/14 (78.5%) and 13/14 (92.8%) intI1-positive isolates were MRSA and MDR, respectively. CONCLUSIONS The distribution of MRSA and MDR S. aureus isolates in Iran seems concerning. Although the prevalence of intI1 was not as high as in prior studies, almost all S. aureus harbored the intI1 gene were MRSA and MDR.
Collapse
Affiliation(s)
- Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Motamedifar
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Masihollah Shakeri
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
4
|
Ali N, Ali I, Din AU, Akhtar K, He B, Wen R. Integrons in the Age of Antibiotic Resistance: Evolution, Mechanisms, and Environmental Implications: A Review. Microorganisms 2024; 12:2579. [PMID: 39770781 PMCID: PMC11676243 DOI: 10.3390/microorganisms12122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/28/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Integrons, which are genetic components commonly found in bacteria, possess the remarkable capacity to capture gene cassettes, incorporate them into their structure, and thereby contribute to an increase in genomic complexity and phenotypic diversity. This adaptive mechanism allows integrons to play a significant role in acquiring, expressing, and spreading antibiotic resistance genes in the modern age. To assess the current challenges posed by integrons, it is necessary to have a thorough understanding of their characteristics. This review aims to elucidate the structure and evolutionary history of integrons, highlighting how the use of antibiotics has led to the preferential selection of integrons in various environments. Additionally, it explores their current involvement in antibiotic resistance and their dissemination across diverse settings, while considering potential transmission factors and routes. This review delves into the arrangement of gene cassettes within integrons, their ability to rearrange, the mechanisms governing their expression, and the process of excision. Furthermore, this study examines the presence of clinically relevant integrons in a wide range of environmental sources, shedding light on how anthropogenic influences contribute to their propagation into the environment.
Collapse
Affiliation(s)
- Niyaz Ali
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China; (N.A.); (I.A.); (K.A.)
- Guangxi Baise Modern Agriculture Technology Research and Extension Center, Management Committee of Baise National Agricultural Science and Technology Zone of Guangxi, Baise 530108, China
| | - Izhar Ali
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China; (N.A.); (I.A.); (K.A.)
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA;
| | - Kashif Akhtar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China; (N.A.); (I.A.); (K.A.)
| | - Bing He
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Ronghui Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bio-Resources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China; (N.A.); (I.A.); (K.A.)
| |
Collapse
|
5
|
de la Fuente Tagarro C, Martín-González D, De Lucas A, Bordel S, Santos-Beneit F. Current Knowledge on CRISPR Strategies Against Antimicrobial-Resistant Bacteria. Antibiotics (Basel) 2024; 13:1141. [PMID: 39766530 PMCID: PMC11672446 DOI: 10.3390/antibiotics13121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
CRISPR/Cas systems have emerged as valuable tools to approach the problem of antimicrobial resistance by either sensitizing or lysing resistant bacteria or by aiding in antibiotic development, with successful applications across diverse organisms, including bacteria and fungi. CRISPR/Cas systems can target plasmids or the bacterial chromosome of AMR-bacteria, and it is especially necessary to have an efficient entry into the target cells, which can be achieved through nanoparticles or bacteriophages. Regarding antibiotic development and production, though the use of CRISPR/Cas in this field is still modest, there is an untapped reservoir of bacterial and fungal natural products, with over 95% yet to be characterized. In Streptomyces, a key antibiotic-producing bacterial genus, CRISPR/Cas has been successfully used to activate silent biosynthetic gene clusters, leading to the discovery of new antibiotics. CRISPR/Cas is also applicable to non-model bacteria and different species of fungi, making it a versatile tool for natural products discovery. Moreover, CRISPR/Cas-based studies offer insights into metabolic regulation and biosynthetic pathways in both bacteria and fungi, highlighting its utility in understanding genetic regulation and improving industrial strains. In this work, we review ongoing innovations on ways to treat antimicrobial resistances and on antibiotic discovery using CRISPR/Cas platforms, highlighting the role of bacteria and fungi in these processes.
