1
|
Balasco Serrão VH, Minari K, Pereira HD, Thiemann OH. Bacterial selenocysteine synthase structure revealed by single-particle cryoEM. Curr Res Struct Biol 2024; 7:100143. [PMID: 38681238 PMCID: PMC11047290 DOI: 10.1016/j.crstbi.2024.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
The 21st amino acid, selenocysteine (Sec), is synthesized on its dedicated transfer RNA (tRNASec). In bacteria, Sec is synthesized from Ser-tRNA[Ser]Sec by Selenocysteine Synthase (SelA), which is a pivotal enzyme in the biosynthesis of Sec. The structural characterization of bacterial SelA is of paramount importance to decipher its catalytic mechanism and its role in the regulation of the Sec-synthesis pathway. Here, we present a comprehensive single-particle cryo-electron microscopy (SPA cryoEM) structure of the bacterial SelA with an overall resolution of 2.69 Å. Using recombinant Escherichia coli SelA, we purified and prepared samples for single-particle cryoEM. The structural insights from SelA, combined with previous in vivo and in vitro knowledge, underscore the indispensable role of decamerization in SelA's function. Moreover, our structural analysis corroborates previous results that show that SelA adopts a pentamer of dimers configuration, and the active site architecture, substrate binding pocket, and key K295 catalytic residue are identified and described in detail. The differences in protein architecture and substrate coordination between the bacterial enzyme and its counterparts offer compelling structural evidence supporting the independent molecular evolution of the bacterial and archaea/eukarya Ser-Sec biosynthesis present in the natural world.
Collapse
Affiliation(s)
- Vitor Hugo Balasco Serrão
- Biomolecular Cryoelectron Microscopy Facility, University of California - Santa Cruz, Santa Cruz, CA, 95064, United States
- Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz, CA, 95064, United States
| | - Karine Minari
- Biomolecular Engineering Department, Jack Baskin School of Engineering, University of California - Santa Cruz, Santa Cruz, CA, 95064, United States
| | - Humberto D'Muniz Pereira
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP, CEP 13566-590, Brazil
| | - Otavio Henrique Thiemann
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP, CEP 13566-590, Brazil
| |
Collapse
|
2
|
DeAngelo SL, Győrffy B, Koutmos M, Shah YM. Selenoproteins and tRNA-Sec: regulators of cancer redox homeostasis. Trends Cancer 2023; 9:1006-1018. [PMID: 37716885 PMCID: PMC10843386 DOI: 10.1016/j.trecan.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 09/18/2023]
Abstract
In the past two decades significant progress has been made in uncovering the biological function of selenium. Selenium, an essential trace element, is required for the biogenesis of selenocysteine which is then incorporated into selenoproteins. These selenoproteins have emerged as central regulators of cellular antioxidant capacity and maintenance of redox homeostasis. This review provides a comprehensive examination of the multifaceted functions of selenoproteins with a particular emphasis on their contributions to cellular antioxidant capacity. Additionally, we highlight the promising potential of targeting selenoproteins and the biogenesis of selenocysteine as avenues for therapeutic intervention in cancer. By understanding the intricate relationship between selenium, selenoproteins, and reactive oxygen species (ROS), insights can be gained to develop therapies that exploit the inherent vulnerabilities of cancer cells.
Collapse
Affiliation(s)
- Stephen L DeAngelo
- Department of Cancer Biology, University of Michigan, Ann Arbor, MI, USA
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| | - Markos Koutmos
- Department of Cancer Biology, University of Michigan, Ann Arbor, MI, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI, USA; Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Cancer Biology, University of Michigan, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Štambuk N, Konjevoda P, Štambuk A. How ambiguity codes specify molecular descriptors and information flow in Code Biology. Biosystems 2023; 233:105034. [PMID: 37739308 DOI: 10.1016/j.biosystems.2023.105034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
The article presents IUPAC ambiguity codes for incomplete nucleic acid specification, and their use in Code Biology. It is shown how to use this nomenclature in order to extract accurate information on different properties of the biological systems. We investigated the use of ambiguity codes, as mathematical and logical operators and truth table elements, for the encoding of amino acids by means of the Standard Genetic Code. It is explained how to use ambiguity codes and truth functions in order to obtain accurate information on different properties of the biological systems. Nucleotide ambiguity codes could be applied to: 1. encoding descriptive information of nucleotides, amino acids and proteins (e.g., of polarity, relative solvent accessibility, atom depth, etc.), and 2. system modelling ranging from standard bioinformatics tools to classic evolutionary models (i.e. from Miyazawa-Jernigan statistical potential to Kimura three-substitution-type model, respectively). It is shown that the algorithms based on IUPAC ambiguity codes, Boolean functions and truth table, Probabilistic Square of Opposition/Semiotic Square and Klein 4-groups-could be used for the bioinformatics analyses and Relational data modelling in natural science. Underlying mathematical, logical and semiotic concepts of interest are presented and addressed.
