1
|
Graff RC, Haimowitz A, Aguilan JT, Levine A, Zhang J, Yuan W, Roose-Girma M, Seshagiri S, Porcelli SA, Gamble MJ, Sidoli S, Bresnick AR, Backer JM. Platelet PI3Kβ regulates breast cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612261. [PMID: 39314490 PMCID: PMC11419023 DOI: 10.1101/2024.09.10.612261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Platelets promote tumor metastasis by several mechanisms. Platelet-tumor cell interactions induce the release of platelet cytokines, chemokines, and other factors that promote tumor cell epithelial-mesenchymal transition and invasion, granulocyte recruitment to circulating tumor cells (CTCs), and adhesion of CTCs to the endothelium, assisting in their extravasation at metastatic sites. Previous studies have shown that platelet activation in the context of thrombus formation requires the Class IA PI 3-kinase PI3Kβ. We now define a role for platelet PI3Kβ in breast cancer metastasis. Platelet PI3Kβ is essential for platelet-stimulated tumor cell invasion through Matrigel. Consistent with this finding, in vitro platelet-tumor cell binding and tumor cell-stimulated platelet activation are reduced in platelets isolated from PI3Kβ mutant mice. RNAseq and proteomic analysis of human breast epithelial cells co-cultured with platelets revealed that platelet PI3Kβ regulates the expression of EMT and metastasis-associated genes in these cells. The EMT and metastasis-associated proteins PAI-1 and IL-8 were specifically downregulated in co-cultures with PI3Kβ mutant platelets. PI3Kβ mutant platelets are impaired in their ability to stimulate YAP and Smad2 signaling in tumor cells, two pathways regulating PAI-1 expression. Finally, we show that mice expressing mutant PI3Kβ show reduced spontaneous metastasis, and platelets isolated from these mice are less able to stimulate experimental metastasis in WT mice. Taken together, these data support a role for platelet PI3Kβ in promoting breast cancer metastasis and highlight platelet PI3Kβ as a potential therapeutic target. Significance We demonstrate that platelet PI3Kβ regulates metastasis, broadening the potential use of PI3Kβ-selective inhibitors as novel agents to treat metastasis.
Collapse
|
2
|
Lo HC, Hua WJ, Yeh H, Lin ZH, Huang LC, Ciou YR, Ruan R, Lin KF, Tseng AJ, Wu ATH, Hsu WH, Chao CH, Lin TY. GMI, a Ganoderma microsporum protein, abolishes focal adhesion network to reduce cell migration and metastasis of lung cancer. Life Sci 2023; 335:122255. [PMID: 37967792 DOI: 10.1016/j.lfs.2023.122255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Cancer metastasis is a major cause of cancer-related deaths, emphasizing the urgent need for effective therapies. Although it has been shown that GMI, a fungal protein from Ganoderma microsporum, could suppress primary tumor growth in a wide spectrum of cancer types, it is still unclear whether GMI exhibits anti-metastasis properties, particularly in lung cancers. Further investigation is needed. AIMS AND OBJECTIVES The objective of this study is to investigate the potential inhibitory effects of GMI on lung cancer metastasis in vivo. Utilizing systematic and comprehensive approaches, our research aims to elucidate the underlying molecular mechanisms responsible for the anti-metastatic effects. MATERIALS AND METHODS In vitro migration and cell adhesion assays addressed the epithelial-to-mesenchymal transition (EMT)-related phenotype. Proteomic and bioinformatic analyses identified the GMI-regulated proteins and cellular responses. GMI-treated LLC1-bearing mice were analyzed using IVIS Spectrum to assess the anti-metastatic effect. KEY FINDINGS GMI inhibits EMT as well as cell migration. GMI disrupts cell adhesion and downregulates integrin, resulting in inhibition of phosphorylated FAK. GMI induces macropinocytosis and lysosome-mediated degradation of integrin αv, α5, α6 and β1. GMI downregulates Slug via inhibition of FAK activity, which in turn enhances expressions of epithelial-related markers and decreases cell mobility. Mechanistically, GMI-induced FAK inhibition engenders MDM2 expression and enhances MDM2/p21/Slug complex formation, leading to Slug degradation. GMI treatment reduces the metastatic pulmonary lesion and prolongs the survival of LLC1-bearing mice. SIGNIFICANCE Our findings highlight GMI as a promising therapeutic candidate for metastatic lung cancers, offering potential avenues for further research and drug development.
Collapse
Affiliation(s)
- Hung-Chih Lo
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Wei-Jyun Hua
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Hsin Yeh
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Zhi-Hu Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Chen Huang
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ru Ciou
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Runcheng Ruan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kai-Fan Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ai-Jung Tseng
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science & Technology, Taipei Medical University, Taipei Taiwan
| | - Wei-Hung Hsu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; LO-Sheng Hospital Ministry of Health and Welfare, Taipei, Taiwan; School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Hong Chao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center For Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Liu H, Lai W, Nie H, Shi Y, Zhu L, Yang L, Tian L, Li K, Bian L, Xi Z, Lin B. PM 2.5 triggers autophagic degradation of Caveolin-1 via endoplasmic reticulum stress (ERS) to enhance the TGF-β1/Smad3 axis promoting pulmonary fibrosis. ENVIRONMENT INTERNATIONAL 2023; 181:108290. [PMID: 37924604 DOI: 10.1016/j.envint.2023.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Air pollution is highly associated with respiratory diseases. However, the influence and mechanism of particulate matter with aerodynamic equal to or less than 2.5 μm (PM2.5) in lung homeostasis remain unclear. Herein, we demonstrated the induction of pulmonary fibrosis (PF) by PM2.5 exposure. The animal model showed that PM2.5 exposure could activate the oxidative stress and inflammation response, promoting epithelial-mesenchymal transition and accumulation of collagen, high expression of pro-fibrotic factors, and pathological characteristics of fibrosis. The proteomic analysis indicated that PM2.5 exposure decreased the expression of caveolin-1 (Cav-1), and many differential proteins were enriched in the TGF-β1/Smad, endoplasmic reticulum stress (ERS) and autophagy pathways. Combining in vivo and in vitro experiments, it was found that PM2.5 exposure could reduce Cav-1 protein levels and activate TGF-β1/Smad3 signaling pathways through ERS and autophagy pathways, thereby inducing cell apoptosis and promoting pulmonary fibrosis. However, inhibiting ERS could alleviate the occurrence of autophagy, and blocking the autophagy system could increase the level of Cav-1 protein and inhibit TGF- β 1/Smad3 signaling pathway to improve pulmonary fibrosis. Therefore, we demonstrated that the exposure of PM2.5 could enhance the ERS induced-autophagy-mediated Cav-1 degradation, thus activating the TGF-β1/Smad3 axis to promote pneumonocytes apoptosis and overproduction of extracellular matrix (ECM), finally aggravating PF. Moreover, our findings revealed that intermittent exposure to high doses of PM2.5 was more toxic than continuous exposure to low dose.
Collapse
Affiliation(s)
- Huanliang Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Huipeng Nie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lina Zhu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Linhui Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment & Food Safety, Tianjin 300050, China.
| |
Collapse
|
4
|
Jiménez-Salazar JE, Rivera-Escobar RM, Damián-Ferrara R, Maldonado-Cubas J, Rincón-Pérez C, Tarragó-Castellanos R, Damián-Matsumura P. Estradiol-Induced Epithelial to Mesenchymal Transition and Migration Are Inhibited by Blocking c-Src Kinase in Breast Cancer Cell Lines. J Breast Cancer 2023; 26:446-460. [PMID: 37704382 PMCID: PMC10625871 DOI: 10.4048/jbc.2023.26.e37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/18/2023] [Accepted: 07/19/2023] [Indexed: 09/15/2023] Open
Abstract
PURPOSE The epithelial-to-mesenchymal transition (EMT) is the main event that favors cell migration and metastasis in breast cancer. Previously, we demonstrated that 1 nM estradiol (E2) promotes EMT, induced by c-Src kinase, causing changes in the localization of proteins that compose the tight junction (TJ) and adherens junction (AJ). METHODS The present work highlights the central role of c-Src in the initiation of metastasis, induced by E2, through increasing the ability of MCF-7 and T47-D cells, which express estrogen receptor alpha (ERα), to migrate and invade before they become metastatic. RESULTS Treatment with E2 can activate two signaling pathways, the first one by the phosphorylated c-Src (p-Src) which forms the p-Src/E-cadherin complex. This phenomenon was completely prevented by incubation with a selective inhibitor of c-Src (5 µM PP2). p-Src then promotes the downregulation of E-cadherin and occludin, which are epithelial phenotype marker proteins of the AJ and TJ, respectively. In the second pathway, E2 binds to ERα, creating a complex that translocates to the nucleus, inducing the synthesis of SNAIL1 and N-cadherin proteins, markers of the mesenchymal phenotype. Both processes increased the migratory and invasive capacities of both cell lines. CONCLUSION The present study demonstrate that E2 enhance EMT and migration, through c-Src activation, in human breast cancer cells that express ERα and become potential therapeutic targets.