Collapse
Affiliation(s)
- Carlos de la Fuente Tagarro
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| | - Diego Martín-González
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| | - Andrea De Lucas
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| | - Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| | - Fernando Santos-Beneit
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain; (C.d.l.F.T.); (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain
| |
Collapse
|
6
|
Fang L, Chen R, Li C, Sun J, Liu R, Shen Y, Guo X. The association between the genetic structures of commonly incompatible plasmids in Gram-negative bacteria, their distribution and the resistance genes. Front Cell Infect Microbiol 2024; 14:1472876. [PMID: 39660283 PMCID: PMC11628540 DOI: 10.3389/fcimb.2024.1472876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Incompatible plasmids play a crucial role in the horizontal transfer of antibiotic resistance in bacteria, particularly in Gram-negative bacteria, and have thus attracted considerable attention in the field of microbiological research. In the 1970s, these plasmids, housing an array of resistance genes and genetic elements, were predominantly discovered. They exhibit a broad presence in diverse host bacteria, showcasing diversity in geographic distribution and the spectrum of antibiotic resistance genes. The complex genetic structure of plasmids further accelerates the accumulation of resistance genes in Gram-negative bacteria. This article offers a comprehensive review encompassing the discovery process, host distribution, geographic prevalence, carried resistance genes, and the genetic structure of different types incompatible plasmids, including IncA, IncC, IncF, IncL, IncM, IncH, and IncP. It serves as a valuable reference for enhancing our understanding of the role of these different types of plasmids in bacterial evolution and the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Lei Fang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhao Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Capuozzo M, Zovi A, Langella R, Ottaiano A, Cascella M, Scognamiglio M, Ferrara F. Optimizing Antibiotic Use: Addressing Resistance Through Effective Strategies and Health Policies. Antibiotics (Basel) 2024; 13:1112. [PMID: 39766502 PMCID: PMC11672716 DOI: 10.3390/antibiotics13121112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
Background: Antimicrobial resistance (AMR) has emerged as a significant challenge to public health, posing a considerable threat to effective disease management on a global scale. The increasing incidence of infections caused by resistant bacteria has led to heightened morbidity and mortality rates, particularly among vulnerable populations. Main text: This review analyzes current strategies and health policies adopted in the European Union (EU) and Italy to manage AMR, presenting an in-depth examination of approaches for containment and mitigation. Factors such as excessive prescriptions, self-medication, and the misuse of antibiotics in livestock contribute to the selection and spread of resistant strains. Furthermore, this review provides a detailed overview of resistance mechanisms, including enzymatic inactivation, reduced permeability, efflux pump activity, and target site protection, with specific examples provided. The review underscores the urgent need to develop new antibiotics and implement diagnostic testing to ensure targeted prescriptions and effectively combat resistant infections. Current estimates indicate that AMR-related infections cause over 60,000 deaths annually in Europe and the United States, with projections suggesting a potential rise to 10 million deaths per year by 2050 if current trends are not reversed. The review also examines existing public health policies in Europe and Italy, focusing on national and regional strategies to combat AMR. These include promoting responsible antibiotic use, improving surveillance systems, and encouraging research and development of new therapeutic options. Conclusions: Finally, the review presents short- and long-term perspectives from the authors, suggesting actionable steps for policymakers and healthcare providers. Ultimately, a coordinated and multidisciplinary approach involving healthcare professionals, policymakers, and the public is essential to mitigate the impact of AMR and ensure the effectiveness of antibiotics for future generations.
Collapse
Affiliation(s)
- Maurizio Capuozzo
- Pharmaceutical Department, Asl Napoli 3 Sud, Marittima Street 3, 80056 Ercolano, Italy;
| | - Andrea Zovi
- Ministry of Health, Viale Giorgio Ribotta 5, 00144 Rome, Italy;
| | - Roberto Langella
- Italian Society of Hospital Pharmacy (SIFO), SIFO Secretariat of the Lombardy Region, Via Carlo Farini 81, 20159 Milan, Italy;
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| | - Marco Cascella
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy;
| | - Manlio Scognamiglio
- Pharmaceutical Department, Asl Salerno, Salvatore Giordano Street 7, 84014 Nocera Inferiore, Italy;
| | - Francesco Ferrara
- Pharmacy Department, Asl Napoli 3 Sud, Dell’amicizia Street 22, 80035 Nola, Italy
| |
Collapse
|
8
|
de Farias BO, Saggioro EM, Montenegro KS, Magaldi M, Santos HSO, Gonçalves-Brito AS, Pimenta RL, Ferreira RG, Spisso BF, Pereira MU, Bianco K, Clementino MM. Metagenomic insights into plasmid-mediated antimicrobial resistance in poultry slaughterhouse wastewater: antibiotics occurrence and genetic markers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60880-60894. [PMID: 39395082 DOI: 10.1007/s11356-024-35287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Slaughterhouse wastewater represents important convergence and concentration points for antimicrobial residues, bacteria, and antibiotic resistance genes (ARG), which can promote antimicrobial resistance propagation in different environmental compartments. This study reports the assessment of the metaplasmidome-associated resistome in poultry slaughterhouse wastewater treated by biological processes, employing metagenomic sequencing. Antimicrobial residues from a wastewater treatment plant (WWTP) that treats poultry slaughterhouse influents and effluents were investigated through high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Residues from the macrolide, sulfonamide, and fluoroquinolone classes were detected, the latter two persisting after the wastewater treatment. The genetic markers 16S rRNA rrs (bacterial community) and uidA (Escherichia coli) were investigated by RT-qPCR and the sul1 and int1 genes by qPCR. After treatment, the 16S rRNA rrs, uidA, sul1, and int1 markers exhibited reductions of 0.67, 1.07, 1.28, and 0.79 genes copies, respectively, with no statistical significance (p > 0.05). The plasmidome-focused metagenomics sequences (MiSeq platform (Illumina®)) revealed more than 100 ARG in the WWTP influent, which can potentially confer resistance to 14 pharmacological classes relevant in the human and veterinary clinical contexts, in which the qnr gene (resistance to fluoroquinolones) was the most prevalent. Only 7.8% of ARG were reduced after wastewater treatment, and the remaining 92.2% were associated with an increase in the prevalence of ARG linked to multidrug efflux pumps, substrate-specific for certain classes of antibiotics, or broad resistance to multiple medications. These data demonstrate that wastewater from poultry slaughterhouses plays a crucial role as an ARG reservoir and in the spread of AMR into the environment.
