1
|
Wang S, Qi X, Liu D, Xie D, Jiang B, Wang J, Wang X, Wu G. The implications for urological malignancies of non-coding RNAs in the the tumor microenvironment. Comput Struct Biotechnol J 2024; 23:491-505. [PMID: 38249783 PMCID: PMC10796827 DOI: 10.1016/j.csbj.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024] Open
Abstract
Urological malignancies are a major global health issue because of their complexity and the wide range of ways they affect patients. There's a growing need for in-depth research into these cancers, especially at the molecular level. Recent studies have highlighted the importance of non-coding RNAs (ncRNAs) – these don't code for proteins but are crucial in controlling genes – and the tumor microenvironment (TME), which is no longer seen as just a background factor but as an active player in cancer progression. Understanding how ncRNAs and the TME interact is key for finding new ways to diagnose and predict outcomes in urological cancers, and for developing new treatments. This article reviews the basic features of ncRNAs and goes into detail about their various roles in the TME, focusing specifically on how different ncRNAs function and act in urological malignancies.
Collapse
Affiliation(s)
- Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Jin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| |
Collapse
|
2
|
Alfeghaly C, Castel G, Cazottes E, Moscatelli M, Moinard E, Casanova M, Boni J, Mahadik K, Lammers J, Freour T, Chauviere L, Piqueras C, Boers R, Boers J, Gribnau J, David L, Ouimette JF, Rougeulle C. XIST dampens X chromosome activity in a SPEN-dependent manner during early human development. Nat Struct Mol Biol 2024; 31:1589-1600. [PMID: 38834912 PMCID: PMC11479943 DOI: 10.1038/s41594-024-01325-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/25/2024] [Indexed: 06/06/2024]
Abstract
XIST (X-inactive specific transcript) long noncoding RNA (lncRNA) is responsible for X chromosome inactivation (XCI) in placental mammals, yet it accumulates on both X chromosomes in human female preimplantation embryos without triggering X chromosome silencing. The XACT (X-active coating transcript) lncRNA coaccumulates with XIST on active X chromosomes and may antagonize XIST function. Here, we used human embryonic stem cells in a naive state of pluripotency to assess the function of XIST and XACT in shaping the X chromosome chromatin and transcriptional landscapes during preimplantation development. We show that XIST triggers the deposition of polycomb-mediated repressive histone modifications and dampens the transcription of most X-linked genes in a SPEN-dependent manner, while XACT deficiency does not significantly affect XIST activity or X-linked gene expression. Our study demonstrates that XIST is functional before XCI, confirms the existence of a transient process of X chromosome dosage compensation and reveals that XCI and dampening rely on the same set of factors.
Collapse
Affiliation(s)
- Charbel Alfeghaly
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Gaël Castel
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Emmanuel Cazottes
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | | | - Eva Moinard
- Center for Research in Transplantation and Translational Immunology (CR2TI), CHU Nantes, Inserm, Nantes Université, Nantes, France
| | - Miguel Casanova
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Juliette Boni
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Kasturi Mahadik
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Jenna Lammers
- Service de Biologie de la Reproduction, CHU Nantes, Nantes Université, Nantes, France
| | - Thomas Freour
- Service de Biologie de la Reproduction, CHU Nantes, Nantes Université, Nantes, France
| | - Louis Chauviere
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Carla Piqueras
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France
| | - Ruben Boers
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joachim Boers
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Laurent David
- Center for Research in Transplantation and Translational Immunology (CR2TI), CHU Nantes, Inserm, Nantes Université, Nantes, France
- BioCore, CNRS, CHU Nantes, Inserm, Nantes Université, Nantes, France
| | | | - Claire Rougeulle
- Epigenetics and Cell Fate, CNRS, Université Paris Cité, Paris, France.
| |
Collapse
|
3
|
Bammidi LS, Gayen S. Multifaceted role of CTCF in X-chromosome inactivation. Chromosoma 2024; 133:217-231. [PMID: 39433641 DOI: 10.1007/s00412-024-00826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Therian female mammals compensate for the dosage of X-linked gene expression by inactivating one of the X-chromosomes. X-inactivation is facilitated by the master regulator Xist long non-coding RNA, which coats the inactive-X and facilitates heterochromatinization through recruiting different chromatin modifiers and changing the X-chromosome 3D conformation. However, many mechanistic aspects behind the X-inactivation process remain poorly understood. Among the many contributing players, CTCF has emerged as one of the key players in orchestrating various aspects related to X-chromosome inactivation by interacting with several other protein and RNA partners. In general, CTCF is a well-known architectural protein, which plays an important role in chromatin organization and transcriptional regulation. Here, we provide significant insight into the role of CTCF in orchestrating X-chromosome inactivation and highlight future perspectives.
Collapse
Affiliation(s)
- Lakshmi Sowjanya Bammidi
- Chromatin RNA and Genome (CRG) Lab, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| | - Srimonta Gayen
- Chromatin RNA and Genome (CRG) Lab, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
4
|
Aria H, Azizi M, Nazem S, Mansoori B, Darbeheshti F, Niazmand A, Daraei A, Mansoori Y. Competing endogenous RNAs regulatory crosstalk networks: The messages from the RNA world to signaling pathways directing cancer stem cell development. Heliyon 2024; 10:e35208. [PMID: 39170516 PMCID: PMC11337742 DOI: 10.1016/j.heliyon.2024.e35208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Cancer stem cells (CSCs) are one of the cell types that account for cancer heterogeneity. The cancer cells arrest in G0 and generate non-CSC progeny through self-renewal and pluripotency, resulting in tumor recurrence, metastasis, and resistance to chemotherapy. They can stimulate tumor relapse and re-grow a metastatic tumor. So, CSCs is a promising target for eradicating tumors, and developing an anti-CSCs therapy has been considered. In recent years competing endogenous RNA (ceRNA) has emerged as a significant class of post-transcriptional regulators that affect gene expression via competition for microRNA (miRNA) binding. Furthermore, aberrant ceRNA expression is associated with tumor progression. Recent findings show that ceRNA network can cause tumor progression through the effect on CSCs. To overcome therapeutic resistance due to CSCs, we need to improve our current understanding of the mechanisms by which ceRNAs are implicated in CSC-related relapse. Thus, this review was designed to discuss the role of ceRNAs in CSCs' function. Targeting ceRNAs may open the path for new cancer therapeutic targets and can be used in clinical research.
Collapse
Affiliation(s)
- Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Nazem
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Mansoori
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
5
|
Sharma S, Houfani AA, Foster LJ. Pivotal functions and impact of long con-coding RNAs on cellular processes and genome integrity. J Biomed Sci 2024; 31:52. [PMID: 38745221 PMCID: PMC11092263 DOI: 10.1186/s12929-024-01038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Recent advances in uncovering the mysteries of the human genome suggest that long non-coding RNAs (lncRNAs) are important regulatory components. Although lncRNAs are known to affect gene transcription, their mechanisms and biological implications are still unclear. Experimental research has shown that lncRNA synthesis, subcellular localization, and interactions with macromolecules like DNA, other RNAs, or proteins can all have an impact on gene expression in various biological processes. In this review, we highlight and discuss the major mechanisms through which lncRNAs function as master regulators of the human genome. Specifically, the objective of our review is to examine how lncRNAs regulate different processes like cell division, cell cycle, and immune responses, and unravel their roles in maintaining genomic architecture and integrity.
Collapse
Affiliation(s)
- Siddhant Sharma
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Aicha Asma Houfani
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, 2185 E Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Leonard J Foster
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, 2185 E Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
6
|
Zacco E, Broglia L, Kurihara M, Monti M, Gustincich S, Pastore A, Plath K, Nagakawa S, Cerase A, Sanchez de Groot N, Tartaglia GG. RNA: The Unsuspected Conductor in the Orchestra of Macromolecular Crowding. Chem Rev 2024; 124:4734-4777. [PMID: 38579177 PMCID: PMC11046439 DOI: 10.1021/acs.chemrev.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 04/07/2024]
Abstract
This comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences. By deepening our understanding of the delicate balance that governs molecular crowding driven by RNA and its implications for cellular homeostasis, we aim to shed light on this intriguing area of research. Our exploration extends to the methodologies employed to decipher the composition and structural intricacies of RNA granules, offering a comprehensive overview of the techniques used to characterize them, including relevant computational approaches. Through two detailed examples highlighting the significance of noncoding RNAs, NEAT1 and XIST, in the formation of phase-separated assemblies and their influence on the cellular landscape, we emphasize their crucial role in cellular organization and function. By elucidating the chemical underpinnings of RNA-mediated molecular crowding, investigating the role of modifications, structures, and composition of RNA granules, and exploring both physiological and aberrant phase separation phenomena, this Review provides a multifaceted understanding of the intriguing world of RNA-mediated biological condensates.
Collapse
Affiliation(s)
- Elsa Zacco
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Laura Broglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Misuzu Kurihara
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Michele Monti
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Stefano Gustincich
- Central
RNA Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
| | - Annalisa Pastore
- UK
Dementia Research Institute at the Maurice Wohl Institute of King’s
College London, London SE5 9RT, U.K.
| | - Kathrin Plath
- Department
of Biological Chemistry, David Geffen School
of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Shinichi Nagakawa
- RNA
Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Andrea Cerase
- Blizard
Institute,
Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, U.K.
- Unit
of Cell and developmental Biology, Department of Biology, Università di Pisa, 56123 Pisa, Italy
| | - Natalia Sanchez de Groot
- Unitat
de Bioquímica, Departament de Bioquímica i Biologia
Molecular, Universitat Autònoma de
Barcelona, 08193 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- RNA
Systems Biology Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, 16152 Genova, Italy
- Catalan
Institution for Research and Advanced Studies, ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
7
|
Bhatt U, Cucchiarini A, Luo Y, Evans CW, Mergny JL, Iyer KS, Smith NM. Preferential formation of Z-RNA over intercalated motifs in long noncoding RNA. Genome Res 2024; 34:217-230. [PMID: 38355305 PMCID: PMC10984386 DOI: 10.1101/gr.278236.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Secondary structure is a principal determinant of lncRNA function, predominantly regarding scaffold formation and interfaces with target molecules. Noncanonical secondary structures that form in nucleic acids have known roles in regulating gene expression and include G-quadruplexes (G4s), intercalated motifs (iMs), and R-loops (RLs). In this paper, we used the computational tools G4-iM Grinder and QmRLFS-finder to predict the formation of each of these structures throughout the lncRNA transcriptome in comparison to protein-coding transcripts. The importance of the predicted structures in lncRNAs in biological contexts was assessed by combining our results with publicly available lncRNA tissue expression data followed by pathway analysis. The formation of predicted G4 (pG4) and iM (piM) structures in select lncRNA sequences was confirmed in vitro using biophysical experiments under near-physiological conditions. We find that the majority of the tested pG4s form highly stable G4 structures, and identify many previously unreported G4s in biologically important lncRNAs. In contrast, none of the piM sequences are able to form iM structures, consistent with the idea that RNA is unable to form stable iMs. Unexpectedly, these C-rich sequences instead form Z-RNA structures, which have not been previously observed in regions containing cytosine repeats and represent an interesting and underexplored target for protein-RNA interactions. Our results highlight the prevalence and potential structure-associated functions of noncanonical secondary structures in lncRNAs, and show G4 and Z-RNA structure formation in many lncRNA sequences for the first time, furthering the understanding of the structure-function relationship in lncRNAs.