Collapse
Affiliation(s)
- Javier E Jiménez-Salazar
- Department of Biology of Reproduction, Biological Sciences and Health Division (DCBS), Autonomous Metropolitan University (UAM), Mexico City, México
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional (SEDENA), Mexico City, México
| | - Rene M Rivera-Escobar
- Department of Biology of Reproduction, Biological Sciences and Health Division (DCBS), Autonomous Metropolitan University (UAM), Mexico City, México
| | - Rebeca Damián-Ferrara
- Monterrey Institute of Technology and Higher Education (ITESM), School of Engineering and Sciences, Monterrey, México
| | | | - Catalina Rincón-Pérez
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional (SEDENA), Mexico City, México
| | - Rosario Tarragó-Castellanos
- Department of Biology of Reproduction, Biological Sciences and Health Division (DCBS), Autonomous Metropolitan University (UAM), Mexico City, México
| | - Pablo Damián-Matsumura
- Department of Biology of Reproduction, Biological Sciences and Health Division (DCBS), Autonomous Metropolitan University (UAM), Mexico City, México.
| |
Collapse
|
5
|
Chang YF, Wang HH, Shu CW, Tsai WL, Lee CH, Chen CL, Liu PF. TMEM211 Promotes Tumor Progression and Metastasis in Colon Cancer. Curr Issues Mol Biol 2023; 45:4529-4543. [PMID: 37367036 DOI: 10.3390/cimb45060287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Colon cancer is the third most important cancer type, leading to a remarkable number of deaths, indicating the necessity of new biomarkers and therapeutic targets for colon cancer patients. Several transmembrane proteins (TMEMs) are associated with tumor progression and cancer malignancy. However, the clinical significance and biological roles of TMEM211 in cancer, especially in colon cancer, are still unknown. In this study, we found that TMEM211 was highly expressed in tumor tissues and the increased TMEM211 was associated with poor prognosis in colon cancer patients from The Cancer Genome Atlas (TCGA) database. We also showed that abilities regarding migration and invasion were reduced in TMEM211-silenced colon cancer cells (HCT116 and DLD-1). Moreover, TMEM211-silenced colon cancer cells showed decreased levels of Twist1, N-cadherin, Snail and Slug but increased levels of E-cadherin. Levels of phosphorylated ERK, AKT and RelA (NF-κB p65) were also decreased in TMEM211-silenced colon cancer cells. Our findings indicate that TMEM211 regulates epithelial-mesenchymal transition for metastasis through coactivating the ERK, AKT and NF-κB signaling pathways, which might provide a potential prognostic biomarker or therapeutic target for colon cancer patients in the future.
Collapse
Affiliation(s)
- Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Hsing-Hsang Wang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Wei-Lun Tsai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
6
|
Ferraro MG, Bocchetti M, Riccardi C, Trifuoggi M, Paduano L, Montesarchio D, Misso G, Santamaria R, Piccolo M, Irace C. Triple Negative Breast Cancer Preclinical Therapeutic Management by a Cationic Ruthenium-Based Nucleolipid Nanosystem. Int J Mol Sci 2023; 24:ijms24076473. [PMID: 37047448 PMCID: PMC10094725 DOI: 10.3390/ijms24076473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Based on compelling preclinical evidence concerning the progress of our novel ruthenium-based metallotherapeutics, we are focusing research efforts on challenging indications for the treatment of invasive neoplasms such as the triple-negative breast cancer (TNBC). This malignancy mainly afflicts younger women, who are black, or who have a BRCA1 mutation. Because of faster growing and spreading, TNBC differs from other invasive breast cancers having fewer treatment options and worse prognosis, where existing therapies are mostly ineffective, resulting in a large unmet biomedical need. In this context, we benefited from an experimental model of TNBC both in vitro and in vivo to explore the effects of a biocompatible cationic liposomal nanoformulation, named HoThyRu/DOTAP, able to effectively deliver the antiproliferative ruthenium(III) complex AziRu, thus resulting in a prospective candidate drug. As part of the multitargeting mechanisms featuring metal-based therapeutics other than platinum-containing agents, we herein validate the potential of HoThyRu/DOTAP liposomes to act as a multimodal anticancer agent through inhibition of TNBC cell growth and proliferation, as well as migration and invasion. The here-obtained preclinical findings suggest a potential targeting of the complex pathways network controlling invasive and migratory cancer phenotypes. Overall, in the field of alternative chemotherapy to platinum-based drugs, these outcomes suggest prospective brand-new settings for the nanostructured AziRu complex to get promising goals for the treatment of metastatic TNBC.
Collapse
|
7
|
Balamurugan K, Poria DK, Sehareen SW, Krishnamurthy S, Tang W, McKennett L, Padmanaban V, Czarra K, Ewald AJ, Ueno NT, Ambs S, Sharan S, Sterneck E. Stabilization of E-cadherin adhesions by COX-2/GSK3β signaling is a targetable pathway in metastatic breast cancer. JCI Insight 2023; 8:156057. [PMID: 36757813 PMCID: PMC10070121 DOI: 10.1172/jci.insight.156057] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Metastatic progression of epithelial cancers can be associated with epithelial-mesenchymal transition (EMT) including transcriptional inhibition of E-cadherin (CDH1) expression. Recently, EM plasticity (EMP) and E-cadherin-mediated, cluster-based metastasis and treatment resistance have become more appreciated. However, the mechanisms that maintain E-cadherin expression in this context are less understood. Through studies of inflammatory breast cancer (IBC) and a 3D tumor cell "emboli" culture paradigm, we discovered that cyclooxygenase 2 (COX-2; PTGS2), a target gene of C/EBPδ (CEBPD), or its metabolite prostaglandin E2 (PGE2) promotes protein stability of E-cadherin, β-catenin, and p120 catenin through inhibition of GSK3β. The COX-2 inhibitor celecoxib downregulated E-cadherin complex proteins and caused cell death. Coexpression of E-cadherin and COX-2 was seen in breast cancer tissues from patients with poor outcome and, along with inhibitory GSK3β phosphorylation, in patient-derived xenografts (PDX) including triple negative breast cancer (TNBC).Celecoxib alone decreased E-cadherin protein expression within xenograft tumors, though CDH1 mRNA levels increased, and reduced circulating tumor cell (CTC) clusters. In combination with paclitaxel, celecoxib attenuated or regressed lung metastases. This study has uncovered a mechanism by which metastatic breast cancer cells can maintain E-cadherin-mediated cell-to-cell adhesions and cell survival, suggesting that some patients with COX-2+/E-cadherin+ breast cancer may benefit from targeting of the PGE2 signaling pathway.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Dipak K Poria
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Saadiya W Sehareen
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Tang
- Laboratory of Human Carcinogenesis, CCR, NCI, Bethesda, Maryland, USA
| | - Lois McKennett
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Veena Padmanaban
- Departments of Cell Biology and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelli Czarra
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Andrew J Ewald
- Departments of Cell Biology and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Naoto T Ueno
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, CCR, NCI, Bethesda, Maryland, USA
| | - Shikha Sharan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Esta Sterneck
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, Maryland, USA
| |
Collapse
|
8
|
Subbalakshmi AR, Sahoo S, Manjunatha P, Goyal S, Kasiviswanathan VA, Mahesh Y, Ramu S, McMullen I, Somarelli JA, Jolly MK. The ELF3 transcription factor is associated with an epithelial phenotype and represses epithelial-mesenchymal transition. J Biol Eng 2023; 17:17. [PMID: 36864480 PMCID: PMC9983220 DOI: 10.1186/s13036-023-00333-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal plasticity (EMP) involves bidirectional transitions between epithelial, mesenchymal and multiple intermediary hybrid epithelial/mesenchymal phenotypes. While the process of epithelial-mesenchymal transition (EMT) and its associated transcription factors are well-characterised, the transcription factors that promote mesenchymal-epithelial transition (MET) and stabilise hybrid E/M phenotypes are less well understood. RESULTS Here, we analyse multiple publicly-available transcriptomic datasets at bulk and single-cell level and pinpoint ELF3 as a factor that is strongly associated with an epithelial phenotype and is inhibited during EMT. Using mechanism-based mathematical modelling, we also show that ELF3 inhibits the progression of EMT. This behaviour was also observed in the presence of an EMT inducing factor WT1. Our model predicts that the MET induction capacity of ELF3 is stronger than that of KLF4, but weaker than that of GRHL2. Finally, we show that ELF3 levels correlates with worse patient survival in a subset of solid tumour types. CONCLUSION ELF3 is shown to be inhibited during EMT progression and is also found to inhibit the progression of complete EMT suggesting that ELF3 may be able to counteract EMT induction, including in the presence of EMT-inducing factors, such as WT1. The analysis of patient survival data indicates that the prognostic capacity of ELF3 is specific to cell-of-origin or lineage.