Collapse
Affiliation(s)
- Beatriz Oliveira de Farias
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
- Laboratório de Avaliação E Promoção da Saúde Ambiental, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
| | - Kaylanne S Montenegro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mariana Magaldi
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Hugo Sérgio Oliveira Santos
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Andressa Silva Gonçalves-Brito
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Ramon Loureiro Pimenta
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Km 07, Zona Rural, BR-465, Seropédica, RJ, Brazil
| | - Rosana Gomes Ferreira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Bernardete Ferraz Spisso
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mararlene Ulberg Pereira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Kayo Bianco
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Maysa Mandetta Clementino
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Wang Q, Geng L, Gao Z, Sun Y, Li X, Sun S, Luo Y. Microalgae Enhances the Adaptability of Epiphytic Bacteria to Sulfamethoxazole Stress and Proliferation of Antibiotic Resistance Genes Mediated by Integron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19397-19407. [PMID: 39417646 DOI: 10.1021/acs.est.4c04925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The transmission of ARGs in the microalgae-associated epiphytic bacteria remains unclear under antibiotic exposure, apart from altering the microbial community structure. In this study, Chlorella vulgaris cocultured with bacteria screened from surface water was examined to explore the spread of ARGs in the presence of sulfamethoxazole (SMX). The extracellular polymers released by Chlorella vulgaris could reduce antibiotic-induced collateral damage to bacteria, thus increasing the diversity of the microalgae-associated epiphytic bacteria. The abundances of sul1 and intI1 in the phycosphere at 1 mg/L SMX dose increased by 290 and 28 times, respectively. Metagenomic sequencing further confirmed that SMX bioaccumulation stimulated the horizontal transfer of sul1 mediated by intI1 in the microalgae-associated epiphytic bacteria, while reactive oxygen species (ROS)-mediated oxidative stress induced the SOS response and thus enhanced the transformation of sul1 in the J group. This is the first study to verify that microalgae protect bacteria from antibiotic damage and hinder the spread of ARGs mediated by SOS response, while the transfer of ARGs mediated by integron is promoted due to the bioaccumulation of SMX in the phycosphere. The results contribute to present comprehensive understanding of the risk of ARG proliferation by the presence of emerging contaminants residues in river.
Collapse
Affiliation(s)
- Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Linlin Geng
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Ziao Gao
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Yan Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Xuli Li
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
10
|
Stevenson EM, Rushby-Jones O, Buckling A, Cole M, Lindeque PK, Murray AK. Selective colonization of microplastics, wood and glass by antimicrobial-resistant and pathogenic bacteria. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001506. [PMID: 39405105 PMCID: PMC11477370 DOI: 10.1099/mic.0.001506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
The Plastisphere is a novel niche whereby microbial communities attach to plastic debris, including microplastics. These communities can be distinct from those found in the surrounding environment or those attached to natural substrates and may serve as a reservoir of both pathogenic and antimicrobial-resistant (AMR) bacteria. Owing to the frequent omission of appropriate comparator particles (e.g. natural substrates) in previous studies, there is a lack of empirical evidence supporting the unique risks posed by microplastics in terms of enrichment and spread of AMR pathogens. This study investigated selective colonization by a sewage community on environmentally sampled microplastics with three different polymers, sources and morphologies, alongside natural substrate (wood), inert substrate (glass) and free-living/planktonic community controls. Culture and molecular methods (quantitative polymerase chain reaction (qPCR)) were used to ascertain phenotypic and genotypic AMR prevalence, respectively, and multiplex colony PCR was used to identify extra-intestinal pathogenic Escherichia coli (ExPECs). From this, polystyrene and wood particles were found to significantly enrich AMR bacteria, whereas sewage-sourced bio-beads significantly enriched ExPECs. Polystyrene and wood were the least smooth particles, and so the importance of particle roughness on AMR prevalence was then directly investigated by comparing the colonization of virgin vs artificially weathered polyethylene particles. Surface weathering did not have a significant effect on the AMR prevalence of colonized particles. Our results suggest that the colonization of plastic and non-plastic particles by AMR and pathogenic bacteria may be enhanced by substrate-specific traits.
Collapse
Affiliation(s)
- Emily M. Stevenson
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Faculty of Health and Life Sciences, Penryn Campus, Cornwall, UK
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UK
| | - Owen Rushby-Jones
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| | - Angus Buckling
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
| | - Matthew Cole
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UK
| | - Penelope K. Lindeque
- Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK
- Marine Ecology & Biodiversity, Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UK
| | - Aimee K. Murray
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Faculty of Health and Life Sciences, Penryn Campus, Cornwall, UK
| |
Collapse
|
11
|
Urrutia C, Leyton-Carcaman B, Abanto Marin M. Contribution of the Mobilome to the Configuration of the Resistome of Corynebacterium striatum. Int J Mol Sci 2024; 25:10499. [PMID: 39408827 PMCID: PMC11477358 DOI: 10.3390/ijms251910499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Corynebacterium striatum, present in the microbiota of human skin and nasal mucosa, has recently emerged as a causative agent of hospital-acquired infections, notable for its resistance to multiple antimicrobials. Its mobilome comprises several mobile genetic elements, such as plasmids, transposons, insertion sequences and integrons, which contribute to the acquisition of antimicrobial resistance genes. This study analyzes the contribution of the C. striatum mobilome in the transfer and dissemination of resistance genes. In addition, integrative and conjugative elements (ICEs), essential in the dissemination of resistance genes between bacterial populations, whose role in C. striatum has not yet been studied, are examined. This study examined 365 C. striatum genomes obtained from the NCBI Pathogen Detection database. Phylogenetic and pangenome analyses were performed, the resistance profile of the bacterium was recognized, and mobile elements, including putative ICE, were detected. Bioinformatic analyses identified 20 antimicrobial resistance genes in this species, with the Ermx gene being the most predominant. Resistance genes were mainly associated with plasmid sequence regions and class 1 integrons. Although an ICE was detected, no resistance genes linked to this element were found. This study provided valuable information on the geographic spread and prevalence of outbreaks observed through phylogenetic and pangenome analyses, along with identifying antimicrobial resistance genes and mobile genetic elements that carry many of the resistance genes and may be the subject of future research and therapeutic approaches.