Collapse
Affiliation(s)
- Uditi Bhatt
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Anne Cucchiarini
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Yu Luo
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, École Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Nicole M Smith
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia;
| |
Collapse
|
8
|
Tang AA, Afasizheva A, Cano CT, Plath K, Black D, Franco E. Optimization of RNA Pepper Sensors for the Detection of Arbitrary RNA Targets. ACS Synth Biol 2024; 13:498-508. [PMID: 38295291 DOI: 10.1021/acssynbio.3c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The development of fluorescent light-up RNA aptamers (FLAPs) has paved the way for the creation of sensors to track RNA in live cells. A major challenge with FLAP sensors is their brightness and limited signal-to-background ratio both in vivo and in vitro. To address this, we develop sensors using the Pepper aptamer, which exhibits superior brightness and photostability when compared to other FLAPs. The sensors are designed to fold into a low fluorescence conformation and to switch to a high fluorescence conformation through toehold or loop-mediated interactions with their RNA target. Our sensors detect RNA targets as short as 20 nucleotides in length with a wide dynamic range over 300-fold in vitro, and we describe strategies for optimizing the sensor's performance for any given RNA target. To demonstrate the versatility of our design approach, we generated Pepper sensors for a range of specific, biologically relevant RNA sequences. Our design and optimization strategies are portable to other FLAPs and offer a promising foundation for future development of RNA sensors with high specificity and sensitivity for detecting RNA biomarkers with multiple applications.
Collapse
Affiliation(s)
- Anli A Tang
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Anna Afasizheva
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Clara T Cano
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
| | - Kathrin Plath
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, United States
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, Brain Research Institute, Graduate Program in the Biosciences, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Douglas Black
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, Brain Research Institute, Graduate Program in the Biosciences, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Fayyaz F, Eshkiki ZS, Karamzadeh AR, Moradi Z, Kaviani F, Namazi A, Karimi R, Tabaeian SP, Mansouri F, Akbari A. Relationship between long non-coding RNAs and Hippo signaling pathway in gastrointestinal cancers; molecular mechanisms and clinical significance. Heliyon 2024; 10:e23826. [PMID: 38226210 PMCID: PMC10788524 DOI: 10.1016/j.heliyon.2023.e23826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) play a significant biological role in the regulation of various cellular processes such as cell proliferation, differentiation, apoptosis and migration. In various malignancies, lncRNAs interplay with some main cancer-associated signaling pathways, including the Hippo signaling pathway to regulate the various cellular processes. It has been revealed that the cross-talking between lncRNAs and Hippo signaling pathway involves in gastrointestinal (GI) cancers development and progression. Considering the clinical significance of these lncRNAs, they have also been introduced as potential biomarkers in diagnostic, prognostic and therapeutic strategies in GI cancers. Herein, we review the mechanisms of lncRNA-mediated regulation of Hippo signaling pathway and focus on the corresponding molecular mechanisms and clinical significance of these non-coding RNAs in GI cancers.
Collapse
Affiliation(s)
- Farimah Fayyaz
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shokati Eshkiki
- Alimentary Tract Research Center, Clinical Sciences Research Institute, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Reza Karamzadeh
- Occupational Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Genetic, Faculty of Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Zahra Moradi
- Department of Genetic, Faculty of Sciences, Qom Branch, Islamic Azad University, Qom, Iran
- Young Researchers and Elite Club, Qom Branch, Islamic Azad University, Qom, Iran
| | - Faezeh Kaviani
- Department of Genetic, Faculty of Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Abolfazl Namazi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Karimi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seidamir Pasha Tabaeian
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mansouri
- Department of Genetic, Faculty of Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Geng L, Gao W, Saiyin H, Li Y, Zeng Y, Zhang Z, Li X, Liu Z, Gao Q, An P, Jiang N, Yu X, Chen X, Li S, Chen L, Lu B, Li A, Chen G, Shen Y, Zhang H, Tian M, Zhang Z, Li J. MLKL deficiency alleviates neuroinflammation and motor deficits in the α-synuclein transgenic mouse model of Parkinson's disease. Mol Neurodegener 2023; 18:94. [PMID: 38041169 PMCID: PMC10693130 DOI: 10.1186/s13024-023-00686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023] Open
Abstract
Parkinson's disease (PD), one of the most devastating neurodegenerative brain disorders, is characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN) and deposits of α-synuclein aggregates. Currently, pharmacological interventions for PD remain inadequate. The cell necroptosis executor protein MLKL (Mixed-lineage kinase domain-like) is involved in various diseases, including inflammatory bowel disease and neurodegenerative diseases; however, its precise role in PD remains unclear. Here, we investigated the neuroprotective role of MLKL inhibition or ablation against primary neuronal cells and human iPSC-derived midbrain organoids induced by toxic α-Synuclein preformed fibrils (PFFs). Using a mouse model (Tg-Mlkl-/-) generated by crossbreeding the SNCA A53T synuclein transgenic mice with MLKL knockout (KO)mice, we assessed the impact of MLKL deficiency on the progression of Parkinsonian traits. Our findings demonstrate that Tg-Mlkl-/- mice exhibited a significant improvement in motor symptoms and reduced phosphorylated α-synuclein expression compared to the classic A53T transgenic mice. Furthermore, MLKL deficiency alleviated tyrosine hydroxylase (TH)-positive neuron loss and attenuated neuroinflammation by inhibiting the activation of microglia and astrocytes. Single-cell RNA-seq (scRNA-seq) analysis of the SN of Tg-Mlkl-/- mice revealed a unique cell type-specific transcriptome profile, including downregulated prostaglandin D synthase (PTGDS) expression, indicating reduced microglial cells and dampened neuron death. Thus, MLKL represents a critical therapeutic target for reducing neuroinflammation and preventing motor deficits in PD.
Collapse
Affiliation(s)
- Lu Geng
- State Key Laboratory of Genetic Engineering, Department of Neurology, Huashan Hospital and School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Wenqing Gao
- State Key Laboratory of Genetic Engineering, Department of Neurology, Huashan Hospital and School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuanyuan Li
- State Key Laboratory of Genetic Engineering, Department of Neurology, Huashan Hospital and School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Yu Zeng
- Insitute of Immunology, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Zhifei Zhang
- State Key Laboratory of Genetic Engineering, Department of Neurology, Huashan Hospital and School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Xue Li
- Insitute of Immunology, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Zuolong Liu
- State Key Laboratory of Genetic Engineering, Department of Neurology, Huashan Hospital and School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Qiang Gao
- State Key Laboratory of Genetic Engineering, Department of Neurology, Huashan Hospital and School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China
| | - Ping An
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, 200040, China
| | - Suhua Li
- Division of Natural Science, Duke Kunshan University, Jiangsu, 215316, China
| | - Lei Chen
- Insitute of Immunology, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Boxun Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Aiqun Li
- Levi Regenerative Medicine Technologies, Zhuhai, 519085, China
| | - Guoyuan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yidong Shen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.
- Department of Neurosciences, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Department of Neurology, Huashan Hospital and School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
11
|
Sabalette KB, Makarova L, Marcia M. G·U base pairing motifs in long non-coding RNAs. Biochimie 2023; 214:123-140. [PMID: 37353139 DOI: 10.1016/j.biochi.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
Long non-coding RNAs (lncRNAs) are recently-discovered transcripts involved in gene expression regulation and associated with diseases. Despite the unprecedented molecular complexity of these transcripts, recent studies of the secondary and tertiary structure of lncRNAs are starting to reveal the principles of lncRNA structural organization, with important functional implications. It therefore starts to be possible to analyze lncRNA structures systematically. Here, using a set of prototypical and medically-relevant lncRNAs of known secondary structure, we specifically catalogue the distribution and structural environment of one of the first-identified and most frequently occurring non-canonical Watson-Crick interactions, the G·U base pair. We compare the properties of G·U base pairs in our set of lncRNAs to those of the G·U base pairs in other well-characterized transcripts, like rRNAs, tRNAs, ribozymes, and riboswitches. Furthermore, we discuss how G·U base pairs in these targets participate in establishing interactions with proteins or miRNAs, and how they enable lncRNA tertiary folding by forming intramolecular or metal-ion interactions. Finally, by identifying highly-G·U-enriched regions of yet unknown function in our target lncRNAs, we provide a new rationale for future experimental investigation of these motifs, which will help obtain a more comprehensive understanding of lncRNA functions and molecular mechanisms in the future.
Collapse
Affiliation(s)
- Karina Belen Sabalette
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Liubov Makarova
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France.
| |
Collapse
|
12
|
Ballarino M, Pepe G, Helmer-Citterich M, Palma A. Exploring the landscape of tools and resources for the analysis of long non-coding RNAs. Comput Struct Biotechnol J 2023; 21:4706-4716. [PMID: 37841333 PMCID: PMC10568309 DOI: 10.1016/j.csbj.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
In recent years, research on long non-coding RNAs (lncRNAs) has gained considerable attention due to the increasing number of newly identified transcripts. Several characteristics make their functional evaluation challenging, which called for the urgent need to combine molecular biology with other disciplines, including bioinformatics. Indeed, the recent development of computational pipelines and resources has greatly facilitated both the discovery and the mechanisms of action of lncRNAs. In this review, we present a curated collection of the most recent computational resources, which have been categorized into distinct groups: databases and annotation, identification and classification, interaction prediction, and structure prediction. As the repertoire of lncRNAs and their analysis tools continues to expand over the years, standardizing the computational pipelines and improving the existing annotation of lncRNAs will be crucial to facilitate functional genomics studies.