Collapse
Affiliation(s)
- Ayalur Raghu Subbalakshmi
- grid.34980.360000 0001 0482 5067Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Sarthak Sahoo
- grid.34980.360000 0001 0482 5067Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Prakruthi Manjunatha
- grid.444321.40000 0004 0501 2828Department of Medical Electronics, M S Ramaiah Institute of Technology, 560054 Bangalore, India
| | - Shaurya Goyal
- grid.429017.90000 0001 0153 2859Department of Humanities and Social Sciences, Indian Institute of Technology, 721302 Kharagpur, India
| | - Vignesh A Kasiviswanathan
- grid.512757.30000 0004 1761 9897Department of Biotechnology, JSS Science and Technology University, 570006 Mysore, India
| | - Yeshwanth Mahesh
- grid.34980.360000 0001 0482 5067Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Soundharya Ramu
- grid.419655.a0000 0001 0008 3668Department of Biotechnology, National Institute of Technology Warangal, 506004 Warangal, India
| | - Isabelle McMullen
- grid.26009.3d0000 0004 1936 7961Department of Medicine, Duke University, NC 27708 Durham, USA
| | - Jason A. Somarelli
- grid.26009.3d0000 0004 1936 7961Department of Medicine, Duke University, NC 27708 Durham, USA ,grid.26009.3d0000 0004 1936 7961Duke Cancer Institute, Duke University, NC 27708 Durham, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012, Bangalore, India.
| |
Collapse
|
9
|
Epithelial-to-Mesenchymal Transition and Phenotypic Marker Evaluation in Human, Canine, and Feline Mammary Gland Tumors. Animals (Basel) 2023; 13:ani13050878. [PMID: 36899736 PMCID: PMC10000046 DOI: 10.3390/ani13050878] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal properties. EMT has been closely associated with cancer cell aggressiveness. The aim of this study was to evaluate the mRNA and protein expression of EMT-associated markers in mammary tumors of humans (HBC), dogs (CMT), and cats (FMT). Real-time qPCR for SNAIL, TWIST, and ZEB, and immunohistochemistry for E-cadherin, vimentin, CD44, estrogen receptor (ER), progesterone receptor (PR), ERBB2, Ki-67, cytokeratin (CK) 8/18, CK5/6, and CK14 were performed. Overall, SNAIL, TWIST, and ZEB mRNA was lower in tumors than in healthy tissues. Vimentin was higher in triple-negative HBC (TNBC) and FMTs than in ER+ HBC and CMTs (p < 0.001). Membranous E-cadherin was higher in ER+ than in TNBCs (p < 0.001), whereas cytoplasmic E-cadherin was higher in TNBCs when compared with ER+ HBC (p < 0.001). A negative correlation between membranous and cytoplasmic E-cadherin was found in all three species. Ki-67 was higher in FMTs than in CMTs (p < 0.001), whereas CD44 was higher in CMTs than in FMTs (p < 0.001). These results confirmed a potential role of some markers as indicators of EMT, and suggested similarities between ER+ HBC and CMTs, and between TNBC and FMTs.
Collapse
|
10
|
Fonseca ÁYG, González-Giraldo Y, Santos JG, Aristizábal-Pachón AF. The hsa-miR-516a-5p and hsa-miR-516b-5p microRNAs reduce the migration and invasion on T98G glioblastoma cell line. Cancer Genet 2023; 270-271:12-21. [PMID: 36410106 DOI: 10.1016/j.cancergen.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/17/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
microRNAs (miRNAs) are involved in numerous functions and processes in the brain and other organs through the regulation of gene and protein expression. miRNA dysregulation is associated with the development of several diseases, including the brain and Central Nervous System cancer (CNS). The hsa-miR-516a-5p and hsa-miR-516b-5p are involved in proliferation, migration, and invasion in different tumor models, but their antitumor effect has not been evaluated in cancer of CNS. Therefore, we aimed to assess the effect of the miRNAs hsa-miR-516a-5p and miRNA hsa-miR-516b-5p on the Glioblastoma cell line (T98G). We used synthetic miRNA mimics to induce the overexpression of both miRNAs in the cell line, which was corroborated by RT-qPCR. Next, we evaluated the effect on proliferation, migration, and invasion using the CyQuant direct kit, ThinCert ™ inserts and invasion BioCoat ™ Matrigel® Invasion Chambers. We found upregulation of these miRNAs induced significant changes on the migration and invasion processes of T98G cells, but not affected the proliferation rate. These results suggest that both microRNAs could be playing an important role in the control of tumor progression towards metastasis. The bioinformatics analysis showed that target genes for these miRNAs are involved in different biological processes such as in cell adhesion molecule binding and cell junction disassembly, which are important for cancer progression. Further studies and experimental validation are needed to identify the genes regulated by microRNAs.
Collapse
Affiliation(s)
- Ángela Y García Fonseca
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Jannet Gonzalez Santos
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Andrés F Aristizábal-Pachón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia.
| |
Collapse
|
11
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 212] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
NDRG1 in Cancer: A Suppressor, Promoter, or Both? Cancers (Basel) 2022; 14:cancers14235739. [PMID: 36497221 PMCID: PMC9737586 DOI: 10.3390/cancers14235739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
N-myc downregulated gene-1 (NDRG1) has been variably reported as a metastasis suppressor, a biomarker of poor outcome, and a facilitator of disease progression in a range of different cancers. NDRG1 is poorly understood in cancer due to its context-dependent and pleiotropic functions. Within breast cancer, NDRG1 is reported to be either a facilitator of, or an inhibitor of tumour progression and metastasis. The wide array of roles played by NDRG1 are dependent on post-translational modifications and subcellular localization, as well as the cellular context, for example, cancer type. We present an update on NDRG1, and its association with hallmarks of cancer such as hypoxia, its interaction with oncogenic proteins such as p53 as well its role in oncogenic and metastasis pathways in breast and other cancers. We further comment on its functional implications as a metastasis suppressor and promoter, its clinical relevance, and discuss its therapeutic targetability in different cancers.
