1
|
Du Y, Wu M, Song S, Bian Y, Shi Y. TXNIP deficiency attenuates renal fibrosis by modulating mTORC1/TFEB-mediated autophagy in diabetic kidney disease. Ren Fail 2024; 46:2338933. [PMID: 38616177 PMCID: PMC11018024 DOI: 10.1080/0886022x.2024.2338933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/30/2024] [Indexed: 04/16/2024] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is an important regulatory protein for thioredoxin (TRX) that elicits the generation of reactive oxygen species (ROS) by inhibiting the redox function of TRX. Abundant evidence suggests that TXNIP is involved in the fibrotic process of diabetic kidney disease (DKD). However, the potential mechanism of TXNIP in DKD is not yet well understood. In this study, we found that TXNIP knockout suppressed renal fibrosis and activation of mammalian target of rapamycin complex 1 (mTORC1) and restored transcription factor EB (TFEB) and autophagy activation in diabetic kidneys. Simultaneously, TXNIP interference inhibited epithelial-to-mesenchymal transformation (EMT), collagen I and fibronectin expression, and mTORC1 activation, increased TFEB nuclear translocation, and promoted autophagy restoration in HK-2 cells exposed to high glucose (HG). Rapamycin, an inhibitor of mTORC1, increased TFEB nuclear translocation and autophagy in HK-2 cells under HG conditions. Moreover, the TFEB activators, curcumin analog C1 and trehalose, effectively restored HG-induced autophagy, and abrogated HG-induced EMT and collagen I and fibronectin expression in HK-2 cells. Taken together, these findings suggest that TXNIP deficiency ameliorates renal fibrosis by regulating mTORC1/TFEB-mediated autophagy in diabetic kidney diseases.
Collapse
Affiliation(s)
- Yunxia Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Ming Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Yawei Bian
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Kidney Disease, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Hagiwara M, Ishiyama S, Nakamura T, Mochizuki K. Topiroxostat improves glomerulosclerosis in type 2 diabetic Nagoya Shibata Yasuda mice with early diabetic kidney disease. Eur J Pharmacol 2024; 982:176915. [PMID: 39154822 DOI: 10.1016/j.ejphar.2024.176915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/12/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Reactive oxygen species production might be prevented by xanthine oxidoreductase (XOR) inhibitors, which can cause glomerulosclerosis. We aimed to investigate whether topiroxostat, an XOR inhibitor, prevents diabetic kidney disease development in mice. Six-week-old control Institute of Cancer Research (ICR) mice and type 2 diabetic Nagoya Shibata Yasuda (NSY) mice were divided into the ICR group (ICR mice which received a lard-containing high-fat diet [HFD] based on the AIN-93G diet), NSY control group (NSY mice which received the same aforementioned diet), and NSY + topiroxostat group (NSY mice which received the same aforementioned diet with addition of 0.0012% topiroxostat). After 20 weeks, plasma biomarkers, XOR activity and oxidative stress levels, which were assessed using malondialdehyde (MDA), were measured through enzyme-linked immunosorbent assay or enzymatic methods. Renal pathology was evaluated using periodic acid-Schiff staining. Redox gene and protein expression were determined using RT-qPCR and western blotting, respectively. Plasma XOR activity was lower in NSY mice treated with topiroxostat than those without. Plasma cystatin C and creatinine levels did not differ between the ICR and NSY control groups or between the NSY control and NSY + topiroxostat groups. The NSY + topiroxostat group showed a smaller mesangial area than the NSY control group. The mRNA expression of Sod3, Prdx1, Gpx2, and Gpx3 was higher in the NSY + topiroxostat group than in the NSY control group. Renal MDA levels were lower in the NSY + topiroxostat group than in the NSY control group. Topiroxostat can reduce glomerulosclerosis, and the reduction is associated with renal oxidative markers.