Collapse
Affiliation(s)
- Monica Ballarino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00161 Rome, Italy
| | - Gerardo Pepe
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 1, 00133 Rome, Italy
| | - Manuela Helmer-Citterich
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 1, 00133 Rome, Italy
| | - Alessandro Palma
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00161 Rome, Italy
| |
Collapse
|
13
|
Sapir T, Reiner O. HNRNPU's multi-tasking is essential for proper cortical development. Bioessays 2023; 45:e2300039. [PMID: 37439444 DOI: 10.1002/bies.202300039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/27/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein U (HNRNPU) is a nuclear protein that plays a crucial role in various biological functions, such as RNA splicing and chromatin organization. HNRNPU/scaffold attachment factor A (SAF-A) activities are essential for regulating gene expression, DNA replication, genome integrity, and mitotic fidelity. These functions are critical to ensure the robustness of developmental processes, particularly those involved in shaping the human brain. As a result, HNRNPU is associated with various neurodevelopmental disorders (HNRNPU-related neurodevelopmental disorder, HNRNPU-NDD) characterized by developmental delay and intellectual disability. Our research demonstrates that the loss of HNRNPU function results in the death of both neural progenitor cells and post-mitotic neurons, with a higher sensitivity observed in the former. We reported that HNRNPU truncation leads to the dysregulation of gene expression and alternative splicing of genes that converge on several signaling pathways, some of which are likely to be involved in the pathology of HNRNPU-related NDD.
Collapse
Affiliation(s)
- Tamar Sapir
- Weizmann Institute of Science, Molecular Genetics and Molecular Neuroscience, Rehovot, Central, Israel
| | - Orly Reiner
- Weizmann Institute of Science, Molecular Genetics and Molecular Neuroscience, Rehovot, Central, Israel
| |
Collapse
|
14
|
Guo M, Zhang L, Wang H, Zhou Q, Zhu X, Fu X, Yang J, Liu S, Guo D, Zhang B. SOCS1 as a Biomarker Candidate for HPV Infection and Prognosis of Head and Neck Squamous Cell Carcinomas. Curr Issues Mol Biol 2023; 45:5598-5612. [PMID: 37504269 PMCID: PMC10378037 DOI: 10.3390/cimb45070353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
The pathogenesis of head and neck squamous cell carcinoma (HNSCC) is associated with human papillomavirus (HPV) infection. However, the molecular mechanisms underlying the interactions between HNSCC and HPV remain unclear. Bioinformatics was used to analyze the gene expression dataset of HPV-associated HNSCC based on the Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) in HPV-positive and HPV-negative HNSCC were screened. Gene function enrichment, protein-protein interactions (PPI), survival analysis, and immune cell infiltration of DEGs were performed. Furthermore, the clinical data of HNSCC tissue samples were analyzed using immunohistochemistry. In total, 194 DEGs were identified. A PPI network was constructed and 10 hub genes (EREG, PLCG1, ERBB4, HBEGF, ZFP42, CBX6, NFKBIA, SOCS1, ATP2B2, and CEND1) were identified. Survival analysis indicated that low expression of SOCS1 was associated with worse overall survival. Immunohistochemistry demonstrated that SOCS1 expression was higher in HPV-negative HNSCC than in HPV-positive HNSCC, and there was a positive correlation between SOCS1 expression and patient survival. This study provides new information on biological targets that may be relevant to the molecular mechanisms underpinning the occurrence and development of HNSCC. SOCS1 may play an important role in the interaction between HPV and HNSCC and serve as a potential biomarker for future therapeutic targets.
Collapse
Affiliation(s)
- Manli Guo
- Key Lab of Oral Diseases of Gansu Province, Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou 730030, China
| | - Lijie Zhang
- School/Hospital of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou 730000, China
| | - Huihui Wang
- School/Hospital of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou 730000, China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou University, Lanzhou 730000, China
| | - Qiaozhen Zhou
- School/Hospital of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou 730000, China
| | - Xinrang Zhu
- School/Hospital of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou 730000, China
| | - Xinyu Fu
- School/Hospital of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou 730000, China
| | - Jinlong Yang
- School/Hospital of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou 730000, China
| | - Shanhe Liu
- School/Hospital of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou 730000, China
| | - Dingcheng Guo
- School/Hospital of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou 730000, China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou University, Lanzhou 730000, China
| | - Baoping Zhang
- School/Hospital of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou 730000, China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou University, Lanzhou 730000, China
- Institute of Biomechanics and Medical Engineering, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
15
|
Ma Y, Zhu Y, Shang L, Qiu Y, Shen N, Wang J, Adam T, Wei W, Song Q, Li J, Wicha MS, Luo M. LncRNA XIST regulates breast cancer stem cells by activating proinflammatory IL-6/STAT3 signaling. Oncogene 2023; 42:1419-1437. [PMID: 36922677 PMCID: PMC10154203 DOI: 10.1038/s41388-023-02652-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/17/2023]
Abstract
Aberrant expression of XIST, a long noncoding RNA (lncRNA) initiating X chromosome inactivation (XCI) in early embryogenesis, is a common feature of breast cancer (BC). However, the roles of post-XCI XIST in breast carcinogenesis remain elusive. Here we identify XIST as a key regulator of breast cancer stem cells (CSCs), which exhibit aldehyde dehydrogenase positive (ALDH+) epithelial- (E) and CD24loCD44hi mesenchymal-like (M) phenotypes. XIST is variably expressed across the spectrum of BC subtypes, and doxycycline (DOX)-inducible knockdown (KD) of XIST markedly inhibits spheroid/colony forming capacity, tumor growth and tumor-initiating potential. This phenotype is attributed to impaired E-CSC in luminal and E- and M-CSC activities in triple-negative (TN) BC. Gene expression profiling unveils that XIST KD most significantly affects cytokine-cytokine receptor interactions, leading to markedly suppressed expression of proinflammatory cytokines IL-6 and IL-8 in ALDH- bulk BC cells. Exogenous IL-6, but not IL-8, rescues the reduced sphere-forming capacity and proportion of ALDH+ E-CSCs in luminal and TN BC upon XIST KD. XIST functions as a nuclear sponge for microRNA let-7a-2-3p to activate IL-6 production from ALDH- bulk BC cells, which acts in a paracrine fashion on ALDH+ E-CSCs that display elevated cell surface IL-6 receptor (IL6R) expression. This promotes CSC self-renewal via STAT3 activation and expression of key CSC factors including c-MYC, KLF4 and SOX9. Together, this study supports a novel role of XIST by derepressing let-7 controlled paracrine IL-6 proinflammatory signaling to promote CSC self-renewal.
Collapse
Affiliation(s)
- Yuxi Ma
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yongyou Zhu
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Li Shang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, 48109, USA
| | - Yan Qiu
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Na Shen
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jonathan Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Tiffany Adam
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Wei Wei
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Qingxuan Song
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jun Li
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Max S Wicha
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, 48109, USA.
| | - Ming Luo
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, 48109, USA.
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
16
|
Crespi M. Long non-coding RNAs reveal new regulatory mechanisms controlling gene expression. C R Biol 2023; 345:15-39. [PMID: 36847118 DOI: 10.5802/crbiol.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
A plethora of non-coding RNAs have been found in eukaryotes, notably with the advent of modern sequencing technologies to analyze the transcriptome. Apart from the well-known housekeeping RNA genes (such as the ribosomal RNA or the transfer RNA), many thousands of transcripts detected are not evidently linked to a protein-coding gene. These, so called non-coding RNAs, may code for crucial regulators of gene expression, the small si/miRNAs, for small peptides (translated under specific conditions) or may act as long RNA molecules (antisense, intronic or intergenic long non-coding RNAs or lncRNAs). The lncRNAs interact with members of multiple machineries involved in gene regulation. In this review, we discussed about how plant lncRNAs permitted to discover new regulatory mechanisms acting in epigenetic control, chromatin 3D structure and alternative splicing. These novel regulations diversified the expression patterns and protein variants of target protein-coding genes and are an important element of the response of plants to environmental stresses and their adaptation to changing conditions.
Collapse
|
17
|
Lv Y, Wang Y, Zhang Z. Potentials of lncRNA-miRNA-mRNA networks as biomarkers for laryngeal squamous cell carcinoma. Hum Cell 2023; 36:76-97. [PMID: 36181662 DOI: 10.1007/s13577-022-00799-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023]
Abstract
Chemoresistance, radioresistance, and facile spreading of laryngeal squamous cell carcinoma (LSCC) make the practically clinical treatment invalid. Such dismal outcome mainly originates from the lack of effective biomarkers which are highly desirable to understand the pathogenesis of LSCC, and strives to find promising novel biomarkers to improve early screening, effective treatment, and prognosis evaluation in LSCC. Recently, long non-coding RNAs (lncRNAs), a kind of non-coding RNAs longer than 200 nucleotides, can participate in the process of tumorigenesis and progression through many regulatory modalities, such as epigenetic transcriptional regulation and post-transcriptional regulation. Meanwhile, microRNAs (miRNAs, miRs), essentially involved in the post-transcriptional regulation of gene expression, are aberrantly expressed in cancer-related genomic regions or susceptible sites. An increasing number of studies have shown that lncRNAs are important regulators of miRNAs expression in LSCC, and that miRNAs can also target to regulate the expression of lncRNAs, and they can target to regulate downstream messenger RNAs (mRNAs) transcriptionally or post-transcriptionally, thereby affecting various physiopathological processes of LSCC. Complex cross-regulatory networks existing among lncRNAs, miRNAs, and mRNAs can regulate the tumorigenesis and development of LSCC. Such networks may become promising biomarkers and potential therapeutic targets in the research field of LSCC. In this review, we mainly summarize the latest research progress on the regulatory relationships among lncRNAs, miRNAs, and downstream mRNAs, and highlight the potential applications of lncRNA-miRNA-mRNA regulatory networks as biomarkers for the early diagnosis, epithelial-mesenchymal transition (EMT) process, chemoresistance, radioresistance, and prognosis of LSCC, aiming to provide important clues for understanding the pathogenesis of LSCC and developing new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yan Lv
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
| | - Yanhua Wang
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China. .,Department of Morphology, Medical College of China Three Gorges University, Life Science Building, No.8 Daxue Road, Yichang, 443002, China.