Collapse
Affiliation(s)
- Nikola Štambuk
- Centre for Nuclear Magnetic Resonance, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
| | - Paško Konjevoda
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
| | - Albert Štambuk
- Faculty of Kinesiology, University of Zagreb, Horvaćanski zavoj 15, HR-10000 Zagreb, Croatia
| |
Collapse
|
4
|
Dubrovina VI, Yur'eva OV, Starovoitova TP, Pyatidesyatnikova AB, Ivanova TA, Grigor'evykh AV, Pescherova RI, Balakhonov SV. The Influence of the Synthetic Organoselenium Preparation 974zh on the Immunogenic Activity of Yersinia pestis EV Vaccine Strain NIIEG. Bull Exp Biol Med 2023; 175:473-476. [PMID: 37768454 DOI: 10.1007/s10517-023-05889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Indexed: 09/29/2023]
Abstract
In the present study, a stimulating effect of a new synthetic organoselenium compound 2,6-dipyridinium-9-selenabicyclo[3.3.1]nonandibromide (974zh) on the immunogenic activity of the vaccine strain Yersinia pestis EV NIIEG was revealed. After infection with the virulent plague strain, the survival rate of laboratory mice immunized with the vaccine strain grown on Hottinger's agar in the presence of 974zh (300 μg/ml) increased in comparison with control animals immunized with the Y. pestis EV NIIEG culture grown on agar without the studied compound. Plasmid screening of cultures grown on medium with and without 974zh showed that plasmid DNA of Y. pestis EV culture grown in the presence of 974zh had broader bands in the control grown without 974zh. This phenomenon can indicate activation of replication of plasmid DNA of Y. pestis EV under the influence of the experimental compound.
Collapse
Affiliation(s)
- V I Dubrovina
- Irkutsk Antiplague Research Institute, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Irkutsk, Russia.
| | - O V Yur'eva
- Irkutsk Antiplague Research Institute, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Irkutsk, Russia
| | - T P Starovoitova
- Irkutsk Antiplague Research Institute, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Irkutsk, Russia
| | - A B Pyatidesyatnikova
- Irkutsk Antiplague Research Institute, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Irkutsk, Russia
| | - T A Ivanova
- Irkutsk Antiplague Research Institute, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Irkutsk, Russia
| | - A V Grigor'evykh
- Irkutsk Antiplague Research Institute, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Irkutsk, Russia
| | - R I Pescherova
- Irkutsk Antiplague Research Institute, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Irkutsk, Russia
| | - S V Balakhonov
- Irkutsk Antiplague Research Institute, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Irkutsk, Russia
| |
Collapse
|
5
|
Serrão VHB, Fernandes ADF, Basso LGM, Scortecci JF, Crusca Júnior E, Cornélio ML, de Souza BM, Palma MS, de Oliveira Neto M, Thiemann OH. The Specific Elongation Factor to Selenocysteine Incorporation in Escherichia coli: Unique tRNA Sec Recognition and its Interactions. J Mol Biol 2021; 433:167279. [PMID: 34624294 DOI: 10.1016/j.jmb.2021.167279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Several molecular mechanisms are involved in the genetic code interpretation during translation, as codon degeneration for the incorporation of rare amino acids. One mechanism that stands out is selenocysteine (Sec), which requires a specific biosynthesis and incorporation pathway. In Bacteria, the Sec biosynthesis pathway has unique features compared with the eukaryote pathway as Ser to Sec conversion mechanism is accomplished by a homodecameric enzyme (selenocysteine synthase, SelA) followed by the action of an elongation factor (SelB) responsible for delivering the mature Sec-tRNASec into the ribosome by the interaction with the Selenocysteine Insertion Sequence (SECIS). Besides this mechanism being already described, the sequential events for Sec-tRNASec and SECIS specific recognition remain unclear. In this study, we determined the order of events of the interactions between the proteins and RNAs involved in Sec incorporation. Dissociation constants between SelB and the native as well as unacylated-tRNASec variants demonstrated that the acceptor stem and variable arm are essential for SelB recognition. Moreover, our data support the sequence of molecular events where GTP-activated SelB strongly interacts with SelA.tRNASec. Subsequently, SelB.GTP.tRNASec recognizes the mRNA SECIS to deliver the tRNASec to the ribosome. SelB in complex with its specific RNAs were examined using Hydrogen/Deuterium exchange mapping that allowed the determination of the molecular envelopes and its secondary structural variations during the complex assembly. Our results demonstrate the ordering of events in Sec incorporation and contribute to the full comprehension of the tRNASec role in the Sec amino acid biosynthesis, as well as extending the knowledge of synthetic biology and the expansion of the genetic code.