Collapse
Affiliation(s)
- Catherine Urrutia
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile; (C.U.); (B.L.-C.)
- Carrera de Biotecnología, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Benjamin Leyton-Carcaman
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile; (C.U.); (B.L.-C.)
- Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile
| | - Michel Abanto Marin
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile; (C.U.); (B.L.-C.)
| |
Collapse
|
12
|
Wang L, Yu L, Cai B. Characteristics of tetracycline antibiotic resistance gene enrichment and migration in soil-plant system. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:427. [PMID: 39316269 DOI: 10.1007/s10653-024-02239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Tetracycline Resistance Genes (TRGs) have received widespread attention in recent years, as they are a novel environmental pollutant that can rapidly accumulate and migrate in soil plant systems through horizontal gene transfer (HGT), posing a potential threat to food safety and public health. This article systematically reviews the pollution sources, enrichment, and migration characteristics of TRGs in soil. The main sources of TRGs include livestock manure and contaminated wastewater, especially in intensive farming environments where TRGs pollution is more severe. In soil, TRGs diffuse horizontally between bacteria and migrate to plant tissues through mechanisms such as plasmid conjugation, integron mediation, and phage transduction. The migration of TRGs is not limited to the soil interior, and increasing evidence suggests that they can also enter the plant system through plant root absorption and the HGT pathway of endophytic bacteria, ultimately accumulating in plant roots, stems, leaves, fruits, and other parts. This process has a direct impact on human health, especially when TRGs are found in crops such as vegetables, which may be transmitted to the human body through the food chain. In addition, this article also deeply analyzed various factors that affect the migration of TRGs, including the residual level of tetracycline in soil, the type and concentration of microorganisms, heavy metal pollution, and the presence of new pollutants such as microplastics. These factors significantly affect the enrichment rate and migration mode of TRGs in soil. In addition, two technologies that can effectively eliminate TRGs in livestock breeding environments were introduced, providing reference for healthy agricultural production. The article concludes by summarizing the shortcomings of current research on TRGs, particularly the limited understanding of TRG migration pathways and their impact mechanisms. Future research should focus on revealing the migration mechanisms of TRGs in soil plant systems and developing effective control and governance measures to reduce the environmental transmission risks of TRGs and ensure the safety of ecosystems and human health.
Collapse
Affiliation(s)
- Lei Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Lina Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Baiyan Cai
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
13
|
Jin C, Yang S, Ma H, Zhang X, Zhang K, Zou W. Ubiquitous nanocolloids suppress the conjugative transfer of plasmid-mediated antibiotic resistance in aqueous environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124231. [PMID: 38801878 DOI: 10.1016/j.envpol.2024.124231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Nanocolloids (Nc) are widespread in natural water environment, whereas the potential effects of Nc on dissemination of antibiotic resistance remain largely unknown. In this study, Nc collected from the Yellow River in Henan province was tested for its ability to influence the conjugative transfer of resistant plasmid in aqueous environment. The results revealed that the conjugative transfer of RP4 plasmid between Escherichia coli was down-regulated by 52%-91% upon exposure to 1-10 mg/L Nc and the reduction became constant when the dose became higher (20-200 mg/L). Despite the exposure of Nc activated the anti-oxidation and SOS response in bacteria through up-regulating genes involved in glutathione biosynthesis and DNA recombination, the inhibition on the synthesis and secretion of extracellular polysaccharide induced the prevention of cell-cell contact, leading to the reduction of plasmid transfer. This was evidenced by the decreased bacterial adhesion and lowered levels of genes and metabolites relevant to transmembrane transport and D-glucose phosphorylation, as clarified in phenotypic, transcriptomics and metabolomics analysis of E. coli. The significant down-regulation of glycolysis/gluconeogenesis and TCA cycle was associated with the shortage of ATP induced by Nc. The up-regulation of global regulatory genes (korA and trbA) and the reduction of plasmid genes (trfAp, trbBp, and traG) expression also contributed to the suppressed conjugation of RP4 plasmid. The obtained findings remind that the role of ubiquitous colloidal particles is nonnegligible when practically and comprehensively assessing the risk of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Caixia Jin
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Shuo Yang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Haiwen Ma
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Kai Zhang
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, 464000, China
| | - Wei Zou
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
14
|
Fahy S, O’Connor JA, Sleator RD, Lucey B. From Species to Genes: A New Diagnostic Paradigm. Antibiotics (Basel) 2024; 13:661. [PMID: 39061343 PMCID: PMC11274079 DOI: 10.3390/antibiotics13070661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Molecular diagnostics has the potential to revolutionise the field of clinical microbiology. Microbial identification and nomenclature have, for too long, been restricted to phenotypic characterisation. However, this species-level view fails to wholly account for genetic heterogeneity, a result of lateral gene transfer, mediated primarily by mobile genetic elements. This genetic promiscuity has helped to drive virulence development, stress adaptation, and antimicrobial resistance in several important bacterial pathogens, complicating their detection and frustrating our ability to control them. We argue that, as clinical microbiologists at the front line, we must embrace the molecular technologies that allow us to focus specifically on the genetic elements that cause disease rather than the bacterial species that express them. This review focuses on the evolution of microbial taxonomy since the introduction of molecular sequencing, the role of mobile genetic elements in antimicrobial resistance, the current and emerging assays in clinical laboratories, and the comparison of phenotypic versus genotypic analyses. In essence, it is time now to refocus from species to genes as part of a new diagnostic paradigm.