| | - Zhikai Zhang
- The Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
18
|
Delli Ponti R, Broglia L, Vandelli A, Armaos A, Torrent Burgas M, Sanchez de Groot N, Tartaglia GG. A high-throughput approach to predict A-to-I effects on RNA structure indicates a change of double-stranded content in non-coding RNAs. IUBMB Life 2022; 75:411-426. [PMID: 36057100 DOI: 10.1002/iub.2673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/21/2022] [Indexed: 11/09/2022]
Abstract
RNA molecules undergo a number of chemical modifications whose effects can alter their structure and molecular interactions. Previous studies have shown that RNA editing can impact the formation of ribonucleoprotein complexes and influence the assembly of membrane-less organelles such as stress-granules. For instance, N6-methyladenosine (m6A) enhances SG formation and N1-methyladenosine (m1A) prevents their transition to solid-like aggregates. Yet, very little is known about adenosine to inosine (A-to-I) modification that is very abundant in human cells and not only impacts mRNAs but also non-coding RNAs. Here, we built the CROSSalive predictor of A-to-I effects on RNA structure based on high-throughput in-cell experiments. Our method shows an accuracy of 90% in predicting the single and double-stranded content of transcripts and identifies a general enrichment of double-stranded regions caused by A-to-I in long intergenic non-coding RNAs (lincRNAs). For the individual cases of NEAT1, NORAD and XIST, we investigated the relationship between A-to-I editing and interactions with RNA-binding proteins using available CLIP data and catRAPID predictions. We found that A-to-I editing is linked to alteration of interaction sites with proteins involved in phase-separation, which suggests that RNP assembly can be influenced by A-to-I. CROSSalive is available at http://service.tartaglialab.com/new_submission/crossalive. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Riccardo Delli Ponti
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore
| | - Laura Broglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy
| | - Andrea Vandelli
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alexandros Armaos
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy
| | - Marc Torrent Burgas
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Natalia Sanchez de Groot
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Genoa, Italy.,Department of Biology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome, Italy
| |
Collapse
|
19
|
Ross CJ, Ulitsky I. Discovering functional motifs in long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1708. [PMID: 34981665 DOI: 10.1002/wrna.1708] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 12/27/2022]
Abstract
Long noncoding RNAs (lncRNAs) are products of pervasive transcription that closely resemble messenger RNAs on the molecular level, yet function through largely unknown modes of action. The current model is that the function of lncRNAs often relies on specific, typically short, conserved elements, connected by linkers in which specific sequences and/or structures are less important. This notion has fueled the development of both computational and experimental methods focused on the discovery of functional elements within lncRNA genes, based on diverse signals such as evolutionary conservation, predicted structural elements, or the ability to rescue loss-of-function phenotypes. In this review, we outline the main challenges that the different methods need to overcome, describe the recently developed approaches, and discuss their respective limitations. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Caroline Jane Ross
- Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
20
|
Long Noncoding RNA Mediated Regulation in Human Embryogenesis, Pluripotency, and Reproduction. Stem Cells Int 2022; 2022:8051717. [PMID: 35103065 PMCID: PMC8800634 DOI: 10.1155/2022/8051717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), a class of noncoding RNAs with more than 200 bp in length, are produced by pervasive transcription in mammalian genomes and regulate gene expression through various action mechanisms. Accumulating data indicate that lncRNAs mediate essential biological functions in human development, including early embryogenesis, induction of pluripotency, and germ cell development. Comprehensive analysis of sequencing data highlights that lncRNAs are expressed in a stage-specific and human/primate-specific pattern during early human development. They contribute to cell fate determination through interacting with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. Furthermore, the expression of a few of lncRNAs is highly associated with the pathogenesis and progression of many reproductive diseases, suggesting that they could serve as candidate biomarkers for diagnosis or novel targets for treatment. Here, we review research on lncRNAs and their roles in embryogenesis, pluripotency, and reproduction. We aim to identify the underlying molecular mechanisms essential for human development and provide novel insight into the causes and treatments of human reproductive diseases.
Collapse
|
21
|
Trotman JB, Braceros KCA, Cherney RE, Murvin MM, Calabrese JM. The control of polycomb repressive complexes by long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1657. [PMID: 33861025 PMCID: PMC8500928 DOI: 10.1002/wrna.1657] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
The polycomb repressive complexes 1 and 2 (PRCs; PRC1 and PRC2) are conserved histone-modifying enzymes that often function cooperatively to repress gene expression. The PRCs are regulated by long noncoding RNAs (lncRNAs) in complex ways. On the one hand, specific lncRNAs cause the PRCs to engage with chromatin and repress gene expression over genomic regions that can span megabases. On the other hand, the PRCs bind RNA with seemingly little sequence specificity, and at least in the case of PRC2, direct RNA-binding has the effect of inhibiting the enzyme. Thus, some RNAs appear to promote PRC activity, while others may inhibit it. The reasons behind this apparent dichotomy are unclear. The most potent PRC-activating lncRNAs associate with chromatin and are predominantly unspliced or harbor unusually long exons. Emerging data imply that these lncRNAs promote PRC activity through internal RNA sequence elements that arise and disappear rapidly in evolutionary time. These sequence elements may function by interacting with common subsets of RNA-binding proteins that recruit or stabilize PRCs on chromatin. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jackson B. Trotman
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Keean C. A. Braceros
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel E. Cherney
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - McKenzie M. Murvin
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J. Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
22
|
Sabol M, Calleja-Agius J, Di Fiore R, Suleiman S, Ozcan S, Ward MP, Ozretić P. (In)Distinctive Role of Long Non-Coding RNAs in Common and Rare Ovarian Cancers. Cancers (Basel) 2021; 13:cancers13205040. [PMID: 34680193 PMCID: PMC8534192 DOI: 10.3390/cancers13205040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 02/05/2023] Open
Abstract
Rare ovarian cancers (ROCs) are OCs with an annual incidence of fewer than 6 cases per 100,000 women. They affect women of all ages, but due to their low incidence and the potential clinical inexperience in management, there can be a delay in diagnosis, leading to a poor prognosis. The underlying causes for these tumors are varied, but generally, the tumors arise due to alterations in gene/protein expression in cellular processes that regulate normal proliferation and its checkpoints. Dysregulation of the cellular processes that lead to cancer includes gene mutations, epimutations, non-coding RNA (ncRNA) regulation, posttranscriptional and posttranslational modifications. Long non-coding RNA (lncRNA) are defined as transcribed RNA molecules, more than 200 nucleotides in length which are not translated into proteins. They regulate gene expression through several mechanisms and therefore add another level of complexity to the regulatory mechanisms affecting tumor development. Since few studies have been performed on ROCs, in this review we summarize the mechanisms of action of lncRNA in OC, with an emphasis on ROCs.
Collapse
Affiliation(s)
- Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (J.C.-A.); (R.D.F.); (S.S.)
| | - Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (J.C.-A.); (R.D.F.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta; (J.C.-A.); (R.D.F.); (S.S.)
| | - Sureyya Ozcan
- Department of Chemistry, Middle East Technical University (METU), 06800 Ankara, Turkey;
- Cancer Systems Biology Laboratory (CanSyl), Middle East Technical University (METU), 06800 Ankara, Turkey
| | - Mark P. Ward
- Department of Histopathology, Trinity St James’s Cancer Institute, Emer Casey Molecular Pathology Laboratory, Trinity College Dublin and Coombe Women’s and Infants University Hospital, D08 RX0X Dublin, Ireland;
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-(1)-4571292
| |
Collapse
|
23
|
Trigiante G, Blanes Ruiz N, Cerase A. Emerging Roles of Repetitive and Repeat-Containing RNA in Nuclear and Chromatin Organization and Gene Expression. Front Cell Dev Biol 2021; 9:735527. [PMID: 34722514 PMCID: PMC8552494 DOI: 10.3389/fcell.2021.735527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Genomic repeats have been intensely studied as regulatory elements controlling gene transcription, splicing and genome architecture. Our understanding of the role of the repetitive RNA such as the RNA coming from genomic repeats, or repetitive sequences embedded in mRNA/lncRNAs, in nuclear and cellular functions is instead still limited. In this review we discuss evidence supporting the multifaceted roles of repetitive RNA and RNA binding proteins in nuclear organization, gene regulation, and in the formation of dynamic membrane-less aggregates. We hope that our review will further stimulate research in the consolidating field of repetitive RNA biology.
Collapse
Affiliation(s)
| | | | - Andrea Cerase
- Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
24
|
|
25
|
Gandhi S, Witten A, De Majo F, Gilbers M, Maessen J, Schotten U, de Windt LJ, Stoll M. Evolutionarily conserved transcriptional landscape of the heart defining the chamber specific physiology. Genomics 2021; 113:3782-3792. [PMID: 34506887 DOI: 10.1016/j.ygeno.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/17/2021] [Accepted: 09/05/2021] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. A deeper characterization of regional transcription patterns within different heart chambers may aid to improve our understanding of the molecular mechanisms involved in myocardial function and further, our ability to develop novel therapeutic strategies. Here, we used RNA sequencing to determine differentially expressed protein coding (PC) and long non-coding (lncRNA) transcripts within the heart chambers across seven vertebrate species and identified evolutionarily conserved chamber specific genes, lncRNAs and pathways. We investigated lncRNA homologs based on sequence, secondary structure, synteny and expressional conservation and found most lncRNAs to be conserved by synteny. Regional co-expression patterns of transcripts are modulated by multiple factors, including genomic overlap, strandedness and transcript biotype. Finally, we provide a community resource designated EvoACTG, which informs researchers on the conserved yet intertwined nature of the coding and non-coding cardiac transcriptome across popular model organisms in CVD research.