Collapse
|
13
|
Role of Snai2 and Notch signaling in salivary gland myoepithelial cell fate. J Transl Med 2022; 102:1245-1256. [PMID: 36775450 DOI: 10.1038/s41374-022-00814-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Myoepithelial (ME) cells in exocrine glands exhibit both epithelial and mesenchymal features, contributing to fluid secretion through contraction. However, the regulation mechanism of behind this unique phenotype in salivary glands remains unclear. We established a flow cytometry-based purification method using cell surface molecules, epithelial cell adhesion molecule (EpCAM) and alpha 6 integrin (CD49f), to characterize ME cells. EpCAM+CD49fhigh cells showed relatively high expression of ME cell-marker genes, such as alpha-smooth muscle actin (α-SMA). For lineage tracing and strict isolation, tdTomato+EpCAM+CD49fhigh-ME cells were obtained from myosin heavy chain 11 (Myh11) -CreERT2/tdTomato mice. Transcriptome analysis revealed that expression of genes involved in the epithelial-mesenchymal transition, including Snai2, were upregulated in the ME cell-enriched subset. Snai2 suppression in stable ME cells decreased α-SMA and increased Krt14 expression, suggesting that ME cell features may be controlled by the epithelial-mesenchymal balance regulated by Snai2. In contrast, ME cells showed reduced ME properties and expressed the ductal markers Krt18/19 under sphere culture conditions. Notch signaling was activated under sphere culture conditions; excessive activation of Notch signaling accelerated Krt18/19 expression, but reduced α-SMA and Snai2 expression, suggesting that the behavior of Snai2-expressing ME cells may be controlled by Notch signaling.
Collapse
|
14
|
Aggarwal V, Sahoo S, Donnenberg VS, Chakraborty P, Jolly MK, Sant S. P4HA2: A link between tumor-intrinsic hypoxia, partial EMT and collective migration. ADVANCES IN CANCER BIOLOGY - METASTASIS 2022; 5:100057. [PMID: 36187341 PMCID: PMC9517480 DOI: 10.1016/j.adcanc.2022.100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT), a well-established phenomenon studied across pan-cancer types, has long been known to be a major player in driving tumor invasion and metastasis. Recent studies have highlighted the importance of partial EMT phenotypes in metastasis. Initially thought as a transitional state between epithelial and mesenchymal phenotypic states, partial EMT state is now widely recognized as a key driver of intra-tumoral heterogeneity and phenotypic plasticity, further accelerating tumor metastasis and therapeutic resistance. However, how tumor microenvironment regulates partial EMT phenotypes remains unclear. We have developed unique size-controlled three-dimensional microtumor models that recapitulate tumor-intrinsic hypoxia and the emergence of collectively migrating cells. In this study, we further interrogate these microtumor models to understand how tumor-intrinsic hypoxia regulates partial EMT and collective migration in hypoxic large microtumors fabricated from T47D breast cancer cells. We compared global gene expression profiles of hypoxic, migratory microtumors to that of non-hypoxic, non-migratory microtumors at early and late time-points. Using our microtumor models, we identified unique gene signatures for tumor-intrinsic hypoxia (early versus late), partial EMT and migration (pre-migratory versus migratory phenotype). Through differential gene expression analysis between the microtumor models with an overlap of hypoxia, partial EMT and migration signatures, we identified prolyl 4-hydroxylase subunit 2 (P4HA2), a hypoxia responsive gene, as a central regulator common to hypoxia, partial EMT and collective migration. Further, the inhibition of P4HA2 significantly blocked collective migration in hypoxic microtumors. Thus, using the integrated computational-experimental analysis, we identify the key role of P4HA2 in tumor-intrinsic hypoxia-driven partial EMT and collective migration.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Vera S. Donnenberg
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cardiothoracic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cardiothoracic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Corresponding author. University of Pittsburgh School of Pharmacy Department of Pharmaceutical Sciences Department of Bioengineering UPMC-Hillman Cancer Center McGowan Institute for Regenerative Medicine, 7408 Salk Hall, 3501 Terrace Street, Pittsburgh, PA, 15261, USA. (S. Sant)
| |
Collapse
|
15
|
Chai S, Wen Z, Zhang R, Bai Y, Liu J, Li J, Kongling W, Chen W, Wang F, Gao L. CCL25/CCR9 interaction promotes the malignant behavior of salivary adenoid cystic carcinoma via the PI3K/AKT signaling pathway. PeerJ 2022; 10:e13844. [PMID: 36003306 PMCID: PMC9394511 DOI: 10.7717/peerj.13844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/14/2022] [Indexed: 01/18/2023] Open
Abstract
Background CC chemokine receptor 9 (CCR9), an organ-specific chemokine receptor, interacts with its exclusive ligand CCL25 to promote tumor proliferation and metastasis. However, the effect of CCR9 on salivary adenoid cystic carcinoma (SACC) malignant behavior remains unknown. This study aimed to investigate the specific molecular mechanism by which CCR9/CCL25 modulates malignant progression in SACC. Methods Immunohistochemistry staining and RT-qPCR analyses were performed to detect the correlation of CCR9 expression and tumor progression-associated markers in SACC. In vitro, SACC cell proliferation and apoptosis were evaluated using Cell Counting Kit-8 and colon formation, and cell migration and invasion were detected by wound healing and transwell assays. Vercirnon was used as an inhibitor of CCR9, and LY294002 was used as an inhibitor of the PI3K/AKT pathway in this study. Western blot and RT-qPCR assays were carried out to measure the downstream factors of the interaction of CCL25 and CCR9. The effect of CCL25 on the development of SACC in vivo was examined by a xenograft tumor model in nude mice following CCL25, Vercirnon and LY294002 treatment. Results CCR9 was highly expressed in SACC compared with adjacent salivary gland tissues, and its level was associated with tumor proliferation and metastases. CCL25 enhanced cell proliferation, migration, and invasion through its interaction with CCR9 and exerted an antiapoptotic effect on SACC cells. Targeting CCR9 via Vercirnon significantly reduced the phosphorylation level of AKT induced by CCL25. CCL25/CCR9 could activate its downstream factors through the PI3K/AKT signaling pathway, such as cyclin D1, BCL2 and SLUG, thus promoting SACC cell proliferation, antiapoptosis, invasion and metastasis. The in vivo data from the xenograft mouse models further proved that CCL25 administration promoted malignant tumor progression by activating the PI3K/AKT pathway. Conclusion The interaction of CCL25 and CCR9 promotes tumor growth and metastasis in SACC by activating the PI3K/AKT signaling pathway, offering a promising strategy for SACC treatment.
Collapse
Affiliation(s)
- Songling Chai
- School of Stomatology, Dalian Medical University, Dalian, China,The Affiliated Stomatological Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Zhihao Wen
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Rongxin Zhang
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yuwen Bai
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Jing Liu
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Juanjuan Li
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Wenyao Kongling
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Weixian Chen
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Fu Wang
- School of Stomatology, Dalian Medical University, Dalian, China,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| | - Lu Gao
- School of Stomatology, Dalian Medical University, Dalian, China,Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Mitochondrial dysfunction and epithelial to mesenchymal transition in head neck cancer cell lines. Sci Rep 2022; 12:13255. [PMID: 35918485 PMCID: PMC9345891 DOI: 10.1038/s41598-022-16829-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Mitochondrial dysfunction promotes cancer aggressiveness, metastasis, and resistance to therapy. Similar traits are associated with epithelial mesenchymal transition (EMT). We questioned whether mitochondrial dysfunction induces EMT in head and neck cancer (HNC) cell lines. We induced mitochondrial dysfunction in four HNC cell lines with carbonyl cyanide-4(trifluoromethoxy)phenylhydrazone (FCCP), a mitochondrial electron transport chain uncoupling agent, and oligomycin, a mitochondrial ATP synthase inhibitor. Extracellular flux analyses and expression of the cystine/glutamate antiporter system xc (xCT) served to confirm mitochondrial dysfunction. Expression of the EMT-related transcription factor SNAI2, the mesenchymal marker vimentin and vimentin/cytokeratin double positivity served to detect EMT. In addition, holotomographic microscopy was used to search for morphological features of EMT. Extracellular flux analysis and xCT expression confirmed that FCCP/oligomycin induced mitochondrial dysfunction in all cell lines. Across the four cell lines, mitochondrial dysfunction resulted in an increase in relative SNAI2 expression from 8.5 ± 0.8 to 12.0 ± 1.1 (mean ± SEM; p = 0.007). This effect was predominantly caused by the CAL 27 cell line (increase from 2.2 ± 0.4 to 5.5 ± 1.0; p < 0.001). Similarly, only in CAL 27 cells vimentin expression increased from 2.2 ± 0.5 × 10-3 to 33.2 ± 10.2 × 10-3 (p = 0.002) and vimentin/cytokeratin double positive cells increased from 34.7 ± 5.1 to 67.5 ± 9.8% (p = 0.003), while the other 3 cell lines did not respond with EMT (all p > 0.1). Across all cell lines, FCCP/oligomycin had no effect on EMT characteristics in holotomographic microscopy. Mitochondrial dysfunction induced EMT in 1 of 4 HNC cell lines. Given the heterogeneity of HNC, mitochondrial dysfunction may be sporadically induced by EMT, but EMT does not explain the tumor promoting effects of mitochondrial dysfunction in general.