Collapse
Affiliation(s)
- Vitor Hugo Balasco Serrão
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil; Department of Chemistry and Biochemistry, University California - Santa Cruz, 1156 High St., Santa Cruz, CA 95060, United States
| | - Adriano de Freitas Fernandes
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil
| | - Luis Guilherme Mansor Basso
- Physical Sciences Laboratory, State University of Northern Rio de Janeiro Darcy Ribeiro - UENF, Av. Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, RJ, Brazil; Faculty of Science, Philosophy and Letters, University of Sao Paulo, CEP 14040-901 Ribeirão Preto, SP, Brazil
| | - Jéssica Fernandes Scortecci
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Science Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Edson Crusca Júnior
- Department of Physical Chemistry, Chemistry Institute of the São Paulo State University - UNESP, CEP 14800-900 Araraquara, SP, Brazil
| | - Marinônio Lopes Cornélio
- Physics Department, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University - UNESP, São Jose do Rio Preto, SP, Brazil
| | - Bibiana Monson de Souza
- Department of General and Applied Biology, Institute of Biosciences of Rio Claro, São Paulo State University - UNESP, Rio Claro, SP, Brazil
| | - Mário Sérgio Palma
- Department of General and Applied Biology, Institute of Biosciences of Rio Claro, São Paulo State University - UNESP, Rio Claro, SP, Brazil
| | - Mario de Oliveira Neto
- Bioscience Institute of Universidade Estadual Paulista, Rubião Jr., Botucatu, SP CEP 18618-000, Brazil
| | - Otavio Henrique Thiemann
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil; Department of Genetics and Evolution, Federal University of São Carlos - UFSCar, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
6
|
Prospects for the use of synthetic organoselenium compounds for the correction of metabolic and immune status during vaccination with live attenuated vaccines against especially dangerous infections. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.3.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Han F, Pang X, Wang Q, Liu Y, Liu L, Chai Y, Zhang J, Wang S, Lu J, Sun L, Zhan S, Wu H, Huang Z. Dietary Serine and Sulfate-Containing Amino Acids Related to the Nutritional Status of Selenium in Lactating Chinese Women. Biol Trace Elem Res 2021; 199:829-841. [PMID: 32533294 DOI: 10.1007/s12011-020-02204-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
Previous studies suggested that serine can promote the synthesis of selenoproteins and the interaction, transformation, and replacement of serine, cysteine, and selenocysteine have been observed in the human body. This study was designed to clarify whether the dietary intakes of serine and sulfate-containing amino acids (SAAs) could directly affect the selenium (Se) nutritional status or the level of milk Se in lactating women. Breast milk and plasma samples were collected from a total of 264 lactating Chinese women when they revisited their local hospital at the 42nd day postpartum to detect the concentration of Se with ICP-MS and the content of selenoprotein P (SEPP1) and the activity of glutathione peroxidase 3 (GPX3) in the plasma by ELISA. The daily Se intake by each subject was calculated based on her own plasma Se concentration. The 24-h dietary record data for 3 consecutive days were collected to calculate their dietary intakes of protein together with each amino acid daily based on the China Food Composition Tables (CFCT). Ordinal polytomous logistic regression was applied to examine the determinants of BMI values for lactating women. For all subjects, the concentration of plasma SEPP1 and milk Se of participants with insufficient Se intake were significantly associated with the dietary intake of serine and 2 SAAs (methionine and cystine), respectively (P < 0.05). No significant correlation was found between each amino acid related to the synthesis of endogenous serine and every biomarker of the Se nutrition status in subjects with an insufficient dietary protein intake (P > 0.05). The ordinal logistic regression analysis showed that dietary protein intake (ordinal OR 1.012, 95% CI = 0.004-0.020, P = 0.002) and plasma SEPP1 (ordinal OR 0.988, 95% CI = - 0.023 to - 0.001, P = 0.036) affected the BMI value together in these lactating women. In conclusion, dietary serine and SAAs were found to directly affect the nutritional status, and both high protein intake and low plasma SEPP1 might be the health risks in these lactating Chinese women.
Collapse
Affiliation(s)
- Feng Han
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Xuehong Pang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Qin Wang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Liping Liu
- Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, China
| | - Yingjuan Chai
- Maternal and Child Care Hospital of Xicheng district, Beijing, 100054, China
| | - Jie Zhang
- Center for Disease Control and Prevention of Enshi Autonomous Prefecture, Enshi, 445000, Hubei, China
| | - Shijin Wang
- Center for Disease Control and Prevention of Yi Autonomous Prefecture of Liangshan, Liangshan, 615000, Sichuan, China
| | - Jiaxi Lu
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Licui Sun
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Hongying Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Jianghan District, Wuhan, 430022, Hubei, China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|