Collapse
Affiliation(s)
- Shrey Gandhi
- Institute of Human Genetics, Division of Genetic Epidemiology, University of Muenster, Muenster, Germany
| | - Anika Witten
- Institute of Human Genetics, Division of Genetic Epidemiology, University of Muenster, Muenster, Germany
| | - Federica De Majo
- Department of Molecular Genetics, Maastricht University, Maastricht, the Netherlands
| | - Martijn Gilbers
- Department of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Jos Maessen
- Department of Cardiothoracic Surgery, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Ulrich Schotten
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Leon J de Windt
- Department of Molecular Genetics, Maastricht University, Maastricht, the Netherlands
| | - Monika Stoll
- Institute of Human Genetics, Division of Genetic Epidemiology, University of Muenster, Muenster, Germany; Department of Biochemistry, Genetic Epidemiology and Statistical Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
26
|
Hsu PS, Yu SH, Tsai YT, Chang JY, Tsai LK, Ye CH, Song NY, Yau LC, Lin SP. More than causing (epi)genomic instability: emerging physiological implications of transposable element modulation. J Biomed Sci 2021; 28:58. [PMID: 34364371 PMCID: PMC8349491 DOI: 10.1186/s12929-021-00754-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) initially attracted attention because they comprise a major portion of the genomic sequences in plants and animals. TEs may jump around the genome and disrupt both coding genes as well as regulatory sequences to cause disease. Host cells have therefore evolved various epigenetic and functional RNA-mediated mechanisms to mitigate the disruption of genomic integrity by TEs. TE associated sequences therefore acquire the tendencies of attracting various epigenetic modifiers to induce epigenetic alterations that may spread to the neighboring genes. In addition to posting threats for (epi)genome integrity, emerging evidence suggested the physiological importance of endogenous TEs either as cis-acting control elements for controlling gene regulation or as TE-containing functional transcripts that modulate the transcriptome of the host cells. Recent advances in long-reads sequence analysis technologies, bioinformatics and genetic editing tools have enabled the profiling, precise annotation and functional characterization of TEs despite their challenging repetitive nature. The importance of specific TEs in preimplantation embryonic development, germ cell differentiation and meiosis, cell fate determination and in driving species specific differences in mammals will be discussed.
Collapse
Affiliation(s)
- Pu-Sheng Hsu
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yi-Tzang Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Jen-Yun Chang
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Li-Kuang Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Ning-Yu Song
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.,Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Lih-Chiao Yau
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan. .,Center of Systems Biology, National Taiwan University, Taipei, Taiwan. .,The Research Center of Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
27
|
Li C, Liu JH, Su J, Lin WJ, Zhao JQ, Zhang ZH, Wu Q. LncRNA XIST knockdown alleviates LPS-induced acute lung injury by inactivation of XIST/miR-132-3p/MAPK14 pathway : XIST promotes ALI via miR-132-3p/MAPK14 axis. Mol Cell Biochem 2021; 476:4217-4229. [PMID: 34346000 PMCID: PMC8330477 DOI: 10.1007/s11010-021-04234-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
Acute lung injury (ALI) is a fatal inflammatory response syndrome. LncRNA XIST (XIST) is a lung cancer-related gene and participates in pneumonia. However, whether XIST participates in lipopolysaccharides (LPS)-induced ALI remains unclear. LPS-induced inflammation model was constructed in vitro, then cell viability, cytokines, cell apoptosis, protein, and mRNA expressions were individually detected by cell counting kit-8, enzyme-linked immunosorbent assay and flow cytometry, Western blot, and qRT-PCR. A dual-luciferase reporter assay confirmed the relationships among XIST, miR-132-3p, and MAPK14. Furthermore, inflammation and conditions after knockdown of XIST were assessed by hematoxylin and eosin staining, lung wet-to-dry weight ratio, PaO2/FiO2 ratio, and malondialdehyde (MDA) contents using LPS-induced in vivo model. Our findings indicated that the LPS challenge decreased cell viability, increased cell apoptosis, and caused secretions of pro-inflammatory cytokines. Noticeably, LPS significantly upregulated XIST, MAPK14, and downregulated miR-132-3p. Mechanistically, XIST acted as a molecular sponge to suppress miR-132-3p, and MAPK14 was identified as a target of miR-132-3p. Functional analyses demonstrated that XIST silencing remarkably increased cell survival and alleviated cell death and lung injury through decreasing TNF-α, IL-1β, IL-6, accumulation of inflammatory cells, alveolar hemorrhage, MDA release, and increased PaO2/FiO2 ratio, as well as upregulating Bcl-2, and downregulating Bax, MAPK14, and p-extracellular signal-regulated kinases ½. In contrast, inhibition of the miR-132-3p antagonized the effects of XIST silencing. In conclusion, inhibition of XIST exhibited a protective role in LPS-induced ALI through modulating the miR-132-3p/MAPK14 axis.
Collapse
Affiliation(s)
- Chen Li
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.,Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jian-Hua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jing Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Wei-Jia Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jian-Qing Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Zhi-Hua Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Qi Wu
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
28
|
Oocyte specific lncRNA variant Rose influences oocyte and embryo development. Noncoding RNA Res 2021; 6:107-113. [PMID: 34278057 PMCID: PMC8258604 DOI: 10.1016/j.ncrna.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 11/21/2022] Open
Abstract
Fully grown mammalian oocytes store a large amount of RNA synthesized during the transcriptionally active growth stage. A large part of the stored RNA belongs to the long non-coding class which contain either transcriptional noise or important contributors to cellular physiology. Despite the expanding number of studies related to lncRNAs, their influence on oocyte physiology remains enigmatic. We found an oocyte specific antisense, long non-coding RNA, "Rose" (lncRNA in Oocyte Specifically Expressed) expressed in two variants containing two and three non-coding exons, respectively. Rose is localized in the nucleus of transcriptionally active oocyte and in embryo with polysomal occupancy in the cytoplasm. Experimental overexpression of Rose in fully grown oocyte did not show any differences in meiotic maturation. However, knocking down Rose resulted in abnormalities in oocyte cytokinesis and impaired preimplantation embryo development. In conclusion, we have identified an oocyte-specific maternal lncRNA that is essential for successful mammalian oocyte and embryo development.
Collapse
|
29
|
Bella F, Campo S. Long non-coding RNAs and their involvement in bipolar disorders. Gene 2021; 796-797:145803. [PMID: 34175394 DOI: 10.1016/j.gene.2021.145803] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/22/2021] [Indexed: 01/22/2023]
Abstract
Non-coding RNAs (nc-RNAs) can be defined as RNA molecules that are not translated into proteins. Although the functional meaning of many nc-RNAs remains still to be verified, several of these molecules have a clear biological importance, which goes from translation of mRNAs to DNA replication. Indeed, regulatory nc-RNAs can be classified into two groups: short non-coding RNAs (sncRNAs) and long-non coding RNAs (lncRNAs). In the last years, lncRNAs have gained increasing importance in the study of gene regulation, helping authors understand the molecular mechanisms underlying cellular physiology and pathology. LncRNAs are greater than 200 bp and accumulate in nucleus, cytoplasm and exosomes with high tissue specificity, acting in cis or in trans in order to exert enhancer or silencer modulation on gene expression. Such regulatory features, which are widespread in human cells and tissues, can be disrupted in several morbid states. Recent evidences may suggest a disruption of lncRNAs in bipolar disorders, a cluster of severe, chronic and disabling psychiatric diseases, which are characterized by major depressive states cyclically alternating with manic episodes. Here, the authors reviewed genes, classification, biogenesis, structures, functions and databases regarding lncRNAs, and also focused on bipolar disorders, in which some lncRNAs, especially those involved in inflammation and neuronal development, has reported to be dysregulated.
Collapse
Affiliation(s)
- Fabrizio Bella
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, via Consolare Valeria, 1, Messina 98125 Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, via Consolare Valeria, 1, Messina 98125 Italy.
| |
Collapse
|
30
|
Aliperti V, Skonieczna J, Cerase A. Long Non-Coding RNA (lncRNA) Roles in Cell Biology, Neurodevelopment and Neurological Disorders. Noncoding RNA 2021; 7:36. [PMID: 34204536 PMCID: PMC8293397 DOI: 10.3390/ncrna7020036] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023] Open
Abstract
Development is a complex process regulated both by genetic and epigenetic and environmental clues. Recently, long non-coding RNAs (lncRNAs) have emerged as key regulators of gene expression in several tissues including the brain. Altered expression of lncRNAs has been linked to several neurodegenerative, neurodevelopmental and mental disorders. The identification and characterization of lncRNAs that are deregulated or mutated in neurodevelopmental and mental health diseases are fundamental to understanding the complex transcriptional processes in brain function. Crucially, lncRNAs can be exploited as a novel target for treating neurological disorders. In our review, we first summarize the recent advances in our understanding of lncRNA functions in the context of cell biology and then discussing their association with selected neuronal development and neurological disorders.