Collapse
|
17
|
Time and phenotype-dependent transcriptome analysis in AAV-TGFβ1 and Bleomycin-induced lung fibrosis models. Sci Rep 2022; 12:12190. [PMID: 35842487 PMCID: PMC9288451 DOI: 10.1038/s41598-022-16344-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/08/2022] [Indexed: 11/19/2022] Open
Abstract
We have previously established a novel mouse model of lung fibrosis based on Adeno-associated virus (AAV)-mediated pulmonary overexpression of TGFβ1. Here, we provide an in-depth characterization of phenotypic and transcriptomic changes (mRNA and miRNA) in a head-to-head comparison with Bleomycin-induced lung injury over a 4-week disease course. The analyses delineate the temporal state of model-specific and commonly altered pathways, thereby providing detailed insights into the processes underlying disease development. They further guide appropriate model selection as well as interventional study design. Overall, Bleomycin-induced fibrosis resembles a biphasic process of acute inflammation and subsequent transition into fibrosis (with partial resolution), whereas the TGFβ1-driven model is characterized by pronounced and persistent fibrosis with concomitant inflammation and an equally complex disease phenotype as observed upon Bleomycin instillation. Finally, based on an integrative approach combining lung function data, mRNA/miRNA profiles, their correlation and miRNA target predictions, we identify putative drug targets and miRNAs to be explored as therapeutic candidates for fibrotic diseases. Taken together, we provide a comprehensive analysis and rich data resource based on RNA-sequencing, along with a strategy for transcriptome-phenotype coupling. The results will be of value for TGFβ research, drug discovery and biomarker identification in progressive fibrosing interstitial lung diseases.
Collapse
|
18
|
Luo W, Liang P, Zhao T, Cheng Q, Liu H, He L, Zhang L, Huang B, Zhang Y, He T, Yang D. Reversely immortalized mouse salivary gland cells presented a promising metabolic and fibrotic response upon BMP9/Gdf2 stimulation. Cell Mol Biol Lett 2022; 27:46. [PMID: 35690719 PMCID: PMC9188258 DOI: 10.1186/s11658-022-00333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/19/2022] [Indexed: 11/10/2022] Open
Abstract
The submandibular gland (SMG) and the sublingual gland (SLG) are two of the three major salivary glands in mammals. In mice, they are adjacent to each other and open into the oral cavity, producing saliva to lubricate the mouth and aid in food digestion. Though salivary gland dysfunction accompanied with fibrosis and metabolic disturbance is common in clinic, in-depth mechanistic research is lacking. Currently, research on how to rescue salivary function is challenging, as it must resort to using terminally differentiated acinar cells or precursor acinar cells with unknown differentiation. In this study, we established reversely immortalized mouse primary SMG cells (iSMGCs) and SLG cells (iSLGCs) on the first postnatal day (P0). The iSMGCs and iSLGCs grew well, exhibited many salivary gland characteristics, and retained the metabolism-related genes derived from the original tissue as demonstrated using transcriptome sequencing (RNA-seq) analysis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of these two cell lines, which overlapped with those of the SMG and SLG, were enriched in cysteine and methionine metabolism. Furthermore, we investigated the role of bone morphogenetic protein 9 (BMP9), also known as growth differentiation factor 2(Gdf2), on metabolic and fibrotic functions in the SMG and SLG. We demonstrated that iSMGCs and iSLGCs presented promising adipogenic and fibrotic responses upon BMP9/Gdf2 stimulation. Thus, our findings indicate that iSMGCs and iSLGCs faithfully reproduce characteristics of SMG and SLG cells and present a promising prospect for use in future study of salivary gland metabolism and fibrosis upon BMP9/Gdf2 stimulation.
Collapse
Affiliation(s)
- Wenping Luo
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.,Department of Surgery, Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue MC6035, Chicago, IL, 60637, USA
| | - Panpan Liang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.,Stomatological Hospital of Chongqing Medical University, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Tianyu Zhao
- Stomatological Hospital of Chongqing Medical University, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Qianyu Cheng
- Stomatological Hospital of Chongqing Medical University, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Huikai Liu
- Stomatological Hospital of Chongqing Medical University, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Liwen He
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.,Department of Surgery, Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue MC6035, Chicago, IL, 60637, USA
| | - Linghuan Zhang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No.1 Min De Road, Nanchang, 330006, China
| | - Yuxin Zhang
- Stomatological Hospital of Chongqing Medical University, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Tongchuan He
- Department of Surgery, Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue MC6035, Chicago, IL, 60637, USA
| | - Deqin Yang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China. .,Stomatological Hospital of Chongqing Medical University, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.
| |
Collapse
|
19
|
Chimento A, D’Amico M, Pezzi V, De Amicis F. Notch Signaling in Breast Tumor Microenvironment as Mediator of Drug Resistance. Int J Mol Sci 2022; 23:6296. [PMID: 35682974 PMCID: PMC9181656 DOI: 10.3390/ijms23116296] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 01/10/2023] Open
Abstract
Notch signaling dysregulation encourages breast cancer progression through different mechanisms such as stem cell maintenance, cell proliferation and migration/invasion. Furthermore, Notch is a crucial driver regulating juxtracrine and paracrine communications between tumor and stroma. The complex interplay between the abnormal Notch pathway orchestrating the activation of other signals and cellular heterogeneity contribute towards remodeling of the tumor microenvironment. These changes, together with tumor evolution and treatment pressure, drive breast cancer drug resistance. Preclinical studies have shown that targeting the Notch pathway can prevent or reverse resistance, reducing or eliminating breast cancer stem cells. In the present review, we will summarize the current scientific evidence that highlights the involvement of Notch activation within the breast tumor microenvironment, angiogenesis, extracellular matrix remodeling, and tumor/stroma/immune system interplay and its involvement in mechanisms of therapy resistance.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
| | - Maria D’Amico
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
- Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
| | - Francesca De Amicis
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy; (A.C.); (M.D.); (F.D.A.)
- Health Center, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| |
Collapse
|
20
|
Huang Y, Jia M, Yang X, Han H, Hou G, Bi L, Yang Y, Zhang R, Zhao X, Peng C, Ouyang X. Annexin A2: The Diversity of Pathological Effects in Tumorigenesis and Immune Response. Int J Cancer 2022; 151:497-509. [PMID: 35474212 DOI: 10.1002/ijc.34048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/11/2022]
Abstract
Annexin A2 (ANXA2) is widely used as a marker in a variety of tumors. By regulating multiple signal pathways, ANXA2 promotes the epithelial-mesenchymal transition, which can cause tumorigenesis and accelerate thymus degeneration. The elevated ANXA2 heterotetramer facilitates the production of plasmin, which participates in pathophysiologic processes such as tumor cell invasion and metastasis, bleeding diseases, angiogenesis, inducing the expression of inflammatory factors. In addition, the ANXA2 on the cell membrane mediates immune response via its interaction with surface proteins of pathogens, C1q, toll-like receptor 2, anti-dsDNA antibodies and immunoglobulins. Nuclear ANXA2 plays a role as part of a primer recognition protein complex that enhances DNA synthesis and cells proliferation by acting on the G1-S phase of the cell. ANXA2 reduction leads to the inhibition of invasion and metastasis in multiple tumor cells, bleeding complications in acute promyelocytic leukemia, retinal angiogenesis, autoimmunity response and tumor drug resistance. In this review, we provide an update on the pathological effects of ANXA2 in both tumorigenesis and the immune response. We highlight ANXA2 as a critical protein in numerous malignancies and the immune host response.