Collapse
Affiliation(s)
- Mai Hagiwara
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Yamanashi, Japan.
| | - Shiori Ishiyama
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Yamanashi, Japan; Laboratory of Food and Nutritional Sciences, Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan.
| | - Takashi Nakamura
- Pharmacological Study Group Pharmaceutical Research Laboratories, Sanwa Kagaku Kenkyusho, Mie, Japan.
| | - Kazuki Mochizuki
- Department of Integrated Applied Life Science, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Yamanashi, Japan; Laboratory of Food and Nutritional Sciences, Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
3
|
Wu H, Qiu Z, Wang L, Li W. Renal Fibrosis: SIRT1 Still of Value. Biomedicines 2024; 12:1942. [PMID: 39335456 PMCID: PMC11428497 DOI: 10.3390/biomedicines12091942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic kidney disease (CKD) is a major global health concern. Renal fibrosis, a prevalent outcome regardless of the initial cause, ultimately leads to end-stage renal disease. Glomerulosclerosis and renal interstitial fibrosis are the primary pathological features. Preventing and slowing renal fibrosis are considered effective strategies for delaying CKD progression. However, effective treatments are lacking. Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to class III histone deacetylases, is implicated in the physiological regulation and protection of the kidney and is susceptible to a diverse array of pathological influences, as demonstrated in previous studies. Interestingly, controversial conclusions have emerged as research has progressed. This review provides a comprehensive summary of the current understanding and advancements in the field; specifically, the biological roles and mechanisms of SIRT1 in regulating renal fibrosis progression. These include aspects such as lipid metabolism, epithelial-mesenchymal transition, oxidative stress, aging, inflammation, and autophagy. This manuscript explores the potential of SIRT1 as a therapeutic target for renal fibrosis and offers new perspectives on treatment approaches and prognostic assessments.
Collapse
Affiliation(s)
- Huailiang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.W.); (Z.Q.)
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.W.); (Z.Q.)
| | - Liyan Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.W.); (Z.Q.)
| |
Collapse
|
4
|
Li Q, Wang Y, Yan J, Yuan R, Zhang J, Guo X, Zhao M, Li F, Li X. Osthole ameliorates early diabetic kidney damage by suppressing oxidative stress, inflammation and inhibiting TGF-β1/Smads signaling pathway. Int Immunopharmacol 2024; 133:112131. [PMID: 38669945 DOI: 10.1016/j.intimp.2024.112131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Osthole is a natural active ingredient extracted from the traditional Chinese medicine Cnidium monnieri. It has been demonstrated to have anti-inflammatory, anti-fibrotic, and anti-hyperglycemic properties. However, its effect on diabetic kidney disease (DKD) remains uncertain. This study aims to assess the preventive and therapeutic effects of osthole on DKD and investigate its underlying mechanisms. METHODS A streptozotocin/high-fat and high-sucrose diet induced Type 2 diabetic rat model was established. Metformin served as the positive drug control. Diabetic rats were treated with metformin or three different doses of osthole for 8 weeks. Throughout the treatment period, the progression of DKD was assessed by monitoring increases in urinary protein, serum creatinine, urea nitrogen, and uric acid, along with scrutinizing kidney pathology. Enzyme-linked immunosorbent assay (ELISA) was employed to detect inflammatory factors and oxidative stress levels. At the same time, immunohistochemical staining was utilized to evaluate changes in alpha-smooth muscle actin, fibronectin, E-cadherin, and apoptosis. The alterations in TGF-β1/Smads signaling pathway were ascertained through western blot and immunofluorescence. Furthermore, we constructed a high glucose-stimulated HBZY-1 cells model to uncover its molecular protective mechanism. RESULTS Osthole significantly reduced fasting blood glucose, insulin resistance, serum creatinine, uric acid, blood urea nitrogen, urinary protein excretion, and glomerular mesangial matrix deposition in diabetic rats. Additionally, significant improvements were observed in inflammation, oxidative stress, apoptosis, and fibrosis levels. The increase of ROS, apoptosis and hypertrophy in HBZY-1 cells induced by high glucose was reduced by osthole. Immunofluorescence and western blot results demonstrated that osthole down-regulated the TGF-β1/Smads signaling pathway and related protein expression. CONCLUSION Our findings indicate that osthole exhibits potential preventive and therapeutic effects on DKD. It deserves further investigation as a promising drug for preventing and treating DKD.