Collapse
Affiliation(s)
- Vincenza Aliperti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Justyna Skonieczna
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Andrea Cerase
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| |
Collapse
|
31
|
Wang W, Min L, Qiu X, Wu X, Liu C, Ma J, Zhang D, Zhu L. Biological Function of Long Non-coding RNA (LncRNA) Xist. Front Cell Dev Biol 2021; 9:645647. [PMID: 34178980 PMCID: PMC8222981 DOI: 10.3389/fcell.2021.645647] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression in a variety of ways at epigenetic, chromatin remodeling, transcriptional, and translational levels. Accumulating evidence suggests that lncRNA X-inactive specific transcript (lncRNA Xist) serves as an important regulator of cell growth and development. Despites its original roles in X-chromosome dosage compensation, lncRNA Xist also participates in the development of tumor and other human diseases by functioning as a competing endogenous RNA (ceRNA). In this review, we comprehensively summarized recent progress in understanding the cellular functions of lncRNA Xist in mammalian cells and discussed current knowledge regarding the ceRNA network of lncRNA Xist in various diseases. Long non-coding RNAs (lncRNAs) are transcripts that are more than 200 nt in length and without an apparent protein-coding capacity (Furlan and Rougeulle, 2016; Maduro et al., 2016). These RNAs are believed to be transcribed by the approximately 98-99% non-coding regions of the human genome (Derrien et al., 2012; Fu, 2014; Montalbano et al., 2017; Slack and Chinnaiyan, 2019), as well as a large variety of genomic regions, such as exonic, tronic, and intergenic regions. Hence, lncRNAs are also divided into eight categories: Intergenic lncRNAs, Intronic lncRNAs, Enhancer lncRNAs, Promoter lncRNAs, Natural antisense/sense lncRNAs, Small nucleolar RNA-ended lncRNAs (sno-lncRNAs), Bidirectional lncRNAs, and non-poly(A) lncRNAs (Ma et al., 2013; Devaux et al., 2015; St Laurent et al., 2015; Chen, 2016; Quinn and Chang, 2016; Richard and Eichhorn, 2018; Connerty et al., 2020). A range of evidence has suggested that lncRNAs function as key regulators in crucial cellular functions, including proliferation, differentiation, apoptosis, migration, and invasion, by regulating the expression level of target genes via epigenomic, transcriptional, or post-transcriptional approaches (Cao et al., 2018). Moreover, lncRNAs detected in body fluids were also believed to serve as potential biomarkers for the diagnosis, prognosis, and monitoring of disease progression, and act as novel and potential drug targets for therapeutic exploitation in human disease (Jiang W. et al., 2018; Zhou et al., 2019a). Long non-coding RNA X-inactive specific transcript (lncRNA Xist) are a set of 15,000-20,000 nt sequences localized in the X chromosome inactivation center (XIC) of chromosome Xq13.2 (Brown et al., 1992; Debrand et al., 1998; Kay, 1998; Lee et al., 2013; da Rocha and Heard, 2017; Yang Z. et al., 2018; Brockdorff, 2019). Previous studies have indicated that lncRNA Xist regulate X chromosome inactivation (XCI), resulting in the inheritable silencing of one of the X-chromosomes during female cell development. Also, it serves a vital regulatory function in the whole spectrum of human disease (notably cancer) and can be used as a novel diagnostic and prognostic biomarker and as a potential therapeutic target for human disease in the clinic (Liu et al., 2018b; Deng et al., 2019; Dinescu et al., 2019; Mutzel and Schulz, 2020; Patrat et al., 2020; Wang et al., 2020a). In particular, lncRNA Xist have been demonstrated to be involved in the development of multiple types of tumors including brain tumor, Leukemia, lung cancer, breast cancer, and liver cancer, with the prominent examples outlined in Table 1. It was also believed that lncRNA Xist (Chaligne and Heard, 2014; Yang Z. et al., 2018) contributed to other diseases, such as pulmonary fibrosis, inflammation, neuropathic pain, cardiomyocyte hypertrophy, and osteoarthritis chondrocytes, and more specific details can be found in Table 2. This review summarizes the current knowledge on the regulatory mechanisms of lncRNA Xist on both chromosome dosage compensation and pathogenesis (especially cancer) processes, with a focus on the regulatory network of lncRNA Xist in human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongyi Zhang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
32
|
Decoding LncRNAs. Cancers (Basel) 2021; 13:cancers13112643. [PMID: 34072257 PMCID: PMC8199187 DOI: 10.3390/cancers13112643] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have been considered as unimportant additions to the transcriptome. Yet, in light of numerous studies, it has become clear that ncRNAs play important roles in development, health and disease. Long-ignored, long non-coding RNAs (lncRNAs), ncRNAs made of more than 200 nucleotides have gained attention due to their involvement as drivers or suppressors of a myriad of tumours. The detailed understanding of some of their functions, structures and interactomes has been the result of interdisciplinary efforts, as in many cases, new methods need to be created or adapted to characterise these molecules. Unlike most reviews on lncRNAs, we summarize the achievements on lncRNA studies by taking into consideration the approaches for identification of lncRNA functions, interactomes, and structural arrangements. We also provide information about the recent data on the involvement of lncRNAs in diseases and present applications of these molecules, especially in medicine.
Collapse
|
33
|
Cerase A, Young AN, Ruiz NB, Buness A, Sant GM, Arnold M, Di Giacomo M, Ascolani M, Kumar M, Hierholzer A, Trigiante G, Marzi SJ, Avner P. Chd8 regulates X chromosome inactivation in mouse through fine-tuning control of Xist expression. Commun Biol 2021; 4:485. [PMID: 33859315 PMCID: PMC8050208 DOI: 10.1038/s42003-021-01945-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/25/2021] [Indexed: 01/22/2023] Open
Abstract
Female mammals achieve dosage compensation by inactivating one of their two X chromosomes during development, a process entirely dependent on Xist, an X-linked long non-coding RNA (lncRNA). At the onset of X chromosome inactivation (XCI), Xist is up-regulated and spreads along the future inactive X chromosome. Contextually, it recruits repressive histone and DNA modifiers that transcriptionally silence the X chromosome. Xist regulation is tightly coupled to differentiation and its expression is under the control of both pluripotency and epigenetic factors. Recent evidence has suggested that chromatin remodelers accumulate at the X Inactivation Center (XIC) and here we demonstrate a new role for Chd8 in Xist regulation in differentiating ES cells, linked to its control and prevention of spurious transcription factor interactions occurring within Xist regulatory regions. Our findings have a broader relevance, in the context of complex, developmentally-regulated gene expression.
Collapse
Affiliation(s)
- Andrea Cerase
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy.
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Alexander N Young
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nerea Blanes Ruiz
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andreas Buness
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Core Unit for Bioinformatics Data Analysis Universitätsklinikum Bonn, Bonn, Germany
| | - Gabrielle M Sant
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
| | - Mirjam Arnold
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory, Berlin, Germany
| | | | - Michela Ascolani
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
| | - Manish Kumar
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Department of Allied Health Science, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE, Vijaypura, Karnataka, India
| | - Andreas Hierholzer
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Giuseppe Trigiante
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Philip Avner
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy.
| |
Collapse
|
34
|
Fernandes N, Buchan JR. RNAs as Regulators of Cellular Matchmaking. Front Mol Biosci 2021; 8:634146. [PMID: 33898516 PMCID: PMC8062979 DOI: 10.3389/fmolb.2021.634146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/22/2021] [Indexed: 12/30/2022] Open
Abstract
RNA molecules are increasingly being identified as facilitating or impeding the interaction of proteins and nucleic acids, serving as so-called scaffolds or decoys. Long non-coding RNAs have been commonly implicated in such roles, particularly in the regulation of nuclear processes including chromosome topology, regulation of chromatin state and gene transcription, and assembly of nuclear biomolecular condensates such as paraspeckles. Recently, an increased awareness of cytoplasmic RNA scaffolds and decoys has begun to emerge, including the identification of non-coding regions of mRNAs that can also function in a scaffold-like manner to regulate interactions of nascently translated proteins. Collectively, cytoplasmic RNA scaffolds and decoys are now implicated in processes such as mRNA translation, decay, protein localization, protein degradation and assembly of cytoplasmic biomolecular condensates such as P-bodies. Here, we review examples of RNA scaffolds and decoys in both the nucleus and cytoplasm, illustrating common themes, the suitability of RNA to such roles, and future challenges in identifying and better understanding RNA scaffolding and decoy functions.
Collapse
Affiliation(s)
| | - J. Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
35
|
Wilson C, Kanhere A. 8q24.21 Locus: A Paradigm to Link Non-Coding RNAs, Genome Polymorphisms and Cancer. Int J Mol Sci 2021; 22:1094. [PMID: 33499210 PMCID: PMC7865353 DOI: 10.3390/ijms22031094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
The majority of the human genome is comprised of non-protein-coding genes, but the relevance of non-coding RNAs in complex diseases has yet to be fully elucidated. One class of non-coding RNAs is long non-coding RNAs or lncRNAs, many of which have been identified to play a range of roles in transcription and translation. While the clinical importance of the majority of lncRNAs have yet to be identified, it is puzzling that a large number of disease-associated genetic variations are seen in lncRNA genes. The 8q24.21 locus is rich in lncRNAs and very few protein-coding genes are located in this region. Interestingly, the 8q24.21 region is also a hot spot for genetic variants associated with an increased risk of cancer. Research focusing on the lncRNAs in this area of the genome has indicated clinical relevance of lncRNAs in different cancers. In this review, we summarise the lncRNAs in the 8q24.21 region with respect to their role in cancer and discuss the potential impact of cancer-associated genetic polymorphisms on the function of lncRNAs in initiation and progression of cancer.
Collapse
Affiliation(s)
| | - Aditi Kanhere
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK;
| |
Collapse
|
36
|
Zhou Q, Zhang MM, Liu M, Tan ZG, Qin QL, Jiang YG. LncRNA XIST sponges miR-199a-3p to modulate the Sp1/LRRK2 signal pathway to accelerate Parkinson's disease progression. Aging (Albany NY) 2021; 13:4115-4137. [PMID: 33494069 PMCID: PMC7906184 DOI: 10.18632/aging.202378] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
In vitro and in vivo models of Parkinson’s disease were established to investigate the effects of the lncRNA XIST/miR-199a-3p/Sp1/LRRK2 axis. The binding between XIST and miR-199a-3p as well as miR-199a-3p and Sp1 were examined by luciferase reporter assay and confirmed by RNA immunoprecipitation analysis. Following the Parkinson’s disease animal behavioural assessment by suspension and swim tests, the brain tissue injuries were evaluated by hematoxylin and eosin, TdT-mediated dUTP-biotin nick end labelling, and tyrosine hydroxylase stainings. The results indicated that miR-199a-3p expression was downregulated, whereas that of XIST, Sp1 and LRRK2 were upregulated in Parkinson’s disease. Moreover, miR-199a-3p overexpression or XIST knockdown inhibited the cell apoptosis induced by MPP+ treatment and promoted cell proliferation. The neurodegenerative defects were significantly recovered by treating the cells with shXIST or shSp1, whereas miR-199a-3p inhibition or Sp1 and LRRK2 overexpression abrogated these beneficial effects. Furthermore, the results of our in vivo experiments confirmed the neuroprotective effects of shXIST and miR-199a-3p against MPTP-induced brain injuries, and the Parkinson’s disease behavioural symptoms were effectively alleviated upon shXIST or miR-199a-3p treatment. In summary, the results of the present study showed that lncRNA XIST sponges miR-199a-3p to modulate Sp1 expression and further accelerates Parkinson’s disease progression by targeting LRRK2.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, P.R. China
| | - Ming-Ming Zhang
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, P.R. China
| | - Min Liu
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, P.R. China
| | - Zhi-Gang Tan
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, P.R. China
| | - Qi-Lin Qin
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, P.R. China
| | - Yu-Gang Jiang
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, P.R. China
| |
Collapse
|
37
|
Kumar S, Gonzalez EA, Rameshwar P, Etchegaray JP. Non-Coding RNAs as Mediators of Epigenetic Changes in Malignancies. Cancers (Basel) 2020; 12:E3657. [PMID: 33291485 PMCID: PMC7762117 DOI: 10.3390/cancers12123657] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are untranslated RNA molecules that regulate gene expressions. NcRNAs include small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), circular RNAs (cRNAs) and piwi-interacting RNAs (piRNAs). This review focuses on two types of ncRNAs: microRNAs (miRNAs) or short interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs). We highlight the mechanisms by which miRNAs and lncRNAs impact the epigenome in the context of cancer. Both miRNAs and lncRNAs have the ability to interact with numerous epigenetic modifiers and transcription factors to influence gene expression. The aberrant expression of these ncRNAs is associated with the development and progression of tumors. The primary reason for their deregulated expression can be attributed to epigenetic alterations. Epigenetic alterations can cause the misregulation of ncRNAs. The experimental evidence indicated that most abnormally expressed ncRNAs impact cellular proliferation and apoptotic pathways, and such changes are cancer-dependent. In vitro and in vivo experiments show that, depending on the cancer type, either the upregulation or downregulation of ncRNAs can prevent the proliferation and progression of cancer. Therefore, a better understanding on how ncRNAs impact tumorigenesis could serve to develop new therapeutic treatments. Here, we review the involvement of ncRNAs in cancer epigenetics and highlight their use in clinical therapy.
