1
|
Nago N, Murata S, Tanaka K, Tanahashi N. Changes in brain proteasome dynamics associated with aging. Genes Cells 2024; 29:438-445. [PMID: 38528683 DOI: 10.1111/gtc.13113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/27/2024]
Abstract
In the nervous system, proteasomes are important for proteolysis and cellular homeostasis of neurons and glial cells and for brain health. Proteasome function declines with age in many tissues, including the nervous system, and this decline affects many of the nervous system processes important to brain health and may be related to age-related cognitive decline. Therefore, we analyzed the factors that contribute to this decline in function using the brain of mice from different months of life. Peptidase activity of proteasomes in crude extracts decreased with aging, while ubiquitinated proteins increased with aging. Additionally, there was a tendency for the number of subunits that form proteasomes to decrease slightly with age. On the other hand, ump1, which is required for proteasome formation, accumulated with age. Therefore, analysis of proteasome dynamics in each month revealed that proteasome formation decreased with aging. This study suggests that with aging, not only 20S proteasome function but also 26 proteasome function decreases, the decline in proteasome function is due to the lack of proteasome formation, the PA28-20S-PA700 complex, which is involved in immunity, increases in the brain, and one factor in this lack of proteasome formation is that the proteins called UMP1.
Collapse
Affiliation(s)
- Nodoka Nago
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Shigeo Murata
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Nobuyuki Tanahashi
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| |
Collapse
|
2
|
Pereira B, Correia FP, Alves IA, Costa M, Gameiro M, Martins AP, Saraiva JA. Epigenetic reprogramming as a key to reverse ageing and increase longevity. Ageing Res Rev 2024; 95:102204. [PMID: 38272265 DOI: 10.1016/j.arr.2024.102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The pursuit for the fountain of youth has long been a fascination amongst scientists and humanity. Ageing is broadly characterized by a cellular decline with increased susceptibility to age-related diseases, being intimately associated with epigenetic modifications. Recently, reprogramming-induced rejuvenation strategies have begun to greatly alter longevity research not only to tackle age-related defects but also to possibly reverse the cellular ageing process. Hence, in this review, we highlight the major epigenetic changes during ageing and the state-of-art of the current emerging epigenetic reprogramming strategies leveraging on transcription factors. Notably, partial reprogramming enables the resetting of the ageing clock without erasing cellular identity. Promising chemical-based rejuvenation strategies harnessing small molecules, including DNA methyltransferase and histone deacetylase inhibitors are also discussed. Moreover, in parallel to longevity interventions, the foundations of epigenetic clocks for accurate ageing assessment and evaluation of reprogramming approaches are briefly presented. Going further, with such scientific breakthroughs, we are witnessing a rise in the longevity biotech industry aiming to extend the health span and ideally achieve human rejuvenation one day. In this context, we overview the main scenarios proposed for the future of the socio-economic and ethical challenges associated with such an emerging field. Ultimately, this review aims to inspire future research on interventions that promote healthy ageing for all.
Collapse
Affiliation(s)
- Beatriz Pereira
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - Inês A Alves
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Margarida Costa
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mariana Gameiro
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ana P Martins
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
3
|
Talepoor AG, Doroudchi M. Regulatory RNAs in immunosenescence. Immun Inflamm Dis 2024; 12:e1209. [PMID: 38456619 PMCID: PMC10921898 DOI: 10.1002/iid3.1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Immunosenescence is a multifactorial stress response to different intrinsic and extrinsic insults that cause immune deterioration and is accompanied by genomic or epigenomic perturbations. It is now widely recognized that genes and proteins contributing in the process of immunosenescence are regulated by various noncoding (nc) RNAs, including microRNAs (miRNAs), long ncRNAs, and circular RNAs. AIMS This review article aimed to evaluate the regulatore RNAs roles in the process of immunosenescence. METHODS We analyzed publications that were focusing on the different roles of regulatory RNAs on the several aspects of immunosenescence. RESULTS In the immunosenescence setting, ncRNAs have been found to play regulatory roles at both transcriptional and post-transcriptional levels. These factors cooperate to regulate the initiation of gene expression programs and sustaining the senescence phenotype and proinflammatory responses. CONCLUSION Immunosenescence is a complex process with pivotal alterations in immune function occurring with age. The extensive network that drive immunosenescence-related features are are mainly directed by a variety of regulatory RNAs such as miRNAs, lncRNAs, and circRNAs. Latest findings about regulation of senescence by ncRNAs in the innate and adaptive immune cells as well as their role in the immunosenescence pathways, provide a better understanding of regulatory RNAs function in the process of immunosenescence.