Collapse
Affiliation(s)
- Qiangsheng Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yifei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jia Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruyan Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiamin Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinhao Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingming Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiaotian Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Engineering Research Center for Water Environment and Health of Henan, College of Pharmacy and Chemical Engineering, Zhengzhou University of Industrial Technology, Zhengzhou 451150, China.
| |
Collapse
|
5
|
Shuai Y, Xu N, Zhao C, Yang F, Ning Z, Li G. MicroRNA-10 Family Promotes Renal Fibrosis through the VASH-1/Smad3 Pathway. Int J Mol Sci 2024; 25:5232. [PMID: 38791272 PMCID: PMC11120755 DOI: 10.3390/ijms25105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Renal fibrosis (RF) stands as a pivotal pathological process in the advanced stages of chronic kidney disease (CKD), and impeding its progression is paramount for delaying the advancement of CKD. The miR-10 family, inclusive of miR-10a and miR-10b, has been implicated in the development of various fibrotic diseases. Nevertheless, the precise role of miR-10 in the development of RF remains enigmatic. In this study, we utilized both an in vivo model involving unilateral ureteral obstruction (UUO) in mice and an in vitro model employing TGF-β1 stimulation in HK-2 cells to unravel the mechanism underlying the involvement of miR-10a/b in RF. The findings revealed heightened expression of miR-10a and miR-10b in the kidneys of UUO mice, accompanied by a substantial increase in p-Smad3 and renal fibrosis-related proteins. Conversely, the deletion of these two genes led to a notable reduction in p-Smad3 levels and the alleviation of RF in mouse kidneys. In the in vitro model of TGF-β1-stimulated HK-2 cells, the co-overexpression of miR-10a and miR-10b fostered the phosphorylation of Smad3 and RF, while the inhibition of miR-10a and miR-10b resulted in a decrease in p-Smad3 levels and RF. Further research revealed that miR-10a and miR-10b, through binding to the 3'UTR region of Vasohibin-1 (VASH-1), suppressed the expression of VASH-1, thereby promoting the elevation of p-Smad3 and exacerbating the progression of RF. The miR-10 family may play a pivotal role in RF.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoxia Li
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
6
|
He C, Gu L, Li A, Li Y, Xiao R, Liao J, Mu J, Gan Y, Peng M, Mohan G, Liu W, Xu L, Guo S. Recombinant Slit2 attenuates tracheal fibroblast activation in benign central airway obstruction by inhibiting the TGF-β1/Smad3 signaling pathway. Mol Cell Probes 2024; 73:101947. [PMID: 38122948 DOI: 10.1016/j.mcp.2023.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Airway fibrosis is among the pathological manifestations of benign central airway obstruction noted in the absence of effective treatments and requires new drug targets to be developed. Slit guidance ligand 2-roundabout guidance receptor 1 (Slit2-Robo1) is involved in fibrosis and organ development. However, its significance in airway fibrosis has not yet been reported. The study explored how the recombinant protein Slit2 functions in transforming growth factor-β1 (TGF-β1)-mediated airway fibrosis in vivo and in vitro. In this study, Slit2 expression initially increased in the tracheal granulation tissues of patients with tracheobronchial stenosis but decreased in the fibrotic tissue. In primary rat tracheal fibroblasts (RTFs), recombinant Slit2 inhibited the expression of extracellular matrices such as Timp1, α-SMA, and COL1A2, whereas recombinant TGF-β1 promoted the expression of Robo1, α-SMA, and COL1A2. Slit2 and TGF-β1 played a mutual inhibitory role in RTFs. Slit2 supplementation and Robo1 downregulation inhibited excessive extracellular matrix (ECM) deposition induced by TGF-β1 in RTFs via the TGF-β1/Smad3 pathway. Ultimately, exogenous Slit2 and Robo1 knockdown-mediated attenuation of airway fibrosis were validated in a trauma-induced rat airway obstruction model. These findings demonstrate that recombinant Slit2 alleviated pathologic tracheobronchial healing by attenuating excessive ECM deposition. Slit2-Robo1 is an attractive target for further exploring the mechanisms and treatment of benign central airway obstruction.