Collapse
Affiliation(s)
- Sinead Fahy
- Department of Microbiology, Mercy University Hospital, T12 WE28 Cork, Ireland;
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (J.A.O.); (B.L.)
| | - James A. O’Connor
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (J.A.O.); (B.L.)
| | - Roy D. Sleator
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (J.A.O.); (B.L.)
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland; (J.A.O.); (B.L.)
| |
Collapse
|
15
|
Heidari A, Emami MH, Maghool F, Mohammadzadeh S, Kadkhodaei Elyaderani P, Safari T, Fahim A, Kamali Dolatabadi R. Molecular epidemiology, antibiotic resistance profile and frequency of integron 1 and 2 in adherent-invasive Escherichia coli isolates of colorectal cancer patients. Front Microbiol 2024; 15:1366719. [PMID: 38939191 PMCID: PMC11208319 DOI: 10.3389/fmicb.2024.1366719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
This study explores the prevalence of adherent-invasive Escherichia coli (AIEC) in colorectal cancer (CRC) patients and investigates the potential of effective intracellular antibiotics as a therapeutic strategy for CRC patients with AIEC infections. Considering the pivotal role of integrons in bacterial antibiotic resistance, the frequency of class 1 and 2 integrons in AIEC isolated from CRC patients, in one of the referenced 3 gastroenterology clinics in Isfahan, Iran was examined. AIEC strains were isolated from the colorectal biopsies and their antimicrobial sensitivity was assessed using the disc diffusion method. Polymerase chain reaction (PCR) was employed to detect intl1 and intl2. The multilocus sequence typing (MLST) method was utilized to type 10 selected isolates. Of the 150 samples, 24 were identified as AIEC, with the highest number isolated from CRC2 (33.4%) and CRC1 (29.16%), and the least from the FH group (8.3%) and control group (12.5%). int1 in 79.2% and int2 in 45.8% of AIEC strains were found and 41.6% of strains had both integrons. AIEC isolates with int1 exhibited the highest sensitivity to trimethoprim-sulfamethoxazole (57.9%), while those with int2 showed the highest sensitivity to ciprofloxacin (63.6%). A significant association between resistance to rifampin and integron 2 presence in AIEC isolates was observed. Furthermore, a significant correlation between integron 1 presence, invasion, survival, and replication within macrophages in AIEC strains was identified. MLST analysis revealed ST131 from CC131 with integron 1 as the most common sequence type (ST). The emergence of such strains in CRC populations poses a serious public health threat. The distribution pattern of STs varied among studied groups, with pandemic STs highlighting the importance of examining and treating patients infected with these isolates. Comprehensive prospective clinical investigations are warranted to assess the prognostic value of detecting this pathovar in CRC and to evaluate therapeutic techniques targeting drug-resistant AIECs, such as phage therapy, bacteriocins, and anti-adhesion compounds, for CRC prevention and treatment.
Collapse
Affiliation(s)
- Aida Heidari
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hassan Emami
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Maghool
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samane Mohammadzadeh
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Tahereh Safari
- Physiology Department, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Alireza Fahim
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Razie Kamali Dolatabadi
- Department of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran
- Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
16
|
Chen Z, Toro M, Moreno-Switt AI, Adell AD, Delgado-Suárez EJ, Bonelli RR, Oliveira CJB, Reyes-Jara A, Huang X, Albee B, Grim CJ, Allard M, Tallent SM, Brown EW, Bell RL, Meng J. Unveiling the genomic landscape of Salmonella enterica serotypes Typhimurium, Newport, and Infantis in Latin American surface waters: a comparative analysis. Microbiol Spectr 2024; 12:e0004724. [PMID: 38546218 PMCID: PMC11064523 DOI: 10.1128/spectrum.00047-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024] Open
Abstract
Surface waters are considered ecological habitats where Salmonella enterica can persist and disseminate to fresh produce production systems. This study aimed to explore the genomic profiles of S. enterica serotypes Typhimurium, Newport, and Infantis from surface waters in Chile, Mexico, and Brazil collected between 2019 and 2022. We analyzed the whole genomes of 106 S. Typhimurium, 161 S. Newport, and 113 S. Infantis isolates. Our phylogenetic analysis exhibited distinct groupings of isolates by their respective countries except for a notable case involving a Chilean S. Newport isolate closely related to two Mexican isolates, showing 4 and 13 single nucleotide polymorphisms of difference, respectively. The patterns of the most frequently detected antimicrobial resistance genes varied across countries and serotypes. A strong correlation existed between integron carriage and genotypic multidrug resistance (MDR) across serotypes in Chile and Mexico (R > 0.90, P < 0.01), while integron(s) were not detected in any of the Brazilian isolates. By contrast, we did not identify any strong correlation between plasmid carriage and genotypic MDR across diverse countries and serotypes.IMPORTANCEUnveiling the genomic landscape of S. enterica in Latin American surface waters is pivotal for ensuring public health. This investigation sheds light on the intricate genomic diversity of S. enterica in surface waters across Chile, Mexico, and Brazil. Our research also addresses critical knowledge gaps, pioneering a comprehensive understanding of surface waters as a reservoir for multidrug-resistant S. enterica. By integrating our understanding of integron carriage as biomarkers into broader MDR control strategies, we can also work toward targeted interventions that mitigate the emergence and dissemination of MDR in S. enterica in surface waters. Given its potential implications for food safety, this study emphasizes the critical need for informed policies and collaborative initiatives to address the risks associated with S. enterica in surface waters.