Collapse
Affiliation(s)
- Atefe Ghamar Talepoor
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
- Autoimmune Diseases Research CenterUniversity of Medical SciencesShirazIran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
4
|
Gavilán E, Medina-Guzman R, Bahatyrevich-Kharitonik B, Ruano D. Protein Quality Control Systems and ER Stress as Key Players in SARS-CoV-2-Induced Neurodegeneration. Cells 2024; 13:123. [PMID: 38247815 PMCID: PMC10814689 DOI: 10.3390/cells13020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The COVID-19 pandemic has brought to the forefront the intricate relationship between SARS-CoV-2 and its impact on neurological complications, including potential links to neurodegenerative processes, characterized by a dysfunction of the protein quality control systems and ER stress. This review article explores the role of protein quality control systems, such as the Unfolded Protein Response (UPR), the Endoplasmic Reticulum-Associated Degradation (ERAD), the Ubiquitin-Proteasome System (UPS), autophagy and the molecular chaperones, in SARS-CoV-2 infection. Our hypothesis suggests that SARS-CoV-2 produces ER stress and exploits the protein quality control systems, leading to a disruption in proteostasis that cannot be solved by the host cell. This disruption culminates in cell death and may represent a link between SARS-CoV-2 and neurodegeneration.
Collapse
Affiliation(s)
- Elena Gavilán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Rafael Medina-Guzman
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
| | - Bazhena Bahatyrevich-Kharitonik
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Diego Ruano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| |
Collapse
|
5
|
Dabravolski SA. Chaperone Activators. Subcell Biochem 2024; 107:43-62. [PMID: 39693019 DOI: 10.1007/978-3-031-66768-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Ageing is a complex yet universal and inevitable degenerative process that results in a decline in the cellular capacity for repair and adaptation to external stresses. Therefore, maintaining the appropriate balance of the cellular proteome is crucial. In addition to the ubiquitin-proteasome and autophagy-lysosomal systems, molecular chaperones play a vital role in a sophisticated protein quality control system. Chaperones are responsible for the correct protein assembly, folding, and translocation of other proteins when cells are subjected to various stresses. The equilibrium of chaperones is pivotal for maintaining health and longevity, as a deficiency in their function and quantity can contribute to the development of various diseases and accelerate the ageing processes. Conversely, their overexpression has been associated with tumour growth and progression. In this work, we discuss recent research focused on the application of various natural and artificial substances, as well as physical and nutritional stresses, to activate molecular chaperones and prolong both life- and healthspan. Furthermore, we emphasise the significance of autophagy, apoptosis, mTOR and inflammation signalling pathways in chaperone-mediated extension of life- and healthspan.