Collapse
Affiliation(s)
- Chunyan He
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China
| | - Lei Gu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Anmao Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China
| | - Yishi Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China
| | - Rui Xiao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China
| | - Jiaxin Liao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China
| | - Junhao Mu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China
| | - Yiling Gan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China
| | - Mingyu Peng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China
| | - Giri Mohan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, The 900th Hospital of Joint Logistic Support Force, People's Liberation Army, Fujian Medical University, Fuzhou, Fujian, 350025, China
| | - Li Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China.
| | - Shuliang Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, 400016, China.
| |
Collapse
|
7
|
Yan P, Yang Y, Zhang X, Zhang Y, Li J, Wu Z, Dan X, Wu X, Chen X, Li S, Xu Y, Wan Q. Association of systemic immune-inflammation index with diabetic kidney disease in patients with type 2 diabetes: a cross-sectional study in Chinese population. Front Endocrinol (Lausanne) 2024; 14:1307692. [PMID: 38239983 PMCID: PMC10795757 DOI: 10.3389/fendo.2023.1307692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Objective Systemic immune-inflammation index (SII), a novel inflammatory marker, has been reported to be associated with diabetic kidney disease (DKD) in the U.S., however, such a close relationship with DKD in other countries, including China, has not been never determined. We aimed to explore the association between SII and DKD in Chinese population. Methods A total of 1922 hospitalized patients with type 2 diabetes mellitus (T2DM) included in this cross-sectional study were divided into three groups based on estimated glomerular filtration rate (eGFR) and urinary albumin-to-creatinine ratio (ACR): non-DKD group, DKD stages 1-2 Alb group, and DKD-non-Alb+DKD stage 3 Alb group. The possible association of SII with DKD was investigated by correlation and multivariate logistic regression analysis, and receiver-operating characteristic (ROC) curves analysis. Results Moving from the non-DKD group to the DKD-non-Alb+DKD stage 3 Alb group, SII level was gradually increased (P for trend <0.01). Partial correlation analysis revealed that SII was positively associated with urinary ACR and prevalence of DKD, and negatively with eGFR (all P<0.01). Multivariate logistic regression analysis showed that SII remained independently significantly associated with the presence of DKD after adjustment for all confounding factors [(odds ratio (OR), 2.735; 95% confidence interval (CI), 1.840-4.063; P < 0.01)]. Moreover, compared with subjects in the lowest quartile of SII (Q1), the fully adjusted OR for presence of DKD was 1.060 (95% CI 0.773-1.455) in Q2, 1.167 (95% CI 0.995-1.368) in Q3, 1.266 (95% CI 1.129-1.420) in the highest quartile (Q4) (P for trend <0.01). Similar results were observed in presence of DKD stages 1-2 Alb or presence of DKD-non- Alb+DKD stage 3 Alb among SII quartiles. Last, the analysis of ROC curves revealed that the best cutoff values for SII to predict DKD, Alb DKD stages 1- 2, and DKD-non-Alb+ DKD stage 3 Alb were 609.85 (sensitivity: 48.3%; specificity: 72.8%), 601.71 (sensitivity: 43.9%; specificity: 72.3%), and 589.27 (sensitivity: 61.1%; specificity: 71.1%), respectively. Conclusion Higher SII is independently associated with an increased risk of the presence and severity of DKD, and SII might be a promising biomarker for DKD and its distinct phenotypes in Chinese population.