Collapse
Affiliation(s)
- Zhao Chen
- Joint Institute for Food Safety and Applied Nutrition and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
| | - Magaly Toro
- Joint Institute for Food Safety and Applied Nutrition and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Andrea I. Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Aiko D. Adell
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Enrique J. Delgado-Suárez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad de Nacional Autónoma de México, Mexico City, Mexico
| | - Raquel R. Bonelli
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Angélica Reyes-Jara
- Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Xinyang Huang
- Joint Institute for Food Safety and Applied Nutrition and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Brett Albee
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Christopher J. Grim
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Sandra M. Tallent
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Eric W. Brown
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Rebecca L. Bell
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition and Center for Food Safety and Security Systems, University of Maryland, College Park, Maryland, USA
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
17
|
Visca A, Di Gregorio L, Clagnan E, Bevivino A. Sustainable strategies: Nature-based solutions to tackle antibiotic resistance gene proliferation and improve agricultural productivity and soil quality. ENVIRONMENTAL RESEARCH 2024; 248:118395. [PMID: 38307185 DOI: 10.1016/j.envres.2024.118395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The issue of antibiotic resistance is now recognized by the World Health Organisation (WHO) as one of the major problems in human health. Although its effects are evident in the healthcare settings, the root cause should be traced back to the One Health link, extending from animals to the environment. In fact, the use of organic fertilizers in agroecosystems represents one, if not the primary, cause of the introduction of antibiotics and antibiotic-resistant bacteria into the soil. Since the concentrations of antibiotics introduced into the soil are residual, the agroecosystem has become a perfect environment for the selection and proliferation of antibiotic resistance genes (ARGs). The continuous influx of these emerging contaminants (i.e., antibiotics) into the agroecosystem results in the selection and accumulation of ARGs in soil bacteria, occasionally giving rise to multi-resistant bacteria. These bacteria may harbour ARGs related to various antibiotics on their plasmids. In this context, these bacteria can potentially enter the human sphere when individuals consume food from contaminated agroecosystems, leading to the acquisition of multi-resistant bacteria. Once introduced into the nosocomial environment, these bacteria pose a significant threat to human health. In this review, we analyse how the use of digestate as an organic fertilizer can mitigate the spread of ARGs in agroecosystems. Furthermore, we highlight how, according to European guidelines, digestate can be considered a Nature-Based Solution (NBS). This NBS not only has the ability to mitigate the spread of ARGs in agroecosystems but also offers the opportunity to further improve Microbial-Based Solutions (MBS), with the aim of enhancing soil quality and productivity.
Collapse
Affiliation(s)
- Andrea Visca
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy.
| | - Luciana Di Gregorio
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Elisa Clagnan
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Annamaria Bevivino
- Department for Sustainability, Biotechnologies and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| |
Collapse
|
18
|
Rahmeh R, Akbar A, Almutairi B, Kishk M, Jordamovic NB, Al-Ateeqi A, Shajan A, Al-Sherif H, Esposito A, Al-Momin S, Piazza S. Camel Milk Resistome in Kuwait: Genotypic and Phenotypic Characterization. Antibiotics (Basel) 2024; 13:380. [PMID: 38786109 PMCID: PMC11117293 DOI: 10.3390/antibiotics13050380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the major global health and economic threats. There is growing concern about the emergence of AMR in food and the possibility of transmission of microorganisms possessing antibiotic resistance genes (ARGs) to the human gut microbiome. Shotgun sequencing and in vitro antimicrobial susceptibility testing were used in this study to provide a detailed characterization of the antibiotic resistance profile of bacteria and their ARGs in dromedary camel milk. Eight pooled camel milk samples, representative of multiple camels distributed in the Kuwait desert, were collected from retail stores and analyzed. The genotypic analysis showed the presence of ARGs that mediate resistance to 18 classes of antibiotics in camel milk, with the highest resistance to fluoroquinolones (12.48%) and disinfecting agents and antiseptics (9%). Furthermore, the results pointed out the possible transmission of the ARGs to other bacteria through mobile genetic elements. The in vitro antimicrobial susceptibility testing indicated that 80% of the isolates were resistant to different classes of antibiotics, with the highest resistance observed against three antibiotic classes: penicillin, tetracyclines, and carbapenems. Multidrug-resistant pathogens including Klebsiella pneumoniae, Escherichia coli, and Enterobacter hormaechei were also revealed. These findings emphasize the human health risks related to the handling and consumption of raw camel milk and highlight the necessity of improving the hygienic practices of farms and retail stores to control the prevalence of ARGs and their transmission.