Collapse
|
6
|
Kubra KT, Barabutis N. Ceapin-A7 potentiates lipopolysaccharide-induced endothelial injury. J Biochem Mol Toxicol 2023; 37:e23460. [PMID: 37431958 PMCID: PMC10782819 DOI: 10.1002/jbt.23460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Barrier dysfunction is the hallmark of severe lung injury, including acute respiratory distress syndrome. Efficient medical countermeasures to counteract endothelial hyperpermeability do not exist, hence the mortality rates of disorders related to barrier abnormalities are unacceptable high. The unfolded protein response is a highly conserved mechanism, which aims to support the cells against endoplasmic reticulum stress, and ATF6 is a protein sensor that triggers its activation. In the current study, we investigate the effects of ATF6 suppression in LPS-induced endothelial inflammation. Our observations suggest that Ceapin-A7, which is an ATF6 suppressor, potentiates LPS-induced STAT3 and JAK2 activation. Hence ATF6 activation may serve as a new therapeutic possibility toward diseases related to barrier dysfunction.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, USA
| |
Collapse
|
7
|
Gressler AE, Leng H, Zinecker H, Simon AK. Proteostasis in T cell aging. Semin Immunol 2023; 70:101838. [PMID: 37708826 PMCID: PMC10804938 DOI: 10.1016/j.smim.2023.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Aging leads to a decline in immune cell function, which leaves the organism vulnerable to infections and age-related multimorbidities. One major player of the adaptive immune response are T cells, and recent studies argue for a major role of disturbed proteostasis contributing to reduced function of these cells upon aging. Proteostasis refers to the state of a healthy, balanced proteome in the cell and is influenced by synthesis (translation), maintenance and quality control of proteins, as well as degradation of damaged or unwanted proteins by the proteasome, autophagy, lysosome and cytoplasmic enzymes. This review focuses on molecular processes impacting on proteostasis in T cells, and specifically functional or quantitative changes of each of these upon aging. Importantly, we describe the biological consequences of compromised proteostasis in T cells, which range from impaired T cell activation and function to enhancement of inflamm-aging by aged T cells. Finally, approaches to improve proteostasis and thus rejuvenate aged T cells through pharmacological or physical interventions are discussed.
Collapse
Affiliation(s)
- A Elisabeth Gressler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Houfu Leng
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Heidi Zinecker
- Ascenion GmbH, Am Zirkus 1, Bertold-Brecht-Platz 3, 10117 Berlin, Germany
| | - Anna Katharina Simon
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom.
| |
Collapse
|
8
|
Meng G, Monaghan TM, Duggal NA, Tighe P, Peerani F. Microbial-Immune Crosstalk in Elderly-Onset Inflammatory Bowel Disease: Unchartered Territory. J Crohns Colitis 2023; 17:1309-1325. [PMID: 36806917 DOI: 10.1093/ecco-jcc/jjad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 02/23/2023]
Abstract
Elderly-onset inflammatory bowel disease [IBD] patients exhibit a distinct natural history compared to younger IBD patients, with unique disease phenotypes, differential responses to therapy, and increased surgical morbidity and mortality. Despite the foreseeable high demand for personalized medicine and specialized IBD care in the elderly, current paradigms of IBD management fail to capture the required nuances of care for elderly-onset IBD patients. Our review postulates the roles of systemic and mucosal immunosenescence, inflammageing and a dysbiotic microbial ecosystem in the pathophysiology of elderly-onset IBD. Ultimately, a better understanding of elderly-onset IBD can lead to improved patient outcomes and the tailoring of future preventative and treatment strategies.
Collapse
Affiliation(s)
- Guanmin Meng
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Niharika A Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Paddy Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Farhad Peerani
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023; 74:101755. [PMID: 37329949 PMCID: PMC10359950 DOI: 10.1016/j.molmet.2023.101755] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.