Collapse
Affiliation(s)
- Pijun Yan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Yuxia Yang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Xing Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Yi Zhang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Jia Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Zujiao Wu
- Department of Clinical Nutrition, Chengdu Eighth People’s Hospital (Geriatric Hospital of Chengdu Medical College), Chengdu, China
| | - Xiaofang Dan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Xian Wu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Xiping Chen
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Shengxi Li
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Qin Wan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| |
Collapse
|
8
|
Yin S, Zhou Z, Fu P, Jin C, Wu P, Ji C, Shan Y, Shi L, Xu M, Qian H. Roles of extracellular vesicles in ageing-related chronic kidney disease: demon or angel. Pharmacol Res 2023:106795. [PMID: 37211241 DOI: 10.1016/j.phrs.2023.106795] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Ageing is a universal and unavoidable phenomenon that significantly increases the risk of developing chronic kidney disease (CKD). It has been reported that ageing is associated with functional disruption and structural damage to the kidneys. Extracellular vesicles (EVs), which are nanoscale membranous vesicles containing lipids, proteins, and nucleic acids, are secreted by cells into the extracellular spaces. They have diverse functions such as repairing and regenerating different forms of ageing-related CKD and playing a crucial role in intercellular communication. This paper reviews the etiology of ageing in CKD, with particular attention paid to the roles of EVs as carriers of ageing signals and anti-ageing therapeutic strategies in CKD. In this regard, the double-edged role of EVs in ageing-related CKD is examined, along with the potential for their application in clinical settings.
Collapse
Affiliation(s)
- Siqi Yin
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zixuan Zhou
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Peiwen Fu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chaoying Jin
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Peipei Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Cheng Ji
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yunjie Shan
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Linru Shi
- Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Min Xu
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China.
| | - Hui Qian
- Institute of Translational Medicine of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China; Key Laboratory of Laboratory Medicine of Jiangsu Province, Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
9
|
Chen HH, Zhang YX, Lv JL, Liu YY, Guo JY, Zhao L, Nan YX, Wu QJ, Zhao YH. Role of sirtuins in metabolic disease-related renal injury. Biomed Pharmacother 2023; 161:114417. [PMID: 36812714 DOI: 10.1016/j.biopha.2023.114417] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Poor control of metabolic diseases induces kidney injury, resulting in microalbuminuria, renal insufficiency and, ultimately, chronic kidney disease. The potential pathogenetic mechanisms of renal injury caused by metabolic diseases remain unclear. Tubular cells and podocytes of the kidney show high expression of histone deacetylases known as sirtuins (SIRT1-7). Available evidence has shown that SIRTs participate in pathogenic processes of renal disorders caused by metabolic diseases. The present review addresses the regulatory roles of SIRTs and their implications for the initiation and development of kidney damage due to metabolic diseases. SIRTs are commonly dysregulated in renal disorders induced by metabolic diseases such as hypertensive nephropathy and diabetic nephropathy. This dysregulation is associated with disease progression. Previous literature has also suggested that abnormal expression of SIRTs affects cellular biology, such as oxidative stress, metabolism, inflammation, and apoptosis of renal cells, resulting in the promotion of invasive diseases. This literature reviews the research progress made in understanding the roles of dysregulated SIRTs in the pathogenesis of metabolic disease-related kidney disorders and describes the potential of SIRTs serve as biomarkers for early screening and diagnosis of these diseases and as therapeutic targets for their treatment.
Collapse
Affiliation(s)
- Huan-Huan Chen
- Department of Oncology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Yi-Xiao Zhang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Urology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Jia-Le Lv
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Yu-Yang Liu
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Jing-Yi Guo
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Lu Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Yu-Xin Nan
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Qi-Jun Wu
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Yu-Hong Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| |
Collapse
|
10
|
Tao P, Ji J, Wang Q, Cui M, Cao M, Xu Y. The role and mechanism of gut microbiota-derived short-chain fatty in the prevention and treatment of diabetic kidney disease. Front Immunol 2022; 13:1080456. [PMID: 36601125 PMCID: PMC9806165 DOI: 10.3389/fimmu.2022.1080456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetic kidney disease (DKD), an emerging global health issue, is one of the most severe microvascular complications derived from diabetes and a primary pathology contributing to end-stage renal disease. The currently available treatment provides only symptomatic relief and has failed to delay the progression of DKD into chronic kidney disease. Recently, multiple studies have proposed a strong link between intestinal dysbiosis and the occurrence of DKD. The gut microbiota-derived short-chain fatty acids (SCFAs) capable of regulating inflammation, oxidative stress, fibrosis, and energy metabolism have been considered versatile players in the prevention and treatment of DKD. However, the underlying molecular mechanism of the intervention of the gut microbiota-kidney axis in the development of DKD still remains to be explored. This review provides insight into the contributory role of gut microbiota-derived SCFAs in DKD.