Collapse
Affiliation(s)
- Subhasree Kumar
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Edward A. Gonzalez
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Pranela Rameshwar
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Jean-Pierre Etchegaray
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| |
Collapse
|
38
|
In Silico and In Vitro Analysis of lncRNA XIST Reveals a Panel of Possible Lung Cancer Regulators and a Five-Gene Diagnostic Signature. Cancers (Basel) 2020; 12:cancers12123499. [PMID: 33255394 PMCID: PMC7760781 DOI: 10.3390/cancers12123499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Long non-coding RNAs (lncRNA) have been associated with a number of diseases including cancer. A well-studied lncRNA called XIST (X-inactive specific transcript) acts as a major effector of the X-inactivation process. It is expressed on the inactive X chromosome providing a dosage equivalence between males and females. Recently XIST has been implicated in the development of lung cancer. Using a bioinformatics approach, we demonstrate the XIST is over-expressed in female patients compared to males. When XIST gene was silenced in two different cell lines (of male and female origin), a number of genes were differentially expressed; playing a role in signal transduction pathways, energy balance and metabolism, thus providing a better insight of the role of this lncRNA in cancer. Finally, we showed that expression of XIST with another 4 genes provided a strong diagnostic potential to discriminate lung cancer from healthy controls. Abstract Long non-coding RNAs (lncRNAs) perform a wide functional repertoire of roles in cell biology, ranging from RNA editing to gene regulation, as well as tumour genesis and tumour progression. The lncRNA X-inactive specific transcript (XIST) is involved in the aetiopathogenesis of non-small cell lung cancer (NSCLC). However, its role at the molecular level is not fully elucidated. The expression of XIST and co-regulated genes TSIX, hnRNPu, Bcl-2, and BRCA1 analyses in lung cancer (LC) and controls were performed in silico. Differentially expressed genes (DEGs) were determined using RNA-seq in H1975 and A549 NSCLC cell lines following siRNA for XIST. XIST exhibited sexual dimorphism, being up-regulated in females compared to males in both control and LC patient cohorts. RNA-seq revealed 944 and 751 DEGs for A549 and H1975 cell lines, respectively. These DEGs are involved in signal transduction, cell communication, energy pathways, and nucleic acid metabolism. XIST expression associated with TSIX, hnRNPu, Bcl-2, and BRCA1 provided a strong collective feature to discriminate between controls and LC, implying a diagnostic potential. There is a much more complex role for XIST in lung cancer. Further studies should concentrate on sex-specific changes and investigate the signalling pathways of the DEGs following silencing of this lncRNA.
Collapse
|
39
|
Graf J, Kretz M. From structure to function: Route to understanding lncRNA mechanism. Bioessays 2020; 42:e2000027. [PMID: 33164244 DOI: 10.1002/bies.202000027] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/03/2020] [Indexed: 12/13/2022]
Abstract
RNAs have emerged as a major target for diagnostics and therapeutics approaches. Regulatory nonprotein-coding RNAs (ncRNAs) in particular display remarkable versatility. They can fold into complex structures and interact with proteins, DNA, and other RNAs, thus modulating activity, localization, or interactome of multi-protein complexes. Thus, ncRNAs confer regulatory plasticity and represent a new layer of regulatory control. Interestingly, long noncoding RNAs (lncRNAs) tend to acquire complex secondary and tertiary structures and their function-in many cases-is dependent on structural conservation rather than primary sequence conservation. Whereas for many proteins, structure and its associated function are closely connected, for lncRNAs, the structural domains that determine functionality and its interactome are still not well understood. Numerous approaches for analyzing the structural configuration of lncRNAs have been developed recently. Here, will provide an overview of major experimental approaches used in the field, and discuss the potential benefit of using combinatorial strategies to analyze lncRNA modes of action based on structural information.
Collapse
Affiliation(s)
- Johannes Graf
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | - Markus Kretz
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
40
|
Long non-coding RNA XIST regulates chondrogenic differentiation of synovium-derived mesenchymal stem cells from temporomandibular joint via miR-27b-3p/ADAMTS-5 axis. Cytokine 2020; 137:155352. [PMID: 33128918 DOI: 10.1016/j.cyto.2020.155352] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative disease in jaw joint, accompanied by articular cartilage destruction. Differentiation of stem cells to cartilage has important therapeutic implications in TMJ cartilage repair. Previous studies revealed that lncRNA XIST participated in various biological processes. However, the effect of XIST on chondrogenic differentiation of synovium-derived mesenchymal stem cells (SMSCs) remains unclear. Our study aimed to investigate the function of XIST in chondrogenic differentiation of human SMSCs from TMJ. METHODS Alcian blue staining was performed to determine proteoglycan in SMSCs. qPCR, western blotting and immunofluorescence assays were allowed to assess sex determining region Y-box 9 (SOX9), Collagen type II alpha 1 chain (COL2A1) and Aggrecan (ACAN) expression. The direct interaction between miR-27b-3p and XIST or ADAMTS-5 was confirmed by dual luciferase reporter assay or RNA immunoprecipitation (RIP) assay. RESULTS XIST was remarkably down-regulated in chondrogenic differentiation of SMSCs. Functional analysis demonstrated that XIST silencing promoted chondrogenic differentiation of SMSCs. Dual luciferase reporter and RIP assays identified that XIST acted as a sponge for miR-27b-3p. Moreover, XIST regulated ADAMTS-5 expression by directly binding miR-27b-3p. More importantly, miR-27b-3p/ADAMTS-5 rescued the effects of XIST on chondrogenic differentiation of SMSCs. CONCLUSION The results suggest that XIST modulates SMSCs chondrogenic differentiation via the miR-27b-3p/ADAMTS-5 axis, which provides new targets for TMJOA treatment.
Collapse
|
41
|
Abstract
The interaction between polycomb-repressive complexes 1/2 (PRC1/2) and long non-coding RNA (lncRNA), such as the X inactive specific transcript Xist and the HOX transcript antisense RNA (HOTAIR), has been the subject of intense debate. While cross-linking, immuno-precipitation and super-resolution microscopy argue against direct interaction of Polycomb with some lncRNAs, there is increasing evidence supporting the ability of both PRC1 and PRC2 to functionally associate with RNA. Recent data indicate that these interactions are in most cases spurious, but nonetheless crucial for a number of cellular activities. In this review, we suggest that while PRC1/2 recruitment by HOTAIR might be direct, in the case of Xist, it might occur indirectly and, at least in part, through the process of liquid-liquid phase separation. We present recent models of lncRNA-mediated PRC1/2 recruitment to their targets and describe potential RNA-mediated roles in the three-dimensional organization of the nucleus.
Collapse
Affiliation(s)
- Andrea Cerase
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), 23 Passeig Lluis Companys, 08010 Barcelona, Spain.,Department of Biology 'Charles Darwin', Sapienza University of Rome, P.le A. Moro 5, Rome 00185, Italy.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genoa, Italy
| |
Collapse
|
42
|
Jones AN, Pisignano G, Pavelitz T, White J, Kinisu M, Forino N, Albin D, Varani G. An evolutionarily conserved RNA structure in the functional core of the lincRNA Cyrano. RNA (NEW YORK, N.Y.) 2020; 26:1234-1246. [PMID: 32457084 PMCID: PMC7430676 DOI: 10.1261/rna.076117.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 05/08/2023]
Abstract
The wide prevalence and regulated expression of long noncoding RNAs (lncRNAs) highlight their functional roles, but the molecular basis for their activities and structure-function relationships remains to be investigated, with few exceptions. Among the relatively few lncRNAs conserved over significant evolutionary distances is the long intergenic noncoding RNA (lincRNA) Cyrano (orthologous to human OIP5-AS1), which contains a region of 300 highly conserved nucleotides within tetrapods, which in turn contains a functional stretch of 26 nt of deep conservation. This region binds to and facilitates the degradation of the microRNA miR-7, a short ncRNA with multiple cellular functions, including modulation of oncogenic expression. We probed the secondary structure of Cyrano in vitro and in cells using chemical and enzymatic probing, and validated the results using comparative sequence analysis. At the center of the functional core of Cyrano is a cloverleaf structure maintained over the >400 million years of divergent evolution that separates fish and primates. This strikingly conserved motif provides interaction sites for several RNA-binding proteins and masks a conserved recognition site for miR-7. Conservation in this region strongly suggests that the function of Cyrano depends on the formation of this RNA structure, which could modulate the rate and efficiency of degradation of miR-7.
Collapse
Affiliation(s)
- Alisha N Jones
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Giuseppina Pisignano
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR) and Oncology Institute of Southern Switzerland (IOSI), Bellinzona CH-6500, Switzerland
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Thomas Pavelitz
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Jessica White
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Martin Kinisu
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Nicholas Forino
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Dreycey Albin
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, USA
| |
Collapse
|
43
|
Fort V, Khelifi G, Hussein SMI. Long non-coding RNAs and transposable elements: A functional relationship. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118837. [PMID: 32882261 DOI: 10.1016/j.bbamcr.2020.118837] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/29/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022]
Abstract
Long non-coding RNAs (lncRNAs) have become increasingly important in the past decade. They are known to regulate gene expression and to interact with chromatin, proteins and other coding and non-coding RNAs. The study of lncRNAs has been challenging due to their low expression and the lack of tools developed to adapt to their particular features. Studies on lncRNAs performed to date have largely focused on cellular functions, whereas details on the mechanism of action has only been thoroughly investigated for a small number of lncRNAs. Nevertheless, some studies have highlighted the potential of these transcripts to contain functional domains, following the same accepted trend as proteins. Interestingly, many of these identified "domains" are attributed to functional units derived from transposable elements. Here, we review several types of functions of lncRNAs and relate these functions to lncRNA-embedded transposable elements.