Collapse
Affiliation(s)
- Jordan J Baechle
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
| | - Nan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Priya Makhijani
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Pan CC, Maeso-Díaz R, Lewis TR, Xiang K, Tan L, Liang Y, Wang L, Yang F, Yin T, Wang C, Du K, Huang D, Oh SH, Wang E, Lim BJW, Chong M, Alexander PB, Yao X, Arshavsky VY, Li QJ, Diehl AM, Wang XF. Antagonizing the irreversible thrombomodulin-initiated proteolytic signaling alleviates age-related liver fibrosis via senescent cell killing. Cell Res 2023; 33:516-532. [PMID: 37169907 PMCID: PMC10313785 DOI: 10.1038/s41422-023-00820-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Cellular senescence is a stress-induced, stable cell cycle arrest phenotype which generates a pro-inflammatory microenvironment, leading to chronic inflammation and age-associated diseases. Determining the fundamental molecular pathways driving senescence instead of apoptosis could enable the identification of senolytic agents to restore tissue homeostasis. Here, we identify thrombomodulin (THBD) signaling as a key molecular determinant of the senescent cell fate. Although normally restricted to endothelial cells, THBD is rapidly upregulated and maintained throughout all phases of the senescence program in aged mammalian tissues and in senescent cell models. Mechanistically, THBD activates a proteolytic feed-forward signaling pathway by stabilizing a multi-protein complex in early endosomes, thus forming a molecular basis for the irreversibility of the senescence program and ensuring senescent cell viability. Therapeutically, THBD signaling depletion or inhibition using vorapaxar, an FDA-approved drug, effectively ablates senescent cells and restores tissue homeostasis in liver fibrosis models. Collectively, these results uncover proteolytic THBD signaling as a conserved pro-survival pathway essential for senescent cell viability, thus providing a pharmacologically exploitable senolytic target for senescence-associated diseases.
Collapse
Affiliation(s)
- Christopher C Pan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Raquel Maeso-Díaz
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Tylor R Lewis
- Division of Ophthalmology, Department of Medicine, Duke University, Durham, NC, USA
| | - Kun Xiang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Lianmei Tan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Yaosi Liang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Fengrui Yang
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Calvin Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Kuo Du
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Seh Hoon Oh
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Ergang Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | | | - Mengyang Chong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Peter B Alexander
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Xuebiao Yao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Vadim Y Arshavsky
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
- Division of Ophthalmology, Department of Medicine, Duke University, Durham, NC, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University, Durham, NC, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
11
|
Extracellular Vesicles in Aging: An Emerging Hallmark? Cells 2023; 12:cells12040527. [PMID: 36831194 PMCID: PMC9954704 DOI: 10.3390/cells12040527] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles secreted by cells and circulating in body fluids. Initially considered as a tool to dispose of unnecessary material, they are now considered an additional method to transmit cell signals. Aging is characterized by a progressive impairment of the physiological functions of tissues and organs. The causes of aging are complex and interconnected, but there is consensus that genomic instability, telomere erosion, epigenetic alteration, and defective proteostasis are primary hallmarks of the aging process. Recent studies have provided evidence that many of these primary stresses are associated with an increased release of EVs in cell models, able to spread senescence signals in the recipient cell. Additional investigations on the role of EVs during aging also demonstrated the great potential of EVs for the modulation of age-related phenotypes and for pro-rejuvenation therapies, potentially beneficial for many diseases associated with aging. Here we reviewed the current literature on EV secretion in senescent cell models and in old vs. young individual body fluids, as well as recent studies addressing the potential of EVs from different sources as an anti-aging tool. Although this is a recent field, the robust consensus on the altered EV release in aging suggests that altered EV secretion could be considered an emerging hallmark of aging.
Collapse
|
12
|
Frankowska N, Bryl E, Fulop T, Witkowski JM. Longevity, Centenarians and Modified Cellular Proteodynamics. Int J Mol Sci 2023; 24:ijms24032888. [PMID: 36769212 PMCID: PMC9918038 DOI: 10.3390/ijms24032888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
We have shown before that at least one intracellular proteolytic system seems to be at least as abundant in the peripheral blood lymphocytes of centenarians as in the same cells of young individuals (with the cells of the elderly population showing a significant dip compared to both young and centenarian cohorts). Despite scarce published data, in this review, we tried to answer the question how do different types of cells of longevous people-nonagenarians to (semi)supercentenarians-maintain the quality and quantity of their structural and functional proteins? Specifically, we asked if more robust proteodynamics participate in longevity. We hypothesized that at least some factors controlling the maintenance of cellular proteomes in centenarians will remain at the "young" level (just performing better than in the average elderly). In our quest, we considered multiple aspects of cellular protein maintenance (proteodynamics), including the quality of transcribed DNA, its epigenetic changes, fidelity and quantitative features of transcription of both mRNA and noncoding RNAs, the process of translation, posttranslational modifications leading to maturation and functionalization of nascent proteins, and, finally, multiple facets of the process of elimination of misfolded, aggregated, and otherwise dysfunctional proteins (autophagy). We also included the status of mitochondria, especially production of ATP necessary for protein synthesis and maintenance. We found that with the exception of the latter and of chaperone function, practically all of the considered aspects did show better performance in centenarians than in the average elderly, and most of them approached the levels/activities seen in the cells of young individuals.