Collapse
Affiliation(s)
- Pengyu Tao
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Ji
- Department of Endocrinology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Mengmeng Cui
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Mingfeng Cao
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University Taian, Taian, China,*Correspondence: Mingfeng Cao, ; Yuzhen Xu,
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China,*Correspondence: Mingfeng Cao, ; Yuzhen Xu,
| |
Collapse
|
11
|
Su H, Gao D, Chen Y, Zuo Z. The Relationship Between Klotho and SIRT1 Expression in Renal Aging Related Disease. Int J Gen Med 2022; 15:7885-7893. [PMID: 36304672 PMCID: PMC9595124 DOI: 10.2147/ijgm.s384119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background This study focused on renal arteriosclerosis and aimed to explore the relationship between Klotho and SIRT1 by morphological staining, which will help to provide new ideas for the treatment of renal-aging-related diseases and a theoretical basis for the development of new drugs. Methods Kidney tissue samples were collected from patients who underwent nephrectomy. HK-2 cells were cultured. The Hematoxylin-eosin (HE) staining, Periodic Acid-Schiff (PAS) staining, Masson’s Trichrome staining, Immunohistochemistry (IHC) staining, Immunofluorescence (ICC) and bioinformatics means were used for this study. Results HE staining showed that glomerulosclerosis was atrophic and cast was significantly increased luminal narrowing of renal arterioles in aging group. PAS staining showed that the number of podocytes was reduced, the mesangial matrix expansion and the intimal fibrosis of renal arterioles. Masson’s trichrome staining showed that there was massive collagen proliferation in the tubulointerstitial in aging group, as well as intimal thickening and fibrin deposition in the tubular walls of arterioles. IHC staining showed that the expression of Klotho and SIRT1 protein was downregulated in aging group and the trend of the two was positively correlated (P < 0.01). Klotho and SIRT1 co-localized in HK-2 cells and kidney tissue. The GEPIA database analysis showed a significant positive correlation between Klotho and SIRT1 in multiple human tissues and tumors. Conclusion Glomerulosclerosis in aging group is accompanied by low expression of Klotho and SIRT1 in renal tissue, and Klotho is positively correlated with SIRT1. Klotho-SIRT1 pathway may be involved in the occurrence and development of renal-aging-related diseases.
Collapse
Affiliation(s)
- Hong Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, 400016, People’s Republic of China,Department of Pathology, Shenyang KingMed Center for Clinical Laboratory Co., Ltd, Shenyang, 110164, People’s Republic of China
| | - Diansa Gao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yanlin Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Zhong Zuo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China,Correspondence: Zhong Zuo, Email
| |
Collapse
|
12
|
Cheng Y, Wu X, Xia Y, Liu W, Wang P. The role of lncRNAs in regulation of DKD and diabetes-related cancer. Front Oncol 2022; 12:1035487. [PMID: 36313695 PMCID: PMC9606714 DOI: 10.3389/fonc.2022.1035487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetes mellitus often results in several complications, such as diabetic kidney disease (DKD) and end-stage renal diseases (ESRDs). Cancer patients often have the dysregulated glucose metabolism. Abnormal glucose metabolism can enhance the tumor malignant progression. Recently, lncRNAs have been reported to regulate the key proteins and signaling pathways in DKD development and progression and in cancer patients with diabetes. In this review article, we elaborate the evidence to support the function of lncRNAs in development of DKD and diabetes-associated cancer. Moreover, we envisage that lncRNAs could be diagnosis and prognosis biomarkers for DKD and cancer patients with diabetes. Furthermore, we delineated that targeting lncRNAs might be an alternative approach for treating DKD and cancer with dysregulated glucose metabolism.