Collapse
Affiliation(s)
- Rita Rahmeh
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (A.A.); (B.A.); (M.K.); (A.A.-A.); (A.S.); (H.A.-S.); (S.A.-M.)
| | - Abrar Akbar
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (A.A.); (B.A.); (M.K.); (A.A.-A.); (A.S.); (H.A.-S.); (S.A.-M.)
| | - Batlah Almutairi
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (A.A.); (B.A.); (M.K.); (A.A.-A.); (A.S.); (H.A.-S.); (S.A.-M.)
| | - Mohamed Kishk
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (A.A.); (B.A.); (M.K.); (A.A.-A.); (A.S.); (H.A.-S.); (S.A.-M.)
| | - Naida Babic Jordamovic
- Computational Biology, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (N.B.J.); (S.P.)
| | - Abdulaziz Al-Ateeqi
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (A.A.); (B.A.); (M.K.); (A.A.-A.); (A.S.); (H.A.-S.); (S.A.-M.)
| | - Anisha Shajan
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (A.A.); (B.A.); (M.K.); (A.A.-A.); (A.S.); (H.A.-S.); (S.A.-M.)
| | - Heba Al-Sherif
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (A.A.); (B.A.); (M.K.); (A.A.-A.); (A.S.); (H.A.-S.); (S.A.-M.)
| | - Alfonso Esposito
- Faculty of Agricultural Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy;
| | - Sabah Al-Momin
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait; (A.A.); (B.A.); (M.K.); (A.A.-A.); (A.S.); (H.A.-S.); (S.A.-M.)
| | - Silvano Piazza
- Computational Biology, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (N.B.J.); (S.P.)
| |
Collapse
|
19
|
Elfadadny A, Ragab RF, AlHarbi M, Badshah F, Ibáñez-Arancibia E, Farag A, Hendawy AO, De los Ríos-Escalante PR, Aboubakr M, Zakai SA, Nageeb WM. Antimicrobial resistance of Pseudomonas aeruginosa: navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Front Microbiol 2024; 15:1374466. [PMID: 38646632 PMCID: PMC11026690 DOI: 10.3389/fmicb.2024.1374466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/05/2024] [Indexed: 04/23/2024] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium, is recognized for its adaptability and opportunistic nature. It poses a substantial challenge in clinical settings due to its complicated antibiotic resistance mechanisms, biofilm formation, and capacity for persistent infections in both animal and human hosts. Recent studies revealed a potential zoonotic transmission of P. aeruginosa between animals, the environment, and human populations which highlights awareness of this microbe. Implementation of the One Health approach, which underscores the connection between human, animal, and environmental health, we aim to offer a comprehensive perspective on the current landscape of P. aeruginosa management. This review presents innovative strategies designed to counteract P. aeruginosa infections. Traditional antibiotics, while effective in many cases, are increasingly compromised by the development of multidrug-resistant strains. Non-antibiotic avenues, such as quorum sensing inhibition, phage therapy, and nanoparticle-based treatments, are emerging as promising alternatives. However, their clinical application encounters obstacles like cost, side effects, and safety concerns. Effectively addressing P. aeruginosa infections necessitates persistent research efforts, advancements in clinical development, and a comprehension of host-pathogen interactions to deal with this resilient pathogen.
Collapse
Affiliation(s)
- Ahmed Elfadadny
- Laboratory of Internal Medicine, Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Rokaia F. Ragab
- Laboratory of Internal Medicine, Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Maha AlHarbi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Farhad Badshah
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Eliana Ibáñez-Arancibia
- PhD Program in Sciences Mentioning Applied Molecular and Cell Biology, La Frontera University, Temuco, Chile
- Laboratory of Engineering, Biotechnology and Applied Biochemistry – LIBBA, Department of Chemical Engineering, Faculty of Engineering and Science, La Frontera University, Temuco, Chile
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| | - Ahmed Farag
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amin Omar Hendawy
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Patricio R. De los Ríos-Escalante
- Department of Biological and Chemical Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
- Nucleus of Environmental Sciences, Faculty of Natural Resources, Catholic University of Temuco, Temuco, Chile
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qaliobiya, Egypt
| | - Shadi A. Zakai
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wedad M. Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
20
|
Öner SZ, Karaday E, Çalışkan A, Demir M, Şenol H, Kaleli İ. Integron distribution and relationship to antimicrobial resistance in E. coli isolated from blood culture. Indian J Med Microbiol 2024; 48:100554. [PMID: 38408609 DOI: 10.1016/j.ijmmb.2024.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/01/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE The aim of this study was to evaluate the distribution of integrons in strains of E. coli isolated from blood culture and the relationship between integrons and antimicrobial resistance. METHODS The study included 100 E. coli strains sent to the Medical Microbiology Laboratory from different clinics between September 2022 and June 2023. Antibiotic susceptibility was evaluated according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST). The presence of integrons was determined by the inhouse polymerase chain reaction (PCR). RESULTS Integron positivity was detected in 45 (45%) of isolates, and class 1 integrons were found in 41 (41%), class 2 integrons in 2 (2%), and both class 1 integrons and class 2 integrons in 2 (2%). Class 3 integron positivity was not detected. In total, 63 cases of community origin and 37 cases of hospital origin were identified. When antibiotic resistance was evaluated, the highest sensitivity was noted for amikacin (1%), meropenem (5%), imipenem (6%), and the highest resistant antibiotics were ampicillin (82%), cepfuroxime sodium (65%), and amoxicillin/clavulanate (62%), respectively. Of the 16 antimicrobial substances evaluated, 10 had an antibiotic resistance rate of over 45%. In class 1 integron-positive samples, ampicillin resistance and trimethoprim/sulfamethoxazole resistance were higher than in negative samples (p = 0.02, p = 0.0001, respectively). Fifty-one (51%) samples were found to have multiple drug resistance (MDR). In total, 59.5% of hospital-acquired isolates and 46% of community-acquired isolates were considered to be MDR. The class 1 integron positivity in MDR samples was high (p = 0.038). CONCLUSION The high MDR rates in both hospital-acquired and community-acquired isolates are alarming. In particular, class 1 integron monitoring is very important to prevent the spread of MDR isolates.