Collapse
Affiliation(s)
- Yanjie Huang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Mengzhen Jia
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Hongyan Han
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gailing Hou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Bi
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Yueli Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Ruoqi Zhang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xueru Zhao
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoqun Peng
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinshou Ouyang
- Department of Internal Medicine, Digestive Disease Section, Yale University, New Haven, Ct, USA
| |
Collapse
|
21
|
Circulating Tumor Cells in Breast Cancer Patients: A Balancing Act between Stemness, EMT Features and DNA Damage Responses. Cancers (Basel) 2022; 14:cancers14040997. [PMID: 35205744 PMCID: PMC8869884 DOI: 10.3390/cancers14040997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/04/2023] Open
Abstract
Circulating tumor cells (CTCs) traverse vessels to travel from the primary tumor to distant organs where they adhere, transmigrate, and seed metastases. To cope with these challenges, CTCs have reached maximal flexibility to change their differentiation status, morphology, migratory capacity, and their responses to genotoxic stress caused by metabolic changes, hormones, the inflammatory environment, or cytostatic treatment. A significant percentage of breast cancer cells are defective in homologous recombination repair and other mechanisms that protect the integrity of the replication fork. To prevent cell death caused by broken forks, alternative, mutagenic repair, and bypass pathways are engaged but these increase genomic instability. CTCs, arising from such breast tumors, are endowed with an even larger toolbox of escape mechanisms that can be switched on and off at different stages during their journey according to the stress stimulus. Accumulating evidence suggests that DNA damage responses, DNA repair, and replication are integral parts of a regulatory network orchestrating the plasticity of stemness features and transitions between epithelial and mesenchymal states in CTCs. This review summarizes the published information on these regulatory circuits of relevance for the design of biomarkers reflecting CTC functions in real-time to monitor therapeutic responses and detect evolving chemoresistance mechanisms.
Collapse
|
22
|
Sahoo S, Ashraf B, Duddu AS, Biddle A, Jolly MK. Interconnected high-dimensional landscapes of epithelial-mesenchymal plasticity and stemness in cancer. Clin Exp Metastasis 2022; 39:279-290. [PMID: 34993766 DOI: 10.1007/s10585-021-10139-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023]
Abstract
Establishing macrometastases at distant organs is a highly challenging process for cancer cells, with extremely high attrition rates. A very small percentage of disseminated cells have the ability to dynamically adapt to their changing micro-environments through reversibly switching to another phenotype, aiding metastasis. Such plasticity can be exhibited along one or more axes-epithelial-mesenchymal plasticity (EMP) and cancer stem cells (CSCs) being the two most studied, and often tacitly assumed to be synonymous. Here, we review the emerging concepts related to EMP and CSCs across multiple cancers. Both processes are multi-dimensional in nature; for instance, EMP can be defined on morphological, molecular and functional changes, which may or may not be synchronized. Similarly, self-renewal, multi-lineage potential, and resistance to anoikis and/or therapy may not all occur simultaneously in CSCs. Thus, understanding the complexity in defining EMP and CSCs is essential if we are to understand their contribution to cancer metastasis. This will require a more comprehensive understanding of the non-linearity of these processes. These processes are dynamic, reversible, and semi-independent in nature; cells traverse the inter-connected high-dimensional EMP and CSC landscapes in diverse paths, each of which may exhibit a distinct EMP-CSC coupling. Our proposed model offers a potential unifying framework for elucidating the coupled decision-making along these dimensions and highlights a key set of open questions to be answered.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bangalore, 560012, India.,UG Programme, Indian Institute of Science, Bangalore, 560012, India
| | - Bazella Ashraf
- Department of Biotechnology, Central University of Kashmir, Ganderbal, India
| | - Atchuta Srinivas Duddu
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bangalore, 560012, India
| | - Adrian Biddle
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
23
|
Subbalakshmi AR, Ashraf B, Jolly MK. Biophysical and biochemical attributes of hybrid epithelial/mesenchymal phenotypes. Phys Biol 2022; 19. [PMID: 34986465 DOI: 10.1088/1478-3975/ac482c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/05/2022] [Indexed: 11/11/2022]
Abstract
The Epithelial-Mesenchymal Transition (EMT) is a biological phenomenon associated with explicit phenotypic and molecular changes in cellular traits. Unlike the earlier-held popular belief of it being a binary process, EMT is now thought of as a landscape including diverse hybrid E/M phenotypes manifested by varying degrees of the transition. These hybrid cells can co-express both epithelial and mesenchymal markers and/or functional traits, and can possess the property of collective cell migration, enhanced tumor-initiating ability, and immune/targeted therapy-evasive features, all of which are often associated with worse patient outcomes. These characteristics of the hybrid E/M cells have led to a surge in studies that map their biophysical and biochemical hallmarks that can be helpful in exploiting their therapeutic vulnerabilities. This review discusses recent advances made in investigating hybrid E/M phenotype(s) from diverse biophysical and biochemical aspects by integrating live cell-imaging, cellular morphology quantification and mathematical modelling, and highlights a set of questions that remain unanswered about the dynamics of hybrid E/M states.
Collapse
Affiliation(s)
- Ayalur Raghu Subbalakshmi
- Indian Institute of Science, Centre for BioSystems Science and Engineering, Bangalore, 560012, INDIA
| | - Bazella Ashraf
- Central University of Kashmir, Department of Biotechnology, Ganderbal, Jammu and Kashmir, 191201, INDIA
| | - Mohit Kumar Jolly
- Indian Institute of Science, Centre for BioSystems Science and Engineering, Bangalore, 560012, INDIA
| |
Collapse
|
24
|
Sahoo S, Nayak SP, Hari K, Purkait P, Mandal S, Kishore A, Levine H, Jolly MK. Immunosuppressive Traits of the Hybrid Epithelial/Mesenchymal Phenotype. Front Immunol 2022; 12:797261. [PMID: 34975907 PMCID: PMC8714906 DOI: 10.3389/fimmu.2021.797261] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Recent preclinical and clinical data suggests enhanced metastatic fitness of hybrid epithelial/mesenchymal (E/M) phenotypes, but mechanistic details regarding their survival strategies during metastasis remain unclear. Here, we investigate immune-evasive strategies of hybrid E/M states. We construct and simulate the dynamics of a minimalistic regulatory network encompassing the known associations among regulators of EMT (epithelial-mesenchymal transition) and PD-L1, an established immune-suppressor. Our simulations for the network consisting of SLUG, ZEB1, miR-200, CDH1 and PD-L1, integrated with single-cell and bulk RNA-seq data analysis, elucidate that hybrid E/M cells can have high levels of PD-L1, similar to those seen in cells with a full EMT phenotype, thus obviating the need for cancer cells to undergo a full EMT to be immune-evasive. Specifically, in breast cancer, we show the co-existence of hybrid E/M phenotypes, enhanced resistance to anti-estrogen therapy and increased PD-L1 levels. Our results underscore how the emergent dynamics of interconnected regulatory networks can coordinate different axes of cellular fitness during metastasis.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Undergraduate Program, Indian Institute of Science, Bangalore, India.,Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | | | - Kishore Hari
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Prithu Purkait
- Undergraduate Program, Indian Institute of Science, Bangalore, India
| | - Susmita Mandal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Akash Kishore
- Department of Computer Science & Engineering, Sri Sivasubramaniya Nadar (SSN) College of Engineering, Chennai, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, United States.,Departments of Physics and Bioengineering, Northeastern University, Boston, MA, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
25
|
Garg M. Emerging roles of epithelial-mesenchymal plasticity in invasion-metastasis cascade and therapy resistance. Cancer Metastasis Rev 2022; 41:131-145. [PMID: 34978017 DOI: 10.1007/s10555-021-10003-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Strong association of cancer incidence and its progression with mortality highlights the need to decipher the cellular and molecular mechanisms that drive tumor cells to rapidly progress to metastatic disease and therapy resistance. Epithelial-mesenchymal plasticity (EMP) emerged as a key regulator of metastatic outgrowth. It allows neoplastic epithelial cells to delaminate from their neighbors either individually or collectively, traverse the extracellular matrix (ECM) barrier, enter into the circulation, and establish distal metastases. Plasticity between epithelial and mesenchymal states and the existence of hybrid epithelial/mesenchymal (E/M) phenotypes are increasingly being reported in different tumor contexts. Small subset of cancer cells with stemness called cancer stem cells (CSCs) exhibit plasticity, possess high tumorigenic potential, and contribute to high degree of tumoral heterogeneity. EMP characterized by the presence of dynamic intermediate states is reported to be influenced by (epi)genomic reprograming, growth factor signaling, inflammation, and low oxygen generated by tumor stromal microenvironment. EMP alters the genotypic and phenotypic characteristics of tumor cells/CSCs, disrupts tissue homeostasis, induces the reprogramming of angiogenic and immune recognition functions, and renders tumor cells to survive hostile microenvironments and resist therapy. The present review summarizes the roles of EMP in tumor invasion and metastasis and provides an update on therapeutic strategies to target the metastatic and refractory cancers.