Collapse
Affiliation(s)
- Natalia Frankowska
- Department of Physiopathology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Jacek M. Witkowski
- Department of Physiopathology, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1510
| |
Collapse
|
13
|
Kang D, Baek Y, Lee JS. Mechanisms of RNA and Protein Quality Control and Their Roles in Cellular Senescence and Age-Related Diseases. Cells 2022; 11:cells11244062. [PMID: 36552825 PMCID: PMC9777292 DOI: 10.3390/cells11244062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence, a hallmark of aging, is defined as irreversible cell cycle arrest in response to various stimuli. It plays both beneficial and detrimental roles in cellular homeostasis and diseases. Quality control (QC) is important for the proper maintenance of cellular homeostasis. The QC machineries regulate the integrity of RNA and protein by repairing or degrading them, and are dysregulated during cellular senescence. QC dysfunction also contributes to multiple age-related diseases, including cancers and neurodegenerative, muscle, and cardiovascular diseases. In this review, we describe the characters of cellular senescence, discuss the major mechanisms of RNA and protein QC in cellular senescence and aging, and comprehensively describe the involvement of these QC machineries in age-related diseases. There are many open questions regarding RNA and protein QC in cellular senescence and aging. We believe that a better understanding of these topics could propel the development of new strategies for addressing age-related diseases.
Collapse
Affiliation(s)
- Donghee Kang
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Yurim Baek
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
- Correspondence: ; Tel.: +82-32-860-9832; Fax: +82-32-885-8302
| |
Collapse
|
14
|
Weinberg J, Gaur M, Swaroop A, Taylor A. Proteostasis in aging-associated ocular disease. Mol Aspects Med 2022; 88:101157. [PMID: 36459837 PMCID: PMC9742340 DOI: 10.1016/j.mam.2022.101157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
Vision impairment has devastating consequences for the quality of human life. The cells and tissues associated with the visual process must function throughout one's life span and maintain homeostasis despite exposure to a variety of insults. Maintenance of the proteome is termed proteostasis, and is vital for normal cellular functions, especially at an advanced age. Here we describe basic aspects of proteostasis, from protein synthesis and folding to degradation, and discuss the current status of the field with a particular focus on major age-related eye diseases: age-related macular degeneration, cataract, and glaucoma. Our intent is to allow vision scientists to determine where and how to harness the proteostatic machinery for extending functional homeostasis in the aging retina, lens, and trabecular meshwork. Several common themes have emerged despite these tissues having vastly different metabolisms. Continued exposure to insults, including chronic stress with advancing age, increases proteostatic burden and reduces the fidelity of the degradation machineries including the ubiquitin-proteasome and the autophagy-lysosome systems that recognize and remove damaged proteins. This "double jeopardy" results in an exponential accumulation of cytotoxic proteins with advancing age. We conclude with a discussion of the challenges in maintaining an appropriate balance of protein synthesis and degradation pathways, and suggest that harnessing proteostatic capacities should provide new opportunities to design interventions for attenuating age-related eye diseases before they limit sight.