Collapse
Affiliation(s)
- Sedef Zeliha Öner
- Department of Medical Microbiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Esra Karaday
- Department of Medical Microbiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Ahmet Çalışkan
- Department of Medical Microbiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Melek Demir
- Department of Medical Microbiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Hande Şenol
- Department of Biostatistics, Pamukkale University, Denizli, Turkey.
| | - İlknur Kaleli
- Department of Medical Microbiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| |
Collapse
|
21
|
Yaseen A, Sheikh BA, Bhat BA, Hamid S, Waseem MA, Zargar MI, Mir MA, Shah WA. Deciphering the chemical constituents and antimicrobial activity of Prangos pabularia Lindl. using LC-MS/MS in combination with experimental evaluation and computational studies. Nat Prod Res 2024:1-6. [PMID: 38192260 DOI: 10.1080/14786419.2023.2300394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
This study meticulously explores the antimicrobial potential of Prangos pabularia Lindl.'s aerial parts through a comprehensive blend of in vitro and in silico analysis. Extracts with varying polarities underwent LC-MS/MS identification of active components, followed by in vitro and in silico assessments of antimicrobial efficacy against Escherichia coli, Bacillus cereus, Candida albicans, Candida glabrata, and Candida paropsilosis. The methanolic extract exhibited significant antimicrobial activity with a MIC value of 48 μg/mL against all tested strains. Molecular docking revealed the compound 9-(3-methylbut-2-enoxy)-furo-(3,2-g)-chromen-7-one's highest binding affinity against the penicillin-binding protein (PBP) bacterial drug target molecule. Other compounds also displayed substantial interactions with key antimicrobial drug target proteins. Further, Molecular dynamics simulations affirmed the stability of protein and ligand conformations. Collectively, these results underscore Prangos pabularia Lindl.'s aerial parts as a promising botanical resource in combating diverse microbial infections. This comprehensive approach not only validates it's in vitro antimicrobial properties but also provides molecular insights into interaction mechanisms, advancing our comprehension of the plant's therapeutic potential.
Collapse
Affiliation(s)
- Aadil Yaseen
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kashmir, Srinagar, India
| | - Bashir A Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Basharat A Bhat
- Department of Bio-Resources, Amar Singh College Campus, Cluster University Srinagar, India
| | - Saima Hamid
- Department of Environmental Sciences, School of Earth and Environmental Sciences, University of Kashmir, Srinagar, India
| | - Malik A Waseem
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kashmir, Srinagar, India
| | - Mohammed Iqbal Zargar
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Wajaht A Shah
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
22
|
Gambino D, Galluzzo FG, Cicero L, Cirincione R, Mannino E, Fiore V, Proverbio D, Spada E, Cassata G, Gargano V. Antibiotic Resistance Genes Carried by Commensal Escherichia coli from Shelter Cats in Italy. Vet Sci 2023; 10:680. [PMID: 38133231 PMCID: PMC10747167 DOI: 10.3390/vetsci10120680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Antimicrobial resistance is a widespread global health problem. The presence of resistant bacteria and antibiotic resistance genes has been demonstrated not only in humans but also in animals, including pets. Stray cats share the urban environment with people and pets. This may facilitate transmission of resistant bacteria and resistance genes between stray animals, people and domestic animals. Several studies have investigated the role of stray cats as a fecal carrier of ESBL-producing bacteria. However, there are many genes and resistance mechanisms that can be detected in commensal E. coli, which, because of its genetic plasticity, is considered an indicator for monitoring antibiotic resistance. In this study, rectal swabs were collected from stray cats from colonies and shelters in the city of Monza (Monza Brianza, Italy) to isolate commensal E. coli. Phenotypic tests, such as the minimum inhibitory concentration (MIC) and the double disc test (DDST), and molecular analyses to detect antimicrobial resistance genes (ARGs) were used to study the resistance of these isolates. The results obtained confirm that stray cats can carry ESBL-producing E. coli (6.7%) and genes conferring resistance to other important antibiotic classes such as tetracyclines and sulfonamides.
Collapse
Affiliation(s)
- Delia Gambino
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (D.G.); (R.C.); (E.M.); (V.F.); (G.C.); (V.G.)
| | - Francesco Giuseppe Galluzzo
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (D.G.); (R.C.); (E.M.); (V.F.); (G.C.); (V.G.)
| | - Luca Cicero
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (D.G.); (R.C.); (E.M.); (V.F.); (G.C.); (V.G.)
| | - Roberta Cirincione
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (D.G.); (R.C.); (E.M.); (V.F.); (G.C.); (V.G.)
| | - Erika Mannino
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (D.G.); (R.C.); (E.M.); (V.F.); (G.C.); (V.G.)
| | - Veronica Fiore
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (D.G.); (R.C.); (E.M.); (V.F.); (G.C.); (V.G.)
| | - Daniela Proverbio
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (D.P.); (E.S.)
| | - Eva Spada
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (D.P.); (E.S.)
| | - Giovanni Cassata
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (D.G.); (R.C.); (E.M.); (V.F.); (G.C.); (V.G.)
| | - Valeria Gargano
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (D.G.); (R.C.); (E.M.); (V.F.); (G.C.); (V.G.)
| |
Collapse
|