Collapse
Affiliation(s)
- Yawei Cheng
- Department of Disease Prevention, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
- *Correspondence: Yawei Cheng, ; Peter Wang,
| | - Xiaowen Wu
- Department of Disease Prevention, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, China
| | - Yujie Xia
- Department of Food Science and Technology Centers, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Wenjun Liu
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
| | - Peter Wang
- Department of Research and Development, Zhejiang Zhongwei Medical Research Center, Hangzhou, China
- *Correspondence: Yawei Cheng, ; Peter Wang,
| |
Collapse
|
13
|
miR-154-5p Affects the TGFβ1/Smad3 Pathway on the Fibrosis of Diabetic Kidney Disease via Binding E3 Ubiquitin Ligase Smurf1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7502632. [PMID: 35126820 PMCID: PMC8814716 DOI: 10.1155/2022/7502632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022]
Abstract
Aim The study is aimed at verifying miR-154-5p and Smurf1 combination in glomerular mesangial cells regulating TGFβ1/Smad3 pathway-related protein ubiquitination in the model of diabetic rats renal tissues, primary mesangial cells, and cell lines. Methods The diabetic SD rat model and high-glucose-cultured primary mesangial cells and cell lines were established. miR-154-5p mimic and inhibitor, Smurf1 siRNA, and TGF β 1/Smad3 inhibitor (SB431542) were pretreated to make the TGFβ1/Smad3 pathway and ubiquitin changes. Fluorescence in situ hybridization was used for the miR-154-5p renal localization; molecular biological detection was adopted for cell proliferation, renal function, urine protein, and pathway proteins. After bioinformatics predicted binding sites, luciferase and Co-IP were used to detect miRNA and protein binding. Results miR-154-5p was significantly increased and mainly concentrated in the glomerular of renal cortex in well-established diabetic rat renal tissues. Rno-miR-154-5p combined Rno-Smurf1 3′ UTR, while Smurf1 combined Smad3 directly. Meanwhile, miR-154-5p regulates TGFβ1/Smad3-mediated cell proliferation via Smurf1 ubiquitination. Conclusion miR-154-5p regulates the TGFβ1/Smads pathway through Smurf1 ubiquitination and promotes the fibrosis process of diabetic kidney disease.
Collapse
|
14
|
Feng Y, Wang D, Liu Y, Pang X, Zhang H. Serum levels of vasohibin-1 in type 2 diabetes mellitus patients with diabetic retinopathy. Eur J Ophthalmol 2022; 32:2864-2869. [PMID: 35001686 DOI: 10.1177/11206721211073403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CLINICAL RELEVANCE To determine whether Vasohibin-1 which is a potential clinical biomarker is an independent risk factor in patients with diabetic retinopathy. BACKGROUND Diabetic retinopathy (DR) is a common chronic microangiopathy in type 2 diabetes mellitus (T2DM). Vasohibin-1 (VASH-1) is an angiogenesis regulator that is closely related to pathological vascularization in DM. This study aimed to determine whether the serum levels of VASH-1 were related to the occurrence of DR in T2DM patients. METHODS T2DM patients were divided into three groups: the nondiabetic retinopathy (NDR) group (n = 41), the nonproliferative diabetic retinopathy (NPRD) group (n = 40), and the proliferative diabetic retinopathy (PDR) group (n = 41). A control (CON) group consisting of 40 healthy subjects was also recruited. The serum levels of VASH-1 were measured by enzyme-linked immunosorbent assay kits. RESULTS The concentration of VASH-1 in the CON groups was less significantly than that of the NDR, NPDR and PDR groups. (P < 0.05). Body mass index, fasting plasma glucose (FPG), hemoglobina1c (HbA1C), blood urea nitrogen (BUN) and diabetic durations were positively correlated with the serum concentration of VASH-1 (all P < 0.05). In univariate logistic regression analyses, the HbA1C, diabetic durations, HDL-c, eGFR and VASH1 were associated with the presence of diabetic retinopathy. Multivariate logistic regression analysis showed that duration of diabetes were significantly associated with diabetic retinopathy. CONCLUSION We have shown that VASH-1 is associated with an increased risk of developing diabetic retinopathy. But the serum levels of VASH-1 are not independent risk factors for DR in T2DM.