Collapse
Affiliation(s)
- Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India.
| |
Collapse
|
26
|
Sauer AK, Malijauskaite S, Meleady P, Boeckers TM, McGourty K, Grabrucker AM. Zinc is a key regulator of gastrointestinal development, microbiota composition and inflammation with relevance for autism spectrum disorders. Cell Mol Life Sci 2021; 79:46. [PMID: 34936034 PMCID: PMC11072240 DOI: 10.1007/s00018-021-04052-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/31/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022]
Abstract
Gastrointestinal (GI) problems and microbiota alterations have been frequently reported in autism spectrum disorders (ASD). In addition, abnormal perinatal trace metal levels have been found in ASD. Accordingly, mice exposed to prenatal zinc deficiency display features of ASD-like behavior. Here, we model GI development using 3D intestinal organoids grown under zinc-restricted conditions. We found significant morphological alterations. Using proteomic approaches, we identified biological processes affected by zinc deficiency that regulate barrier permeability and pro-inflammatory pathways. We confirmed our results in vivo through proteomics studies and investigating GI development in zinc-deficient mice. These show altered GI physiology and pro-inflammatory signaling, resulting in chronic systemic and neuroinflammation, and gut microbiota composition similar to that reported in human ASD cases. Thus, low zinc status during development is sufficient to compromise intestinal barrier integrity and activate pro-inflammatory signaling, resulting in changes in microbiota composition that may aggravate inflammation, altogether mimicking the co-morbidities frequently observed in ASD.
Collapse
Affiliation(s)
- Ann Katrin Sauer
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, Bernal Institute, Analog Devices Building AD3-018, Castletroy, Limerick, V94PH61, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Sigita Malijauskaite
- Bernal Institute, University of Limerick, Limerick, Ireland
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Paula Meleady
- School of Biotechnology and National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- DZNE, Ulm Unit, Ulm, Germany
| | - Kieran McGourty
- Bernal Institute, University of Limerick, Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Andreas M Grabrucker
- Cellular Neurobiology and Neuro-Nanotechnology Lab, Department of Biological Sciences, University of Limerick, Bernal Institute, Analog Devices Building AD3-018, Castletroy, Limerick, V94PH61, Ireland.
- Bernal Institute, University of Limerick, Limerick, Ireland.
- Health Research Institute (HRI), University of Limerick, Limerick, Ireland.
| |
Collapse
|
27
|
3H-1,2-Dithiole-3-Thione Protects Lens Epithelial Cells against Fructose-Induced Epithelial-Mesenchymal Transition via Activation of AMPK to Eliminate AKR1B1-Induced Oxidative Stress in Diabetes Mellitus. Antioxidants (Basel) 2021; 10:antiox10071086. [PMID: 34356319 PMCID: PMC8301018 DOI: 10.3390/antiox10071086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Studies demonstrated that the receptor of advanced glycation end products (RAGE) induced epithelial-mesenchymal transition (EMT) formation in the lens epithelial cells (LECs) of diabetic cataracts. This work investigated how 3H-1,2-dithiole-3-thione (D3T) reduces EMT formation in LECs of the fructose-induced diabetes mellitus (DM). LECs were isolated during cataract surgery from patients without DM or with DM. In a rat model, fructose (10% fructose, eight weeks) with or without D3T (10 mg/kg/day) treatment induced DM, as verified by blood pressure and serum parameter measurements. We observed that the formation of advanced glycation end products (AGEs) was significantly higher in epithelial human lens of DM (+) compared to DM (−) cataracts. Aldose reductase (AKR1B1), AcSOD2, and 3-NT were significantly enhanced in the rat lens epithelial sections of fructose-induced DM, however, the phosphorylation level of AMPKT172 showed a reversed result. Interestingly, administration of D3T reverses the fructose-induced effects in LECs. These results indicated that AMPKT172 may be required for reduced superoxide generation and the pathogenesis of diabetic cataract. Administration of D3T reverses the fructose-induced EMT formation the LECs of fructose-induced DM. These novel findings suggest that the D3T may be a candidate for the pharmacological prevention of cataracts in patients with DM.
Collapse
|
28
|
Ying W, Zheng K, Wu Y, Wang O. Pannexin 1 Mediates Gastric Cancer Cell Epithelial-Mesenchymal Transition via Aquaporin 5. Biol Pharm Bull 2021; 44:1111-1119. [PMID: 34135208 DOI: 10.1248/bpb.b21-00292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pannexin 1 (PANX1) has been implicated in cancer emergence and progression. However, its roles in gastric cancer remain unclear. In the present study, the function and molecular mechanisms of PANX1 in gastric cancer were investigated in vitro. Two gastric cancer cell lines exhibiting low and high PANX1 expression (SNU-16 and HCG-27, respectively) were transfected using a PANX1-containing plasmid or PANX1 transcript-targeting short hairpin (sh)RNA. In addition, HCG-27 cells and PANX1-overexpressing SNU-16 cells were subjected to short interfering (si)RNA-mediated aquaporin 5 (AQP5) knockdown. In vitro cell migration (scratch) and transwell invasion assays were performed to evaluate the cell migratory and invasive abilities. Real-time fluorescence quantitative PCR was used to detect transcripts encoding epithelial-mesenchymal transition markers. Immunofluorescence and Western blotting were conducted to quantify corresponding proteins. In SNU-16 cells, PANX1 overexpression induced conversion from round (cobblestone-like) to elongated (spindle-like) morphologies and enhanced the cell migratory and invasive abilities. PANX1 knockdown had the opposite effect in HGC-27 cells. In PANX1-overexpressing SNU-16 cells, expression of SLUG, vimentin, and AQP5 was significantly upregulated, whereas expression of E-cadherin was downregulated. In HGC-27 cells, PANX1 knockdown showed the opposite effect. In both PANX1-overexpressing SNU-16 cells and untransfected HGC-27 cells, silencing of AQP5 expression significantly inhibited PANX1-induced upregulation of SLUG and vimentin expression, as well as downregulation of E-cadherin expression and enhanced migratory and invasive abilities. In summary, elevated PANX1 expression induces gastric cancer cell epithelial-mesenchymal transition and the associated promotion of migratory and invasive abilities by inducing expression of AQP5, which facilitates SLUG-mediated regulation of vimentin and E-cadherin expression.