Collapse
Affiliation(s)
- Victoire Fort
- Laval University Cancer Research Centre, Canada; Research Center of the CHU of Québec, Laval University, Québec G1R 3S3, Canada
| | - Gabriel Khelifi
- Laval University Cancer Research Centre, Canada; Research Center of the CHU of Québec, Laval University, Québec G1R 3S3, Canada
| | - Samer M I Hussein
- Laval University Cancer Research Centre, Canada; Research Center of the CHU of Québec, Laval University, Québec G1R 3S3, Canada.
| |
Collapse
|
44
|
Jones AN, Sattler M. Challenges and perspectives for structural biology of lncRNAs-the example of the Xist lncRNA A-repeats. J Mol Cell Biol 2020; 11:845-859. [PMID: 31336384 PMCID: PMC6917512 DOI: 10.1093/jmcb/mjz086] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Following the discovery of numerous long non-coding RNA (lncRNA) transcripts in the human genome, their important roles in biology and human disease are emerging. Recent progress in experimental methods has enabled the identification of structural features of lncRNAs. However, determining high-resolution structures is challenging as lncRNAs are expected to be dynamic and adopt multiple conformations, which may be modulated by interaction with protein binding partners. The X-inactive specific transcript (Xist) is necessary for X inactivation during dosage compensation in female placental mammals and one of the best-studied lncRNAs. Recent progress has provided new insights into the domain organization, molecular features, and RNA binding proteins that interact with distinct regions of Xist. The A-repeats located at the 5′ end of the transcript are of particular interest as they are essential for mediating silencing of the inactive X chromosome. Here, we discuss recent progress with elucidating structural features of the Xist lncRNA, focusing on the A-repeats. We discuss the experimental and computational approaches employed that have led to distinct structural models, likely reflecting the intrinsic dynamics of this RNA. The presence of multiple dynamic conformations may also play an important role in the formation of the associated RNPs, thus influencing the molecular mechanism underlying the biological function of the Xist A-repeats. We propose that integrative approaches that combine biochemical experiments and high-resolution structural biology in vitro with chemical probing and functional studies in vivo are required to unravel the molecular mechanisms of lncRNAs.
Collapse
Affiliation(s)
- Alisha N Jones
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Center for Integrated Protein Science Munich and Bavarian NMR Center at Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| |
Collapse
|
45
|
Strehle M, Guttman M. Xist drives spatial compartmentalization of DNA and protein to orchestrate initiation and maintenance of X inactivation. Curr Opin Cell Biol 2020; 64:139-147. [PMID: 32535328 DOI: 10.1016/j.ceb.2020.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
X chromosome inactivation (XCI) is the process whereby one of the X chromosomes in female mammalian cells is silenced to equalize X-linked gene expression with males. XCI depends on the long noncoding RNA Xist, which coats the inactive X chromosome in cis and triggers a cascade of events that ultimately lead to chromosome-wide transcriptional silencing that is stable for the lifetime of an organism. In recent years, the discovery of proteins that interact with Xist have led to new insights into how the initiation of XCI occurs. Nevertheless, there are still various unknowns about the mechanisms by which Xist orchestrates and maintains stable X-linked silencing. Here, we review recent work elucidating the role of Xist and its protein partners in mediating chromosome-wide transcriptional repression, as well as discuss a model by which Xist may compartmentalize proteins across the inactive X chromosome to enable both the initiation and maintenance of XCI.
Collapse
Affiliation(s)
- Mackenzie Strehle
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
46
|
Domnick C, Eggert F, Wuebben C, Bornewasser L, Hagelueken G, Schiemann O, Kath‐Schorr S. EPR Distance Measurements on Long Non-coding RNAs Empowered by Genetic Alphabet Expansion Transcription. Angew Chem Int Ed Engl 2020; 59:7891-7896. [PMID: 31981397 PMCID: PMC7318606 DOI: 10.1002/anie.201916447] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/22/2020] [Indexed: 11/26/2022]
Abstract
We present herein a novel nitroxide spin label-containing RNA triphosphate TPT3NO and its application for site-specific spin-labeling of RNA through in vitro transcription using an expanded genetic alphabet. Our strategy allows the facile preparation of spin-labeled RNAs with sizes ranging from short RNA oligonucleotides to large, complex RNA molecules with over 370 nucleotides by standard in vitro transcription. As a proof of concept, inter-spin distance distributions are measured by pulsed electron paramagnetic resonance (EPR) spectroscopy in short self-complementary RNA sequences and in a well-studied 185 nucleotide non-coding RNA, the B. subtilis glmS ribozyme. The approach is then applied to probe for the first time the folding of the 377 nucleotide A-region of the long non-coding RNA Xist, by PELDOR.
Collapse
Affiliation(s)
- Christof Domnick
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Frank Eggert
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Christine Wuebben
- Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Lisa Bornewasser
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| | - Gregor Hagelueken
- Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Olav Schiemann
- Institute for Physical and Theoretical ChemistryUniversity of BonnWegelerstr. 1253115BonnGermany
| | - Stephanie Kath‐Schorr
- Life & Medical Sciences InstituteChemical Biology & Medicinal Chemistry UnitUniversity of BonnGerhard-Domagk-Str. 153121BonnGermany
| |
Collapse
|
47
|
Han J, Shen X. Long noncoding RNAs in osteosarcoma via various signaling pathways. J Clin Lab Anal 2020; 34:e23317. [PMID: 32249459 PMCID: PMC7307344 DOI: 10.1002/jcla.23317] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is one of the most commonly seen bone malignancies with high incidence rate in both children and adults. Although the regulatory network of osteosarcoma has been greatly concerned for years, the mechanisms regarding its oncogenesis and development are still not clear. Recent discoveries have revealed that long noncoding RNAs (lncRNAs) play a crucial role in the development, progression, and invasion of osteosarcoma. Deregulated expression of lncRNAs has been found to participate in the regulation of various signaling transduction pathways in osteosarcoma. This review summarized roles of lncRNAs in the pathogenesis, development, and potential therapeutic of osteosarcoma via different signaling pathways. For examples, MALAT1, CCAT2, FER1L4, LOXL1‐AS1, OIP5‐AS1, PVT1, DBH‐AS1, and AWPPH regulate PI3K/Akt signaling; AWPPH and BE503655 regulate Wnt/β‐catenin signaling; NKILA and XIST regulate NF‐κB signaling; MEG3 and SNHG12 regulate Notch signaling; FOXD2‐AS1 and LINK‐A regulate HIF‐1α signaling; GClnc1 and HOTAIR regulate P53 signaling; ZFAS1, H19, and MALAT1 regulate MAPK, Hedgehog and Rac1/JNK signaling, respectively.
Collapse
Affiliation(s)
| | - Xiaohan Shen
- Ningbo Diagnostic Pathology Center (Shanghai Cancer Center Ningbo Pathology Center), Ningbo, China.,Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
48
|
Domnick C, Eggert F, Wuebben C, Bornewasser L, Hagelueken G, Schiemann O, Kath‐Schorr S. EPR Distance Measurements on Long Non‐coding RNAs Empowered by Genetic Alphabet Expansion Transcription. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christof Domnick
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Frank Eggert
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Christine Wuebben
- Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Lisa Bornewasser
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| | - Gregor Hagelueken
- Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Olav Schiemann
- Institute for Physical and Theoretical Chemistry University of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Stephanie Kath‐Schorr
- Life & Medical Sciences Institute Chemical Biology & Medicinal Chemistry Unit University of Bonn Gerhard-Domagk-Str. 1 53121 Bonn Germany
| |
Collapse
|
49
|
Akkipeddi SMK, Velleca AJ, Carone DM. Probing the function of long noncoding RNAs in the nucleus. Chromosome Res 2020; 28:87-110. [PMID: 32026224 PMCID: PMC7131881 DOI: 10.1007/s10577-019-09625-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 12/26/2022]
Abstract
The nucleus is a highly organized and dynamic environment where regulation and coordination of processes such as gene expression and DNA replication are paramount. In recent years, noncoding RNAs have emerged as key participants in the regulation of nuclear processes. There are a multitude of functional roles for long noncoding RNA (lncRNA), mediated through their ability to act as molecular scaffolds bridging interactions with proteins, chromatin, and other RNA molecules within the nuclear environment. In this review, we discuss the diversity of techniques that have been developed to probe the function of nuclear lncRNAs, along with the ways in which those techniques have revealed insights into their mechanisms of action. Foundational observations into lncRNA function have been gleaned from molecular cytology-based, single-cell approaches to illuminate both the localization and abundance of lncRNAs in addition to their potential binding partners. Biochemical, extraction-based approaches have revealed the molecular contacts between lncRNAs and other molecules within the nuclear environment and how those interactions may contribute to nuclear organization and regulation. Using examples of well-studied nuclear lncRNAs, we demonstrate that the emerging functions of individual lncRNAs have been most clearly deduced from combined cytology and biochemical approaches tailored to study specific lncRNAs. As more functional nuclear lncRNAs continue to emerge, the development of additional technologies to study their interactions and mechanisms of action promise to continually expand our understanding of nuclear organization, chromosome architecture, genome regulation, and disease states.
Collapse
Affiliation(s)
| | - Anthony J Velleca
- Department of Molecular Phamacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dawn M Carone
- Department of Biology, Swarthmore College, Swarthmore, PA, USA.
| |
Collapse
|
50
|
Abstract
Female mammals express the long noncoding X inactivation-specific transcript ( Xist) RNA to initiate X chromosome inactivation (XCI) that eventually results in the formation of the Barr body. Xist encompasses half a dozen repeated sequence stretches containing motifs for RNA-binding proteins that recruit effector complexes with functions for silencing genes and establishing a repressive chromatin configuration. Functional characterization of these effector proteins unveils the cooperation of a number of pathways to repress genes on the inactive X chromosome. Mechanistic insights can be extended to other noncoding RNAs with similar structure and open avenues for the design of new therapies to switch off gene expression. Here we review recent advances in the understanding of Xist and on this basis try to synthesize a model for the initiation of XCI.
Collapse
Affiliation(s)
- Asun Monfort
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, Hönggerberg, HPL E12, Otto-Stern-Weg 7, Zurich, Switzerland
| |
Collapse
|