Collapse
Affiliation(s)
- Ying Feng
- Department of Endocrinology, Hospital of Harbin Medical University, 118221Heze Medical College, No. 1950, Daxue Road, Mudan District, Heze City, Shandong Province 274400, China
| | - Da Wang
- Department of Endocrinology, Hospital of Harbin Medical University, 529858Linyi People's Hospital of Shandong Province
| | - Yan Liu
- 118221Heze Medical College, No. 1950, Daxue Road, Heze City, Shandong Province
| | - Xiangzhong Pang
- 426111Liaocheng People's Hospital of Liaocheng City, Shandong Province
| | - Huijuan Zhang
- Department of Endocrinology, Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, China
| |
Collapse
|
15
|
Abstract
Diabetes mellitus (DM) is gradually attacking the health and life of people all over the world. Diabetic kidney disease (DKD) is one of the most common chronic microvascular complications of DM, whose mechanism is complex and still lacks research. Sirtuin family is a class III histone deacetylase with highly conserved NAD+ binding domain and catalytic functional domain, while different N-terminal and C-terminal structures enable them to bind different deacetylated substrates to participate in the cellular NAD+ metabolism. The kidney is an organ rich in NAD+ and database exploration of literature shows that the Sirtuin family has different expression localization in renal, cellular, and subcellular structures. With the progress of modern technology, a variety of animal models and reagents for the Sirtuin family and DKD emerged. Machine learning in the literature shows that the Sirtuin family can regulate pathophysiological injury mainly in the glomerular filtration membrane, renal tubular absorption, and immune inflammation through various mechanisms such as epigenetics, multiple signaling pathways, and mitochondrial function. These mechanisms are the key nodes participating in DKD. Thus, it is of great significance for target therapy to study biological functions of the Sirtuin family and DKD regulation mechanism in-depth.
Collapse
Affiliation(s)
- Che Bian
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Huiwen Ren,
| |
Collapse
|
16
|
Chen HY, Lu J, Wang ZK, Yang J, Ling X, Zhu P, Zheng SY. Hsa-miR-199a-5p Protect Cell Injury in Hypoxia Induces Myocardial Cells Via Targeting HIF1α. Mol Biotechnol 2021; 64:482-492. [PMID: 34843094 DOI: 10.1007/s12033-021-00423-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022]
Abstract
Myocardial infarction (MI) is one of the most common global diseases. Recently, microRNA 199a-5p (miR-199a-5p) has been recognized as a vital regulator in several human diseases. Nevertheless, the function of miR-199a-5p and the associated downstream molecular mechanisms in myocardial injury remain undescribed. Here, we assessed the relative expression of miR-199a-5p in an oxidative stress injury model of human myocardial cells. The effects of miR-199a-5p on myocardial cell viability were determined by cell counting kit-8 (CCK-8), terminal deoxynucleotidyl transferase UTP nick end labeling (TUNEL), flow cytometry, and western blot assays. Online bioinformatic analysis was used to predict the aim of miR-199a-5p in cardiomyocyte injury, which was confirmed by dual-luciferase reporter assays. miR-199a-5p increased the growth rate of cardiomyocytes after treatment with a hypoxic environment. miR-199a-5p acted as an inhibitor directly targeted hypoxia-inducible factor-1 (HIF1α) expression, which was higher in the cardiomyocyte injury model than that in healthy myocardial cells. Upregulated HIF1α expression abolished miR-199a-5p-induced cell proliferation in the cardiomyocyte hypoxia model. Our results suggest that miR-199a-5p is a potential prognostic biomarker in myocardial damage.
Collapse
Affiliation(s)
- Hui-Yong Chen
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China.,Department of Thoracic Surgery, Yuebei People's Hospital, Shantou University, Shaoguan, People's Republic of China
| | - Jun Lu
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Zheng-Kang Wang
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Jie Yang
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Xiao Ling
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China
| | - Peng Zhu
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China. .,Department of Cardiothoracic Surgery, Nanfang hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun, Guangzhou, Guangdong, 510280, People's Republic of China.
| | - Shao-Yi Zheng
- Department of Cardiothoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, People's Republic of China. .,Department of Cardiothoracic Surgery, Nanfang hospital, Southern Medical University, 1838 Guangzhou Avenue North, Baiyun, Guangzhou, Guangdong, 510280, People's Republic of China.
| |
Collapse
|