Collapse
Affiliation(s)
- Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
15
|
Frankowska N, Lisowska K, Witkowski JM. Proteolysis dysfunction in the process of aging and age-related diseases. FRONTIERS IN AGING 2022; 3:927630. [PMID: 35958270 PMCID: PMC9361021 DOI: 10.3389/fragi.2022.927630] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 12/20/2022]
Abstract
In this review, we discuss in detail the most relevant proteolytic systems that together with chaperones contribute to creating the proteostasis network that is kept in dynamic balance to maintain overall functionality of cellular proteomes. Data accumulated over decades demonstrate that the effectiveness of elements of the proteostasis network declines with age. In this scenario, failure to degrade misfolded or faulty proteins increases the risk of protein aggregation, chronic inflammation, and the development of age-related diseases. This is especially important in the context of aging-related modification of functions of the immune system.
Collapse
Affiliation(s)
- Natalia Frankowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Katarzyna Lisowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| | - Jacek M Witkowski
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
16
|
Urinary Malondialdehyde (MDA) Concentrations in the General Population—A Systematic Literature Review and Meta-Analysis. TOXICS 2022; 10:toxics10040160. [PMID: 35448421 PMCID: PMC9024833 DOI: 10.3390/toxics10040160] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/15/2022]
Abstract
Oxidative stress has been associated with various inflammation-related human diseases. It is defined as an imbalance between the production and elimination of reactive oxygen species (ROS). ROS can oxidize proteins, lipids, and DNA, and some of these oxidized products are excreted in urine, such as malondialdehyde (MDA), which is considered a biomarker for oxidative damage of lipids. To interpret changes of this biomarker as a measure of oxidative species overproduction in humans, a background range for urinary MDA concentration in the general population is needed. We sought to establish urinary MDA concentration ranges for healthy adult populations based on reported values in the available scientific literature. We conducted a systematic review and meta-analysis using the standardized protocol registered in PROSPERO (CRD42020146623). EMBASE, PubMed, Web of Science, and Cochrane library databases were searched from journal inception up to October 2020. We included 35 studies (divided into 47 subgroups for the quantitative analysis). Only studies that measured creatinine-corrected urinary MDA with high-performance liquid chromatography (HPLC) with mass spectrometry (MS), fluorescence detection, or UV photometry were included. The geometric mean (GM) of urinary MDA concentration was 0.10 mg/g creatinine and 95% percentile confidence interval (CI) 0.07–0.12. Age, geographical location but not sex, and smoking status had a significant effect on urinary MDA concentrations. There was a significant increasing trend of urinary MDA concentrations with age. These urinary MDA values should be considered preliminary, as they are based on mostly moderate to some low-quality evidence studies. Although urinary MDA can reliably reflect excessive oxidative stress in a population, the influence of physiological parameters that affect its meaning needs to be addressed as well as harmonizing the chemical analytical methods.
Collapse
|
17
|
Stangherlin A, Seinkmane E, O'Neill JS. Understanding circadian regulation of mammalian cell function, protein homeostasis, and metabolism. CURRENT OPINION IN SYSTEMS BIOLOGY 2021; 28:None. [PMID: 34950808 PMCID: PMC8660647 DOI: 10.1016/j.coisb.2021.100391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circadian rhythms are ∼24 h cycles of organismal and cellular activity ubiquitous to mammalian physiology. A prevailing paradigm suggests that timing information flows linearly from rhythmic transcription via protein abundance changes to drive circadian regulation of cellular function. Challenging this view, recent evidence indicates daily variation in many cellular functions arises through rhythmic post-translational regulation of protein activity. We suggest cellular circadian timing primarily functions to maintain proteome homeostasis rather than perturb it. Indeed, although relevant to timekeeping mechanism, daily rhythms of clock protein abundance may be the exception, not the rule. Informed by insights from yeast and mammalian models, we propose that optimal bioenergetic efficiency results from coupled rhythms in mammalian target of rapamycin complex activity, protein synthesis/turnover, ion transport and protein sequestration, which drive facilitatory rhythms in metabolic flux and substrate utilisation. Such daily consolidation of proteome renewal would account for many aspects of circadian cell biology whilst maintaining osmotic homeostasis.
Collapse
|