Collapse
Affiliation(s)
- Wenbing Ying
- Department of Oncology, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University
| | - Kesi Zheng
- Department of Oncology, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University
| | - Yuanzhao Wu
- Department of Oncology, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University
| | - Ouchen Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University
| |
Collapse
|
29
|
Subbalakshmi AR, Sahoo S, Biswas K, Jolly MK. A Computational Systems Biology Approach Identifies SLUG as a Mediator of Partial Epithelial-Mesenchymal Transition (EMT). Cells Tissues Organs 2021; 211:689-702. [PMID: 33567424 DOI: 10.1159/000512520] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/19/2020] [Indexed: 01/25/2023] Open
Abstract
Epithelial-mesenchymal plasticity comprises reversible transitions among epithelial, hybrid epithelial/mesenchymal (E/M) and mesenchymal phenotypes, and underlies various aspects of aggressive tumor progression such as metastasis, therapy resistance, and immune evasion. The process of cells attaining one or more hybrid E/M phenotypes is termed as partial epithelial mesenchymal transition (EMT). Cells in hybrid E/M phenotype(s) can be more aggressive than those in either fully epithelial or mesenchymal state. Thus, identifying regulators of hybrid E/M phenotypes is essential to decipher the rheostats of phenotypic plasticity and consequent accelerators of metastasis. Here, using a computational systems biology approach, we demonstrate that SLUG (SNAIL2) - an EMT-inducing transcription factor - can inhibit cells from undergoing a complete EMT and thus stabilize them in hybrid E/M phenotype(s). It expands the parametric range enabling the existence of a hybrid E/M phenotype, thereby behaving as a phenotypic stability factor. Our simulations suggest that this specific property of SLUG emerges from the topology of the regulatory network it forms with other key regulators of epithelial-mesenchymal plasticity. Clinical data suggest that SLUG associates with worse patient prognosis across multiple carcinomas. Together, our results indicate that SLUG can stabilize hybrid E/M phenotype(s).
Collapse
Affiliation(s)
- Ayalur R Subbalakshmi
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Kuheli Biswas
- Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India,
| |
Collapse
|
30
|
Kim B, Jung S, Kim H, Kwon JO, Song MK, Kim MK, Kim HJ, Kim HH. The role of S100A4 for bone metastasis in prostate cancer cells. BMC Cancer 2021; 21:137. [PMID: 33549040 PMCID: PMC7868026 DOI: 10.1186/s12885-021-07850-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Prostate cancers frequently metastasize to bone, where the best microenvironment for distant colonization is provided. Since osteotropic metastasis of prostate cancer is a critical determinant of patients' survival, searches for preventive measures are ongoing in the field. Therefore, it is important to dissect the mechanisms of each step of bone metastasis, including the epithelial-mesenchymal transition (EMT) and cross-talk between metastatic niches and cancer cells. METHODS In this study, we established a highly bone-metastatic subline of human prostate cancer cells by selecting bone-homing population of PC3 cells after cardiac injection of eight-week-old male BALB/c-nude mice. Then we assessed the proliferation, EMT characteristics, and migration properties of the subline (mtPC3) cells in comparison with the parental PC3 cells. To investigate the role of S100A4, we performed gene knock-down by lentiviral transduction, or treated cells with recombinant S100A4 protein or a S100A4-neutralizing antibody. The effect of cancer cells on osteoclastogenesis was evaluated after treatment of pre-osteoclasts with conditioned medium (CM) from cancer cells. RESULTS The mtPC3 cells secreted a markedly high level of S100A4 protein and showed elevated cell proliferation and mesenchymal properties. The increased proliferation and EMT traits of mtPC3 cells was inhibited by S100A4 knock-down, but was not affected by exogenous S100A4. Furthermore, S100A4 released from mtPC3 cells stimulated osteoclast development via the cell surface receptor RAGE. Down-regulation or neutralization of S100A4 in the CM of mtPC3 cells attenuated cancer-induced osteoclastogenesis. CONCLUSION Altogether, our results suggest that intracellular S100A4 promotes cell proliferation and EMT characteristics in tumor cells, and that secreted S100A4 activates osteoclastogenesis, contributing to osteolytic bone metastasis. Thus, S100A4 upregulation in cancer cells highly metastatic to bone might be a key element in regulating bone metastasis.
Collapse
Affiliation(s)
- Bongjun Kim
- Department of Cell and Developmental Biology, BK21 PLUS Program and DRI, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080
- Current address: Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Suhan Jung
- Department of Cell and Developmental Biology, BK21 PLUS Program and DRI, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080
| | - Haemin Kim
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York City, NY, USA
| | - Jun-Oh Kwon
- Department of Cell and Developmental Biology, BK21 PLUS Program and DRI, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080
| | - Min-Kyoung Song
- Department of Cell and Developmental Biology, BK21 PLUS Program and DRI, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080
| | - Min Kyung Kim
- Department of Cell and Developmental Biology, BK21 PLUS Program and DRI, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080
| | - Hyung Joon Kim
- Department of Oral Physiology, BK21 PLUS Project, and Dental and Life Science Institute, School of Dentistry, Pusan National University, Mulgeum-eup, Yangsan, Busan, 50612, South Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, BK21 PLUS Program and DRI, School of Dentistry, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080.
| |
Collapse
|
31
|
Ben Brahim C, Courageux C, Jolly A, Ouine B, Cartier A, de la Grange P, de Koning L, Leroy P. Proliferation Genes Repressed by TGF-β Are Downstream of Slug/Snail2 in Normal Bronchial Epithelial Progenitors and Are Deregulated in COPD. Stem Cell Rev Rep 2021; 17:703-718. [PMID: 33495975 DOI: 10.1007/s12015-021-10123-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Slug/Snail2 belongs to the Epithelial-Mesenchymal Transition (EMT)-inducing transcription factors involved in development and diseases. Slug is expressed in adult stem/progenitor cells of several epithelia, making it unique among these transcription factors. To investigate Slug role in human bronchial epithelium progenitors, we studied primary bronchial basal/progenitor cells in an air-liquid interface culture system that allows regenerating a bronchial epithelium. To identify Slug downstream genes we knocked down Slug in basal/progenitor cells from normal subjects and subjects with COPD, a respiratory disease presenting anomalies in the bronchial epithelium and high levels of TGF-β in the lungs. We show that normal and COPD bronchial basal/progenitors, even when treated with TGF-β, express both epithelial and mesenchymal markers, and that the epithelial marker E-cadherin is not a target of Slug and, moreover, positively correlates with Slug. We reveal that Slug downstream genes responding to both differentiation and TGF-β are different in normal and COPD progenitors, with in particular a set of proliferation-related genes that are among the genes repressed downstream of Slug in normal but not COPD. In COPD progenitors at the onset of differentiation in presence of TGF-β,we show that there is positive correlations between the effect of differentiation and TGF-β on proliferation-related genes and on Slug protein, and that their expression levels are higher than in normal cells. As well, the expression of Smad3 and β-Catenin, two molecules from TGF-βsignaling pathways, are higher in COPD progenitors, and our results indicate that proliferation-related genes and Slug protein are increased by different TGF-β-induced mechanisms.
Collapse
Affiliation(s)
- Chamseddine Ben Brahim
- INSERM UMR1152, Physiopathology and Epidemiology of Respiratory Diseases, Paris, France
- Faculty of Medicine, Paris Diderot University, Bichat Campus, Paris, France
| | - Charlotte Courageux
- INSERM UMR1152, Physiopathology and Epidemiology of Respiratory Diseases, Paris, France
- Faculty of Medicine, Paris Diderot University, Bichat Campus, Paris, France
| | | | - Bérengère Ouine
- Institut Curie, Department of Translational Research, RPPA platform, PSL Research University, Paris, France
| | - Aurélie Cartier
- Institut Curie, Department of Translational Research, RPPA platform, PSL Research University, Paris, France
| | | | - Leanne de Koning
- Institut Curie, Department of Translational Research, RPPA platform, PSL Research University, Paris, France
| | - Pascale Leroy
- INSERM UMR1152, Physiopathology and Epidemiology of Respiratory Diseases, Paris, France.
- Faculty of Medicine, Paris Diderot University, Bichat Campus, Paris, France.
| |
Collapse
|